CN113675291B - 基于肖特基接触的双层硅基光电突触器件及制备方法 - Google Patents

基于肖特基接触的双层硅基光电突触器件及制备方法 Download PDF

Info

Publication number
CN113675291B
CN113675291B CN202110962162.3A CN202110962162A CN113675291B CN 113675291 B CN113675291 B CN 113675291B CN 202110962162 A CN202110962162 A CN 202110962162A CN 113675291 B CN113675291 B CN 113675291B
Authority
CN
China
Prior art keywords
silicon
functional layer
synapse
layer
film functional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110962162.3A
Other languages
English (en)
Other versions
CN113675291A (zh
Inventor
陈柯辛
顾鹏
杨志强
李春梅
王金勇
蒋向东
李伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110962162.3A priority Critical patent/CN113675291B/zh
Publication of CN113675291A publication Critical patent/CN113675291A/zh
Application granted granted Critical
Publication of CN113675291B publication Critical patent/CN113675291B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/067Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using optical means
    • G06N3/0675Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using optical means using electro-optical, acousto-optical or opto-electronic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Neurology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供一种基于肖特基接触的双层硅基光电突触器件及制备方法,从上至下具有透明顶电极、硅基非晶薄膜功能层、非晶硅钌薄膜功能层、透明底电极的垂直三明治结构;非晶硅钌薄膜功能层为光敏层,用于吸收可见光到近红外光范围内的光子;硅基非晶薄膜功能层与非晶硅钌薄膜功能层构成肖特基势垒;器件以不同波长的光信号模拟视觉突触前端的动作电位,以器件的光响应电流模拟突触后电流,通过电读取的方式,在可见光到近红外光谱范围内实现多项视觉神经突触可塑性,进而实现学习、记忆和颜色识别的仿生视觉突触功能。本发明所述光电突触器件具有较宽的工作带宽,有望在神经形态芯片以及未来智能机器人视觉系统中获得应用。

Description

基于肖特基接触的双层硅基光电突触器件及制备方法
技术领域
本发明属于本发明属于硅基光电子集成器件与神经形态芯片领域,具体涉及一种基于肖特基接触的双层硅基光电突触器件及其制备方法。
背景技术
神经网络计算以其自适应学习、高并行计算和低能耗等优点,被认为是能够解决冯·诺依曼瓶颈、存储墙等问题的最有效方法之一。实现神经网络计算的重要前提是开发出能够模拟生物突触行为的突触器件。已有的绝大部分专利均为以电信号作为激励源的突触器件,被称之为电学突触。这类突触器件采用“电激励-电读取”的工作方式来实现人工突触功能。它们在统筹考虑带宽、连接、密度等因素下的整体优化面临着巨大挑战,故研究者将光引入神经突触器件,研制使用光信号作为激励源的光电突触器件。与电学突触器件相比,光不仅具备电难以实现的高带宽、低串扰、低功耗等特性,还可以直接模拟视觉等至关重要的神经行为。目前,以光信号作为激励源实现突触功能的公开专利还很少,而且大多数光电突触器件使用的是紫光或者紫外光作为激励源,仅有个别公开专利能够做到长波响应。
发明内容
为了突破电学突触的带宽限制和已有的绝大多数光电突触器件无法做到宽光谱响应的局限,本发明提出一种基于肖特基接触的双层硅基光电突触器件及其制备方法。
为实现上述发明目的,本发明技术方案如下:
一种基于肖特基接触的双层硅基光电突触器件,所述器件从上至下具有透明顶电极1、硅基非晶薄膜功能层2、非晶硅钌薄膜功能层3、透明底电极4的垂直三明治结构。
非晶硅钌薄膜功能层3对可见光到近红外光范围的激励光敏感,用于吸收可见光到近红外光范围内的光子;硅基非晶薄膜功能层2与非晶硅钌薄膜功能层3构成肖特基势垒,用于降低并控制光生载流子的复合速率,实现对光生载流子的动态捕获和去捕获。
器件以不同波长的光信号模拟视觉突触前端的动作电位,以器件的光响应电流模拟突触后电流,通过电读取的方式,在可见光到近红外光谱范围内实现多项视觉神经突触可塑性,进而实现学习、记忆和颜色识别的仿生视觉突触功能。
作为优选方式,透明顶电极和透明底电极选氧化铟锡薄膜、或氧化铟锌薄膜;透明顶电极和/或透明底电极作为光电突触器件的光学窗口。
作为优选方式,多个透明顶电极形成的阵列等距排布在器件上表面。
作为优选方式,非晶硅钌薄膜功能层3采用纯度大于99.999%的纯硅靶材和纯钌Ru金属颗粒射频磁控共溅射的方法获得,厚度为50nm~200nm,钌Ru名义含量为1%~5%。
作为优选方式,硅基非晶薄膜功能层2选自氧化硅薄膜、氮化硅薄膜、氮氧化硅薄膜其中一种,采用陶瓷靶材射频磁控溅射的方法获得,厚度为10nm~40nm。
作为优选方式,激励源为不同波长的光信号,波长范围为450nm~905nm。
本发明还提供一种基于肖特基接触的双层硅基光电突触器件的制备方法,包括如下步骤:
(1)选择透明导电玻璃作为底电极,并进行清洗和干燥处理;
(2)将透明导电玻璃划分为电极区和功能区,对电极区进行保护,在功能区预留窗口;
(3)在流程(2)的基础上,采用纯硅靶材和纯钌金属颗粒射频磁控共溅射的方法获得非晶硅钌薄膜功能层3;
(4)在流程(3)的基础上,采用陶瓷靶材射频磁控溅射的方法获得氧化硅薄膜、或氮化硅薄膜、或氮氧化硅薄膜作为硅基非晶薄膜功能层2;
(5)在流程(4)的基础上,采用氧化铟锡靶材、或氧化铟锌靶材,并结合掩模版,用磁控溅射的方法获得阵列化透明顶电极。
本发明的工作原理为:当光激励信号作用于所述光电突触器件上时,光信号与非晶硅钌薄膜功能层3相互作用产生光生载流子,所产生的电子-空穴对在内建电场的作用下分离,一部分到达电极,一部分被硅基非晶薄膜功能层2/非晶硅钌薄膜功能层3构成的界面陷阱、和/或功能层硅基非晶薄膜功能层2(非晶硅钌薄膜功能层3)/透明上(下)电极构成的界面缺陷、和/或硅基非晶薄膜功能层2和非晶硅钌薄膜功能层3中的陷阱捕获;当光激励信号从器件上移除后,被捕获的光生电子被缓慢释放出,从而产生持续性光电导效应。光电流的衰减时间随着激励光能量、功率以及激励时间发生变化。因此,当光信号为突触前激励源,而光电流为突触后电流时,器件便可以实现突触功能。
本发明的有益效果为:本发明所述光电突触器件具有较宽的工作带宽,有望在神经形态芯片以及未来智能机器人视觉系统中获得应用。
附图说明
图1是本发明的结构示意图。
图2(a)、图2(b)和图2(c)分别为按照具体实施例制备的光电突触器件在450nm、635nm和905nm光激励下的光电流响应和持续光电导现象。
1为透明顶电极,2为硅基非晶薄膜功能层、3为非晶硅钌薄膜功能层,4为透明底电极。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
图1所示,本实施例提供一种基于肖特基接触的双层硅基光电突触器件,所述器件从上至下具有透明顶电极1、硅基非晶薄膜功能层2、非晶硅钌薄膜功能层3、透明底电极4的垂直三明治结构。
非晶硅钌薄膜功能层3对可见光到近红外光范围的激励光敏感,用于吸收可见光到近红外光范围内的光子;硅基非晶薄膜功能层2与非晶硅钌薄膜功能层3构成肖特基势垒,用于降低并控制光生载流子的复合速率,实现对光生载流子的动态捕获和去捕获。
器件以不同波长的光信号模拟视觉突触前端的动作电位,以器件的光响应电流模拟突触后电流,通过电读取的方式,在可见光到近红外光谱范围内实现多项视觉神经突触可塑性,进而实现学习、记忆和颜色识别的仿生视觉突触功能。
优选的,透明顶电极和透明底电极选氧化铟锡薄膜、或氧化铟锌薄膜;透明顶电极和/或透明底电极作为光电突触器件的光学窗口。
优选的,多个透明顶电极形成的阵列等距排布在器件上表面。
优选的,非晶硅钌薄膜功能层3采用纯度大于99.999%的纯硅靶材和纯钌Ru金属颗粒射频磁控共溅射的方法获得,厚度为50nm~200nm,钌Ru名义含量为1%~5%。
优选的,硅基非晶薄膜功能层2选自氧化硅薄膜、氮化硅薄膜、氮氧化硅薄膜其中一种,采用陶瓷靶材射频磁控溅射的方法获得,厚度为10nm~40nm。
优选的,激励源为不同波长的光信号,波长范围为450nm~905nm。
本实施例还提供一种基于肖特基接触的双层硅基光电突触器件的制备方法,包括如下步骤:
(1)选择透明导电玻璃作为底电极,并进行清洗和干燥处理;
(2)将透明导电玻璃划分为电极区和功能区,对电极区进行保护,在功能区预留窗口;
(3)在流程(2)的基础上,采用纯硅靶材和纯钌金属颗粒射频磁控共溅射的方法获得非晶硅钌薄膜功能层3;
(4)在流程(3)的基础上,采用陶瓷靶材射频磁控溅射的方法获得氧化硅薄膜、或氮化硅薄膜、或氮氧化硅薄膜作为硅基非晶薄膜功能层2;
(5)在流程(4)的基础上,采用氧化铟锡靶材、或氧化铟锌靶材,并结合掩模版,用磁控溅射的方法获得阵列化透明顶电极。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (7)

1.一种基于肖特基接触的双层硅基光电突触器件,其特征在于:
所述器件从上至下具有透明顶电极(1)、硅基非晶薄膜功能层(2)、非晶硅钌薄膜功能层(3)、透明底电极(4)的垂直三明治结构;
非晶硅钌薄膜功能层(3)对可见光到近红外光范围的激励光敏感,用于吸收可见光到近红外光范围内的光子;硅基非晶薄膜功能层(2)与非晶硅钌薄膜功能层(3)构成肖特基势垒,用于降低并控制光生载流子的复合速率,实现对光生载流子的动态捕获和去捕获;
器件以不同波长的光信号模拟视觉突触前端的动作电位,以器件的光响应电流模拟突触后电流,通过电读取的方式,在可见光到近红外光谱范围内实现多项视觉神经突触可塑性,进而实现学习、记忆和颜色识别的仿生视觉突触功能。
2.根据权利要求1所述的一种基于肖特基接触的双层硅基光电突触器件,其特征在于:透明顶电极和透明底电极选氧化铟锡薄膜、或氧化铟锌薄膜;透明顶电极和/或透明底电极作为光电突触器件的光学窗口。
3.根据权利要求1所述的一种基于肖特基接触的双层硅基光电突触器件,其特征在于:多个透明顶电极形成的阵列等距排布在器件上表面。
4.根据权利要求1所述的一种基于肖特基接触的双层硅基光电突触器件,其特征在于:非晶硅钌薄膜功能层(3)采用纯度大于99.999%的纯硅靶材和纯钌Ru金属颗粒射频磁控共溅射的方法获得,厚度为50nm~200nm,钌Ru名义含量为1%~5%。
5.根据权利要求1所述的一种基于肖特基接触的双层硅基光电突触器件,其特征在于:硅基非晶薄膜功能层(2)选自氧化硅薄膜、氮化硅薄膜、氮氧化硅薄膜其中一种,采用陶瓷靶材射频磁控溅射的方法获得,厚度为10nm~40nm。
6.根据权利要求1所述的一种基于肖特基接触的双层硅基光电突触器件,其特征在于:激励源为不同波长的光信号,波长范围为450nm~905nm。
7.权利要求1至6任意一项所述的一种基于肖特基接触的双层硅基光电突触器件的制备方法,其特征在于包括如下步骤:
(1)选择透明导电玻璃作为底电极,并进行清洗和干燥处理;
(2)将透明导电玻璃划分为电极区和功能区,对电极区进行保护,在功能区预留窗口;
(3)在流程(2)的基础上,采用纯硅靶材和纯钌金属颗粒射频磁控共溅射的方法获得非晶硅钌薄膜功能层(3);
(4)在流程(3)的基础上,采用陶瓷靶材射频磁控溅射的方法获得氧化硅薄膜、或氮化硅薄膜、或氮氧化硅薄膜作为硅基非晶薄膜功能层(2);
(5)在流程(4)的基础上,采用氧化铟锡靶材、或氧化铟锌靶材,并结合掩模版,用磁控溅射的方法获得阵列化透明顶电极。
CN202110962162.3A 2021-08-20 2021-08-20 基于肖特基接触的双层硅基光电突触器件及制备方法 Active CN113675291B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110962162.3A CN113675291B (zh) 2021-08-20 2021-08-20 基于肖特基接触的双层硅基光电突触器件及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110962162.3A CN113675291B (zh) 2021-08-20 2021-08-20 基于肖特基接触的双层硅基光电突触器件及制备方法

Publications (2)

Publication Number Publication Date
CN113675291A CN113675291A (zh) 2021-11-19
CN113675291B true CN113675291B (zh) 2023-03-28

Family

ID=78544631

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110962162.3A Active CN113675291B (zh) 2021-08-20 2021-08-20 基于肖特基接触的双层硅基光电突触器件及制备方法

Country Status (1)

Country Link
CN (1) CN113675291B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999030372A2 (de) * 1997-12-11 1999-06-17 Forschungszentrum Jülich GmbH Optoelektronisches bauelement für den infraroten wellenlängenbereich
JP2008187022A (ja) * 2007-01-30 2008-08-14 Fujitsu Ltd 赤外線検知器
CN104962872A (zh) * 2015-07-09 2015-10-07 电子科技大学 一种调控非晶硅薄膜光学带隙的方法
CN106206831A (zh) * 2016-08-26 2016-12-07 电子科技大学 基于飞秒激光烧蚀红外增强Si‑PIN探测器及其制备方法
US9601546B1 (en) * 2016-09-12 2017-03-21 International Business Machines Corporation Scaled cross bar array with undercut electrode
CN106992192A (zh) * 2016-01-20 2017-07-28 中国科学院宁波材料技术与工程研究所 一种光电处理器
CN111863988A (zh) * 2020-07-30 2020-10-30 电子科技大学 基于非晶硅薄膜的光突触器件及制备方法和工作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6806526B2 (en) * 2001-08-13 2004-10-19 Advanced Micro Devices, Inc. Memory device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999030372A2 (de) * 1997-12-11 1999-06-17 Forschungszentrum Jülich GmbH Optoelektronisches bauelement für den infraroten wellenlängenbereich
JP2008187022A (ja) * 2007-01-30 2008-08-14 Fujitsu Ltd 赤外線検知器
CN104962872A (zh) * 2015-07-09 2015-10-07 电子科技大学 一种调控非晶硅薄膜光学带隙的方法
CN106992192A (zh) * 2016-01-20 2017-07-28 中国科学院宁波材料技术与工程研究所 一种光电处理器
CN106206831A (zh) * 2016-08-26 2016-12-07 电子科技大学 基于飞秒激光烧蚀红外增强Si‑PIN探测器及其制备方法
US9601546B1 (en) * 2016-09-12 2017-03-21 International Business Machines Corporation Scaled cross bar array with undercut electrode
CN111863988A (zh) * 2020-07-30 2020-10-30 电子科技大学 基于非晶硅薄膜的光突触器件及制备方法和工作方法

Also Published As

Publication number Publication date
CN113675291A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
Wang et al. Reconfigurable optoelectronic memristor for in-sensor computing applications
Kumar et al. Transparent and flexible photonic artificial synapse with piezo-phototronic modulator: Versatile memory capability and higher order learning algorithm
Kumar et al. Environment-adaptable photonic–electronic-coupled neuromorphic angular visual system
Wang et al. Advanced optoelectronic devices for neuromorphic analog based on low‐dimensional semiconductors
Shen et al. ZnO nanowire optoelectronic synapse for neuromorphic computing
CN109460819B (zh) 一种用于模拟生物体光突触的方法及器件
CN111192938B (zh) 一种光电突触器件的制备及调制方法
CN113629187A (zh) 一种光电神经突触忆阻器
Zhang et al. Emerging photoelectric devices for neuromorphic vision applications: principles, developments, and outlooks
Bhatnagar et al. Self‐powered transparent photodetector for subretinal visual functions of wide‐field‐of‐view and broadband perception
CN113675291B (zh) 基于肖特基接触的双层硅基光电突触器件及制备方法
Gao et al. InP quantum dots tailored oxide thin film phototransistor for bioinspired visual adaptation
Wu et al. Progress in bioinspired photodetectors design for visual information processing
Liu et al. Photogated synaptic transistors based on the heterostructure of 4H-SiC and organic semiconductors for neuromorphic ultraviolet vision
CN111863988B (zh) 基于非晶硅薄膜的光突触器件及制备方法和工作方法
Fang et al. Two-terminal photoelectric dual modulation synaptic devices for face recognition
Shang et al. ZnO photoconductive synaptic devices for neuromorphic computing
CN115605031A (zh) 用于仿生视觉系统的柔性光电感知器件及其制备方法
CN115117177A (zh) 一种神经形态光电传感器、其制备及调控方法
CN111769194B (zh) 一种基于锯齿结构纳米线的柔性光电传感忆阻器
CN113675294B (zh) 一种双层三元氧化物的光电突触器件及其制备和工作方法
KR102198720B1 (ko) 뉴로모픽 광 검출기 및 그 제조방법
CN113903856A (zh) 一种面向神经网络视觉感知的新型忆光响应器及其制备方法、应用
KR102198721B1 (ko) 투명 인공 광 시냅스 및 그 제조방법
CN114023875B (zh) 一种人工视觉系统及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant