CN113675294B - 一种双层三元氧化物的光电突触器件及其制备和工作方法 - Google Patents

一种双层三元氧化物的光电突触器件及其制备和工作方法 Download PDF

Info

Publication number
CN113675294B
CN113675294B CN202110962012.2A CN202110962012A CN113675294B CN 113675294 B CN113675294 B CN 113675294B CN 202110962012 A CN202110962012 A CN 202110962012A CN 113675294 B CN113675294 B CN 113675294B
Authority
CN
China
Prior art keywords
oxide film
synapse
photoelectric
oxide
synapse device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110962012.2A
Other languages
English (en)
Other versions
CN113675294A (zh
Inventor
杨志强
顾鹏
陈柯辛
李春梅
王金勇
蒋向东
李伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110962012.2A priority Critical patent/CN113675294B/zh
Publication of CN113675294A publication Critical patent/CN113675294A/zh
Application granted granted Critical
Publication of CN113675294B publication Critical patent/CN113675294B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/067Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using optical means
    • G06N3/0675Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using optical means using electro-optical, acousto-optical or opto-electronic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Biophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Neurology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供一种双层三元氧化物的光电突触器件及其制备和工作方法,器件从上至下具有透明顶电极、n型金属掺杂钛酸锶氧化物薄膜、p型铝酸铜氧化物薄膜、透明底电极的垂直四层结构;多个透明顶电极形成的阵列等距排布在器件上表面;n型金属掺杂钛酸锶氧化物薄膜和p型铝酸铜氧化物薄膜用于构建光电突触器件的功能层,透明导电薄膜作为顶电极、底电极和光窗;所述的光电突触器件不仅具有器件结构和制备工艺简单等特点,还具有响应时间短和响应电流大的优点,其宽光谱响应可以解决电激励电读取突触器件工作带宽受限的问题,有望在未来神经形态芯片以及先进智能视觉系统中获得应用。

Description

一种双层三元氧化物的光电突触器件及其制备和工作方法
技术领域
本发明涉及一种双层三元氧化物的光电突触器件及其制备和工作方法,属于半导体光电子器件技术领域。
背景技术
在过去的一百年内,人工视觉系统给我们的生活带来了极大的便利,其应用也越来约广泛。人类对未知领域的探索达到了前所未有的高度,在探索外界的过程中,由光电探测器和计算机组成的传统人工视觉系统发挥了重要的作用。但是随着人工智能技术、大数据和后摩尔时代的到来,基于冯诺依曼架构和Si-CMOS工艺的传统人工视觉系统将面临一些问题,如数据处理的能耗、非结构化和实时问题的解决和计算速度的提升等。这主要源于冯诺依曼架构计算机中存储单元和数据处理单元分离造成的。基于神经网络构成的人类的视觉系统具有集感知、运算和记忆于一体的特点,能够低能耗高速率的进行信息处理。因此模拟人类视觉的处理方式是构建新一代人工视觉系统,是打破冯诺依曼瓶颈的途径之一。视觉神经网络系统的基本单元是突触,具有突触功能的光电器件是构建新一代人工视觉系统的基础。近年来,已经有很多研究人员制备出许多可用于人工视觉系统的光电突触器件,其中不乏三元氧化物系列,但是这些基于三元氧化物的光电突触器件往往实现不了宽光谱、快响应的突触功能,不利于应用于新一代视觉系统对红外图像的检测和处理。
发明内容
本发明的目的在于提供一种能够实现宽光谱、快响应以及具有突触可塑性、经验学习和颜色识别的多项仿生视觉突触功能的双层三元氧化物的光电突触器件。
为实现上述发明目的,本发明技术方案如下:
一种双层三元氧化物的光电突触器件,器件从上至下具有透明顶电极1、n型金属掺杂钛酸锶氧化物薄膜2、p型铝酸铜氧化物薄膜3和透明底电极4的垂直四层结构;n型金属掺杂钛酸锶氧化物薄膜和p型铝酸铜氧化物薄膜用于构建光电突触器件的功能层;透明导电薄膜作为顶电极、底电极和光窗,多个透明顶电极形成的阵列等距排布在器件上表面;用不同能量的光信号模拟视觉突触前端的动作电位,用器件的光电流响应模拟视觉突触的后电流。
作为优选方式,光电突触器件的激励源为波长450nm~1550nm的光信号。
作为优选方式,光电突触器件的响应时间为1ms~10ms。
作为优选方式,透明顶电极和透明底电极都为透明导电薄膜,材料选自氧化铟锡ITO或氧化铟锌IZO。
作为优选方式,透明顶电极由氧化铟锡ITO靶材或氧化铟锌IZO靶材射频溅射获得,薄膜厚度为50nm~100nm。
作为优选方式,n型金属掺杂钛酸锶氧化物薄膜采用钛酸锶陶瓷靶材和金属颗粒射频共溅射的方法获得,薄膜厚度为20nm~60nm,其中金属颗粒选自铜Cu、银Ag、钌Ru其中一种;p型铝酸铜氧化物薄膜采用铝酸铜陶瓷靶材射频溅射的方法获得,薄膜厚度为30nm~80nm。
本发明还提供了一种双层三元氧化物的光电突触器件的工作方法,其为:当光激励信号作用在光电突触器件上时,光激励信号与n型金属掺杂钛酸锶氧化物薄膜相互作用并激发出光生载流子,所激发的光生载流子被n型金属掺杂钛酸锶氧化物薄膜2和p型铝酸铜氧化物薄膜3界面PN结内建电场分离,然后被氧空位或/和纳米金属颗粒引入的缺陷所捕获;当光激励信号从器件上移除时,氧空位或/和纳米金属颗粒引入的缺陷释放所捕获的光生载流子,产生持续光电流衰退且其衰退程度随激励光的波长、强度以及激励时间的变化而发生变化;当用光信号作为突触器件的动作电位,用衰退的持续光电流作为器件的突触后电流时,所述一种双层三元氧化物的光电突触器件在波长450nm~1550nm的范围内具有突触可塑性、经验学习和颜色识别的多项仿生视觉突触功能。
本发明还提供了一种双层三元氧化物的光电突触器件的制备方法,包括如下步骤:
步骤一:选用透明导电玻璃氧化铟锡ITO或氧化铟锌IZO作为基片,其上表面透明导电薄膜作为光电突触器件的下电极;进行清洗和干燥处理。
步骤二:将透明导电玻璃划分为两个区域,分别为光激励信号输入区和突触后电流检测区,并对突触后电流检测区进行保护,在光激励信号输入区预留窗口;采用射频溅射的方法获得p型铝酸铜氧化物薄膜。
步骤三:在步骤二的基础上,采用射频共溅射的方法获得n型金属掺杂钛酸锶氧化物薄膜。
步骤四:在步骤三的基础上,采用氧化铟锡ITO靶材或氧化铟锌IZO靶材,结合掩模版射频溅射的方法,获得阵列排布的等距透明顶电极。
本发明的有益效果为:本发明用光信号作为突触器件的动作电位,巧妙利用n型金属掺杂钛酸锶氧化物薄膜2和p型铝酸铜氧化物薄膜3界面PN结内建电场对光生载流子的分离与氧空位或/和纳米金属颗粒引入的缺陷对光生载流子的捕获和释放,产生持续光电流衰退,实现了突触可塑性、经验学习和颜色识别的多项仿生视觉突触功能。所述的光电突触器件不仅具有器件结构和制备工艺简单等特点,还具有响应时间短和响应电流大的优点,其宽光谱响应可以解决电激励电读取突触器件工作带宽受限的问题,有望在未来神经形态芯片以及先进智能视觉系统中获得应用。
附图说明
图1是本发明的结构示意图。
图2是实施例制备的n型铜掺杂钛酸锶氧化物薄膜和p型铝酸铜氧化物薄膜构成的一种双层三元氧化物光电突触器件在脉宽为2ms、波长为520nm、光功率密度为20mW/cm2的光信号激励下的光电流响应曲线。
图3(a)、(b)、(c)、(d)、(e)、(f)分别展示了实施例制备的n型铜掺杂钛酸锶氧化物薄膜和p型铝酸铜氧化物薄膜构成的一种双层三元氧化物光电突触器件在波长为450nm、520nm、780nm、980nm、1330nm和1550nm光信号激励下的光电流响应曲线和持续光电流衰退现象。
1为透明顶电极,2为n型金属掺杂钛酸锶氧化物薄膜,3为p型铝酸铜氧化物薄膜,4位透明底电极,5为光激励信号。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
一种双层三元氧化物的光电突触器件,器件从上至下具有透明顶电极1、n型金属掺杂钛酸锶氧化物薄膜2、p型铝酸铜氧化物薄膜3和透明底电极4的垂直四层结构;n型金属掺杂钛酸锶氧化物薄膜和p型铝酸铜氧化物薄膜用于构建光电突触器件的功能层;透明导电薄膜作为顶电极、底电极和光窗,多个透明顶电极形成的阵列等距排布在器件上表面;用不同能量的光信号模拟视觉突触前端的动作电位,用器件的光电流响应模拟视觉突触的后电流。
光电突触器件的激励源为波长450nm~1550nm的光信号。
光电突触器件的响应时间为1ms~10ms。
透明顶电极和透明底电极都为透明导电薄膜,材料选自氧化铟锡ITO或氧化铟锌IZO。
透明顶电极由氧化铟锡ITO靶材或氧化铟锌IZO靶材射频溅射获得,薄膜厚度为50nm~100nm。
n型金属掺杂钛酸锶氧化物薄膜采用钛酸锶陶瓷靶材和金属颗粒射频共溅射的方法获得,薄膜厚度为20nm~60nm,其中金属颗粒选自铜Cu、银Ag、钌Ru其中一种;p型铝酸铜氧化物薄膜采用铝酸铜陶瓷靶材射频溅射的方法获得,薄膜厚度为30nm~80nm。
本实施例还提供了一种双层三元氧化物的光电突触器件的工作方法,其为:当光激励信号作用在光电突触器件上时,光激励信号与n型金属掺杂钛酸锶氧化物薄膜相互作用并激发出光生载流子,所激发的光生载流子被n型金属掺杂钛酸锶氧化物薄膜2和p型铝酸铜氧化物薄膜3界面PN结内建电场分离,然后被氧空位或/和纳米金属颗粒引入的缺陷所捕获;当光激励信号从器件上移除时,氧空位或/和纳米金属颗粒引入的缺陷释放所捕获的光生载流子,产生持续光电流衰退且其衰退程度随激励光的波长、强度以及激励时间的变化而发生变化;当用光信号作为突触器件的动作电位,用衰退的持续光电流作为器件的突触后电流时,所述一种双层三元氧化物的光电突触器件在波长450nm~1550nm的范围内具有突触可塑性、经验学习和颜色识别的多项仿生视觉突触功能。
本实施例还提供了一种双层三元氧化物的光电突触器件的制备方法,包括如下步骤:
步骤一:选用透明导电玻璃氧化铟锡ITO或氧化铟锌IZO作为基片,其上表面透明导电薄膜作为光电突触器件的下电极;进行清洗和干燥处理。
步骤二:将透明导电玻璃划分为两个区域,分别为光激励信号输入区和突触后电流检测区,并对突触后电流检测区进行保护,在光激励信号输入区预留窗口;采用射频溅射的方法获得p型铝酸铜氧化物薄膜。
步骤三:在步骤二的基础上,采用射频共溅射的方法获得n型金属掺杂钛酸锶氧化物薄膜
步骤四:在步骤三的基础上,采用氧化铟锡ITO靶材或氧化铟锌IZO靶材,结合掩模版射频溅射的方法,获得阵列排布的等距透明顶电极。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (8)

1.一种双层三元氧化物的光电突触器件,其特征在于:器件从上至下具有透明顶电极(1)、n型金属掺杂钛酸锶氧化物薄膜(2)、p型铝酸铜氧化物薄膜(3)和透明底电极(4)的垂直四层结构;n型金属掺杂钛酸锶氧化物薄膜和p型铝酸铜氧化物薄膜用于构建光电突触器件的功能层;透明导电薄膜作为顶电极、底电极和光窗,多个透明顶电极形成的阵列等距排布在器件上表面;用不同能量的光信号模拟视觉突触前端的动作电位,用器件的光电流响应模拟视觉突触的后电流。
2.根据权利要求1所述的一种双层三元氧化物的光电突触器件,其特征在于:光电突触器件的激励源为波长450nm~1550nm的光信号。
3.根据权利要求1所述的一种双层三元氧化物的光电突触器件,其特征在于:光电突触器件的响应时间为1ms~10ms。
4.根据权利要求1所述的一种双层三元氧化物的光电突触器件,其特征在于:透明顶电极和透明底电极都为透明导电薄膜,材料选自氧化铟锡ITO或氧化铟锌IZO。
5.根据权利要求1所述的一种双层三元氧化物的光电突触器件,其特征在于:透明顶电极由氧化铟锡ITO靶材或氧化铟锌IZO靶材射频溅射获得,薄膜厚度为50nm~100nm。
6.根据权利要求1所述的一种双层三元氧化物的光电突触器件,其特征在于:n型金属掺杂钛酸锶氧化物薄膜采用钛酸锶陶瓷靶材和金属颗粒射频共溅射的方法获得,薄膜厚度为20nm~60nm,其中金属颗粒选自铜Cu、银Ag、钌Ru其中一种;p型铝酸铜氧化物薄膜采用铝酸铜陶瓷靶材射频溅射的方法获得,薄膜厚度为30nm~80nm。
7.权利要求1至6任意一项所述的一种双层三元氧化物的光电突触器件的工作方法,其特征在于:当光激励信号作用在光电突触器件上时,光激励信号与n型金属掺杂钛酸锶氧化物薄膜相互作用并激发出光生载流子,所激发的光生载流子被n型金属掺杂钛酸锶氧化物薄膜(2)和p型铝酸铜氧化物薄膜(3)界面PN结内建电场分离,然后被氧空位或/和纳米金属颗粒引入的缺陷所捕获;当光激励信号从器件上移除时,氧空位或/和纳米金属颗粒引入的缺陷释放所捕获的光生载流子,产生持续光电流衰退且其衰退程度随激励光的波长、强度以及激励时间的变化而发生变化;当用光信号作为突触器件的动作电位,用衰退的持续光电流作为器件的突触后电流时,所述一种双层三元氧化物的光电突触器件在波长450nm~1550nm的范围内具有突触可塑性、经验学习和颜色识别的多项仿生视觉突触功能。
8.权利要求1至6任意一项所述的一种双层三元氧化物的光电突触器件的制备方法,其特征在于包括如下步骤:
步骤一:选用透明导电玻璃氧化铟锡ITO或氧化铟锌IZO作为基片,其上表面透明导电薄膜作为光电突触器件的下电极;进行清洗和干燥处理;
步骤二:将透明导电玻璃划分为两个区域,分别为光激励信号输入区和突触后电流检测区,并对突触后电流检测区进行保护,在光激励信号输入区预留窗口;采用射频溅射的方法获得p型铝酸铜氧化物薄膜;
步骤三:在步骤二的基础上,采用射频共溅射的方法获得n型金属掺杂钛酸锶氧化物薄膜;
步骤四:在步骤三的基础上,采用氧化铟锡ITO靶材或氧化铟锌IZO靶材,结合掩模版射频溅射的方法,获得阵列排布的等距透明顶电极。
CN202110962012.2A 2021-08-20 2021-08-20 一种双层三元氧化物的光电突触器件及其制备和工作方法 Active CN113675294B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110962012.2A CN113675294B (zh) 2021-08-20 2021-08-20 一种双层三元氧化物的光电突触器件及其制备和工作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110962012.2A CN113675294B (zh) 2021-08-20 2021-08-20 一种双层三元氧化物的光电突触器件及其制备和工作方法

Publications (2)

Publication Number Publication Date
CN113675294A CN113675294A (zh) 2021-11-19
CN113675294B true CN113675294B (zh) 2023-03-31

Family

ID=78544621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110962012.2A Active CN113675294B (zh) 2021-08-20 2021-08-20 一种双层三元氧化物的光电突触器件及其制备和工作方法

Country Status (1)

Country Link
CN (1) CN113675294B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931349A (zh) * 2012-11-10 2013-02-13 清华大学 一种片式忆阻器及其制备方法
CN108447983A (zh) * 2018-03-23 2018-08-24 西南大学 基于掺杂钛酸锶薄膜的低功耗电阻开关存储单元及其制备方法和应用
CN109449289A (zh) * 2018-11-01 2019-03-08 中国科学院宁波材料技术与工程研究所 一种光激励的神经突触仿生忆阻器及其制备方法
CN111640865A (zh) * 2020-06-10 2020-09-08 中国科学技术大学 一种适用于神经形态计算的人工突触器件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2552014B (en) * 2016-07-07 2020-05-13 Advanced Risc Mach Ltd Reconfigurable artificial neural networks comprising programmable non-volatile memory elements
EP3574525B1 (en) * 2017-01-26 2023-08-09 HRL Laboratories, LLC A scalable, stackable, and beol-process compatible integrated neuron circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931349A (zh) * 2012-11-10 2013-02-13 清华大学 一种片式忆阻器及其制备方法
CN108447983A (zh) * 2018-03-23 2018-08-24 西南大学 基于掺杂钛酸锶薄膜的低功耗电阻开关存储单元及其制备方法和应用
CN109449289A (zh) * 2018-11-01 2019-03-08 中国科学院宁波材料技术与工程研究所 一种光激励的神经突触仿生忆阻器及其制备方法
CN111640865A (zh) * 2020-06-10 2020-09-08 中国科学技术大学 一种适用于神经形态计算的人工突触器件

Also Published As

Publication number Publication date
CN113675294A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
CN109449289B (zh) 一种光激励的神经突触仿生忆阻器及其制备方法
Kumar et al. Highly transparent reconfigurable non-volatile multilevel optoelectronic memory for integrated self-powered brain-inspired perception
Wang et al. Vertically integrated spiking cone photoreceptor arrays for color perception
JPS62501180A (ja) エレクトロルミネセントおよび光伝導被膜からなるメモリ作用を備えた表示手段
Bhatnagar et al. Self‐powered transparent photodetector for subretinal visual functions of wide‐field‐of‐view and broadband perception
CN113675294B (zh) 一种双层三元氧化物的光电突触器件及其制备和工作方法
Pereira et al. Recent progress in optoelectronic memristors for neuromorphic and in-memory computation
Ye et al. Overview of memristor-based neural network design and applications
Wang et al. Artificial optoelectronic synapse based on epitaxial Ba0. 6Sr0. 4TiO3 thin films memristor for neuromorphic computing and image recognition
Liu et al. Experimental and First‐Principles Study of Visible Light Responsive Memristor Based on CuAlAgCr/TiO2/W Structure for Artificial Synapses with Visual Perception
He et al. Artificial visual‐tactile perception array for enhanced memory and neuromorphic computations
Li et al. Amorphous gallium oxide homojunction-based optoelectronic synapse for multi-functional signal processing
CN111863988B (zh) 基于非晶硅薄膜的光突触器件及制备方法和工作方法
CN113675291B (zh) 基于肖特基接触的双层硅基光电突触器件及制备方法
CN113091895A (zh) 一种通过可协调光电探测器实现机器视觉功能的方法
CN104701391A (zh) 一种光电信息转换元件及其应用
CN115148903B (zh) 基于TaOx的金纳米周期性线阵列的可调控光电忆阻器
Huang et al. Pt/TiO x/Ti-based Dynamic Optoelectronic Memristor for Neuromorphic Computing
Shrivastava et al. Bidirectional Photoelectric Response of Perovskite Oxide Based Synaptic ReRAM Device
Mahana et al. Photo-sensing characteristics of CuO thin films synthesized by thermal oxidation of Cu metal films
Shan et al. Emerging multimodal memristors for biorealistic neuromorphic applications
CN215955321U (zh) 一种编译一体的忆阻器
CN114023875B (zh) 一种人工视觉系统及其制备方法
Wang et al. Artificial optoelectronic synapse based on epitaxial Ba
KR102198720B1 (ko) 뉴로모픽 광 검출기 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant