CN113670428A - 一种变压器振动在线异常检测方法 - Google Patents
一种变压器振动在线异常检测方法 Download PDFInfo
- Publication number
- CN113670428A CN113670428A CN202110811692.8A CN202110811692A CN113670428A CN 113670428 A CN113670428 A CN 113670428A CN 202110811692 A CN202110811692 A CN 202110811692A CN 113670428 A CN113670428 A CN 113670428A
- Authority
- CN
- China
- Prior art keywords
- transformer
- complexity
- vibration
- vibration signal
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 20
- 230000001133 acceleration Effects 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 18
- 238000004364 calculation method Methods 0.000 claims description 10
- 230000002159 abnormal effect Effects 0.000 claims description 7
- 230000005856 abnormality Effects 0.000 claims description 4
- 230000001351 cycling effect Effects 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000004445 quantitative analysis Methods 0.000 abstract description 4
- 238000004804 winding Methods 0.000 description 8
- 238000005070 sampling Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 230000005520 electrodynamics Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H1/00—Measuring characteristics of vibrations in solids by using direct conduction to the detector
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Protection Of Transformers (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
Abstract
针对目前如何基于振动法对变压器运行状态进行精细化分析及异常检测,本发明实施例公开了一种变压器振动在线异常检测方法,该方法依据负载电流大小划分变压器运行工况区间,使用加速度传感器获取变压器表面振动信号,判定振动信号所属工况区间,基于Lempel‑Ziv算法计算当前振动信号的复杂度,通过与当前变压器运行工况设定的复杂度阈值对比,判断变压器的运行状态。由此,本发明根据负载电流划分变压器运行工况,基于不同工况条件下的历史数据分析评判变压器当前运行状态,实现了考虑工况因素下的变压器振动信号量化分析,使得本发明的变压器异常检测方法更具严谨性。
Description
技术领域
本发明涉及电力领域,尤其涉及一种变压器振动在线异常检测方法。
背景技术
电力变压器是电力系统中的重要设备,其运行状态对电力系统的安全和经济效益有着重要的影响。变压器表面振动主要源自电流和电压激励下的绕组和铁芯振动,理论分析和实践经验表明,可以通过变压器振动信号分析绕组和铁芯工作状态。变压器内部的铁芯、绕组等结构部件发生松动等异常情况时,引起振动强度加剧,固有频率分量也随之增多,信号复杂程度升高。然而在实际运行过程中,负载电流往往波动较大,当负载电流增大时,绕组承受的电动力会按平方倍增长,使得振动信号当中高次谐波成份有所增加,信号复杂程度升高,这给基于振动分析法的电力变压器的异常检测带来许多难题。
发明内容
为解决上述技术问题,本发明提出了一种变压器振动在线异常检测方法,该方法依据负载电流大小进行运行工况区间划分,使用加速度传感器获取变压器表面振动信号,判定振动信号所属工况区间,基于Lempel-Ziv算法对不同负载电流区间的振动信号进行复杂度计算,通过与所属区间内所设定的复杂度阈值对比,判断变压器的运行状态。
本发明实施例提供了如下技术方案:
一种变压器振动在线异常检测方法,包括:
依据负载电流大小划分变压器运行工况区间;
使用加速度传感器获取变压器表面振动信号,判定振动信号所属工况区间;
基于Lempel-Ziv算法对不同负载电流区间的振动信号进行复杂度计算;
通过与所属区间内所设定的复杂度阈值对比,判断变压器的运行状态。
其中,依据负载电流大小划分变压器运行工况区间,具体包括:
依据负载电流的大小划分变压器工况区间。变压器额定电流设为X,根据负载电流值划分变压器工况划分为5个区间:[0,0.3X)、[0.3X,0.5X)、[0.5X,0.8X)、[0.8X,1X)和[1X,1.5X),并将这5个区间定义为工况A、B、C、D和E。
其中,基于Lempel-Ziv算法完成振动信号的复杂度计算,具体包括:
1)对每次采样的振动信号,即5k个数据点,进行二值粗粒化,得到二进制序列S。首先对原始振动信号时间序列求取均值,并将大于均值的点赋值为1,小于均值的点赋值为0,得到二进制序列S={S1,S2,...,S5000};
2)P0、Q0为空矩阵,令i=0,此时复杂度C(i)=0;
3)进入循环。i=i+1,令Pi-1={Pi-1Si},Qi-1={Qi-1Si},此后判断Pi-1是否包含Qi。若判断结果为“是”,复杂度C(i)不增加,即C(i)=C(i-1);若判断结果为“否”,则C(i)=C(i-1)+1,Qi={}。循环N=5000次,直至遍历二进制序列S;
4)复杂度CN归一化。对于二进制序列S,最终的复杂度计算结果要进行归一化,计算方法如下:
其中,通过与所属区间内所设定的复杂度阈值对比,判断变压器的运行状态,具体包括:
阈值设置方法如下:
工况A区间内振动信号的复杂度阈值为历史振动数据的复杂度均值,记为CAmean,依次类推,另外4个区间阈值记为CBmean、CCmean、CDmean和CEmean。
变压器运行状态划分为正常、注意、告警和故障四种,其具体判定运行状态规则如下:
1)当连续三次(或三次以上)C的计算值与所属区间阈值之差的绝对值大于或等于0.5倍的所属区间阈值时,判定当前运行状态为注意;
2)当C的计算值与所属区间阈值之差的绝对值大于1倍的所属区间阈值时,判定当前运行状态为告警;
3)24小时之内,三次或三次以上C的计算值与所属区间阈值之差的绝对值大于1倍的所属区间阈值时,判定当前运行状态为故障;
4)同时满足上述1)、2)和3)中任意2条或全部满足时,判定当前运行状态为异常程度最高状态,异常程度由低到高的顺序依次为正常、注意、告警和故障;
5)不满足上述1)、2)和3)中任意一条时,判定当前运行状态为正常。
与现有技术相比,上述技术方案具有以下优点:
本申请的发明人考虑到,变压器运行过程中,负载电流往往波动较大,当负载电流增大时,绕组承受的电动力会按平方倍增长,使得振动信号当中高次谐波成份有所增加,信号复杂程度升高;同样地,在变压器内部结构部件,如铁芯、绕组发生异常松动时,也会导致振动信号当中高次谐波的增加,使得信号的复杂程度升高。由此,本发明根据负载电流划分变压器运行工况,基于不同工况条件下的历史数据分析评判变压器当前运行状态,实现了考虑工况因素下的变压器振动信号量化分析,使得本发明的变压器异常检测方法更具严谨性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一种变压器振动在线异常检测方法的示意图;
图2为基于Lempel-Ziv算法完成振动信号的复杂度计算的流程图。
具体实施方式
正如背景技术中所述,如何基于振动法对变压器运行状态进行精准判断,是本领域技术人员急需解决的技术问题。
为了解决上述技术问题,本发明提出了一种变压器振动在线异常检测方法,该方法依据负载电流大小划分变压器运行工况区间,使用加速度传感器获取变压器表面振动信号,判定振动信号所属工况区间,基于Lempel-Ziv算法对不同负载电流区间的振动信号进行复杂度计算,通过与各自负载电流区间内所设定的阈值对比,判断变压器的运行状态。由于本申请利用Lempel-Ziv算法量化分析变压器振动信号复杂度,考虑变压器运行工况因素分析判断变压器运行状态,使得本发明方法实用性更强、检测精度更高。
图1是一种变压器振动在线异常检测方法的示意图,所述方法包括:
步骤1:依据负载电流大小划分变压器运行工况区间。
变压器负载电流大、重载或过载运行,影响其安全可靠性和使用寿命。本发明依据负载电流的大小划分变压器工况。变压器额定电流设为X,根据负载电流值划分变压器工况划分为5个区间:[0,0.3X)、[0.3X,0.5X)、[0.5X,0.8X)、[0.8X,1X)和[1X,1.5X),并将这5个区间定义为工况A、B、C、D和E。
步骤2:使用加速度传感器获取变压器表面振动信号,判定振动信号所属工况区间。
将振动加速度传感器放置到预定的电力变压器表面振动测点,振动加速度传感器的采样率设定为5kHz,每次采样长度设定为5k,即每次采样获得5k个采样值,每次采样时间长度为1秒,每次采样的同时记录负载电流大小。
步骤3:基于Lempel-Ziv算法完成振动信号的复杂度计算。计算流程图参考图2。
其中,基于Lempel-Ziv算法完成振动信号的复杂度计算,具体包括:
1)对每次采样的振动信号,即5k个数据点,进行二值粗粒化。首先对原始振动信号时间序列求取均值,并将大于均值的点赋值为1,小于均值的点赋值为0,得到二进制序列S={S1,S2,...,S5000};
2)P0、Q0为空矩阵,令i=0,此时复杂度C(i)=0;
3)进入循环,i=i+1,令Pi-1={Pi-1Si},Qi-1={Qi-1Si},此后判断Pi-1是否包含Qi,若判断结果为“是”,复杂度C(i)不增加,即C(i)=C(i-1)。若判断结果为“否”,C(i)=C(i-1)+1,Qi={}。循环N=5000次,直至遍历二进制序列S;
4)复杂度CN归一化。对于二进制序列S,最终的复杂度计算结果要进行归一化,计算方法如下:
步骤4:通过与所属区间内所设定的复杂度阈值对比,判断变压器的运行状态。
阈值设置方法如下:
工况A区间内振动信号的复杂度阈值为历史振动数据的复杂度均值,记为CAmean,依次类推,另外4个区间阈值记为CBmean、CCmean、CDmean和CEmean。
变压器运行状态划分为正常、注意、告警和故障四种,其具体判定运行状态规则如下:
1)当连续三次(或三次以上)C的计算值与所属区间阈值之差的绝对值大于或等于0.5倍的所属区间阈值时,判定当前运行状态为注意;
2)当C的计算值与所属区间阈值之差的绝对值大于1倍的所属区间阈值时,判定当前运行状态为告警;
3)24小时之内,三次或三次以上C的计算值与所属区间阈值之差的绝对值大于1倍的所属区间阈值时,判定当前运行状态为故障;
4)同时满足上述1)、2)和3)中任意2条或全部满足时,判定当前运行状态为异常程度最高状态,异常程度由低到高的顺序依次为正常、注意、告警和故障;
5)不满足上述1)、2)和3)中任意一条时,判定当前运行状态为正常。
综上可知,本申请的发明人发现,变压器在实际运行过程中,负载电流往往波动较大,当负载电流增大时,绕组承受的电动力会按平方倍增长,使得振动信号当中高次谐波成份有所增加,信号复杂程度升高;同样地,在变压器内部结构部件,如铁芯、绕组发生异常松动时,也会导致振动信号当中高次谐波的增加,使得信号的复杂程度升高。因此发明人认为对振动信号进行异常检测时有必要考虑电流变化这一重要因素。由此,本发明根据负载电流划分变压器运行工况,基于不同工况条件下的历史数据分析评判变压器当前运行状态,实现了考虑工况因素下的变压器振动信号量化分析,使得本发明的变压器异常检测方法更具严谨性。具体地,本申请利用Lempel-Ziv算法对不同负载电流区间的振动信号进行复杂度计算,在一定程度上抑制了电流变化过大对振动信号的影响,可以更加精细的对变压器振动信号进行量化分析,在异常检测的过程中,减少了因电流变化而产生的误判,使得检测方法更具严谨性。
本说明书中各个部分采用递进的方式描述,每个部分重点说明的都是与其他部分的不同之处,各个部分之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本申请中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本申请所示的实施例,而是要符合与本申请所公开的原理和新颖特点相一致的最宽的范围。
Claims (4)
1.一种变压器振动在线异常检测方法,其特征在于,包括:
依据负载电流大小划分变压器运行工况区间;
使用加速度传感器获取变压器振动信号,判定振动信号所属工况区间;
基于Lempel-Ziv算法对不同负载电流区间的振动信号进行复杂度计算;
通过与所属区间内所设定的复杂度阈值对比,判断变压器的运行状态。
2.根据权利要求1所述的一种变压器振动在线异常检测方法,其特征在于,依据负载电流大小划分变压器运行工况区间,具体包括:
依据负载电流的大小划分变压器工况区间。变压器额定电流设为X,根据负载电流值划分变压器工况划分为5个区间:[0,0.3X)、[0.3X,0.5X)、[0.5X,0.8X)、[0.8X,1X)和[1X,1.5X),并将这5个区间定义为工况A、B、C、D和E。
3.根据权利要求1所述的一种变压器振动在线异常检测方法,其特征在于,基于Lempel-Ziv算法完成振动信号的复杂度计算,具体包括:
1)对每次采样的振动信号,即5k个数据点,进行二值粗粒化,得到二进制序列S。首先对原始振动信号时间序列求取均值,并将大于均值的点赋值为1,小于均值的点赋值为0,得到二进制序列S={S1,S2,...,S5000};
2)P0、Q0为空矩阵,令i=0,此时复杂度C(i)=0;
3)进入循环。i=i+1,令Pi-1={Pi-1Si},Qi-1={Qi-1Si},此后判断Pi-1是否包含Qi。若判断结果为“是”,复杂度C(i)不增加,即C(i)=C(i-1);若判断结果为“否”,则C(i)=C(i-1)+1,Qi={}。循环N=5000次,直至遍历二进制序列S;
4)复杂度CN归一化。对于二进制序列S,最终的复杂度计算结果要进行归一化,计算方法如下:
4.根据权利要求1所述的一种变压器振动在线异常检测方法,其特征在于,通过与所属区间内所设定的复杂度阈值对比,判断变压器的运行状态,具体包括:
阈值设置方法如下:
工况A区间内振动信号的复杂度阈值为历史振动数据的复杂度均值,记为CAmean,依次类推,另外4个区间阈值记为CBmean、CCmean、CDmean和CEmean。
变压器运行状态划分为正常、注意、告警和故障四种,其具体判定运行状态规则如下:
1)当连续三次(或三次以上)C的计算值与所属区间阈值之差的绝对值大于或等于0.5倍的所属区间阈值时,判定当前运行状态为注意;
2)当C的计算值与所属区间阈值之差的绝对值大于1倍的所属区间阈值时,判定当前运行状态为告警;
3)24小时之内,三次或三次以上C的计算值与所属区间阈值之差的绝对值大于1倍的所属区间阈值时,判定当前运行状态为故障;
4)同时满足上述1)、2)和3)中任意2条或全部满足时,判定当前运行状态为异常程度最高状态,异常程度由低到高的顺序依次为正常、注意、告警和故障;
5)不满足上述1)、2)和3)中任意一条时,判定当前运行状态为正常。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110811692.8A CN113670428B (zh) | 2021-07-19 | 2021-07-19 | 一种变压器振动在线异常检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110811692.8A CN113670428B (zh) | 2021-07-19 | 2021-07-19 | 一种变压器振动在线异常检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113670428A true CN113670428A (zh) | 2021-11-19 |
CN113670428B CN113670428B (zh) | 2023-12-22 |
Family
ID=78539700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110811692.8A Active CN113670428B (zh) | 2021-07-19 | 2021-07-19 | 一种变压器振动在线异常检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113670428B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115879345A (zh) * | 2022-12-14 | 2023-03-31 | 兰州理工大学 | 一种基于磁力声的变压器健康状态评估方法及系统 |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5412429A (en) * | 1993-03-11 | 1995-05-02 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Picture data compression coder using subband/transform coding with a Lempel-Ziv-based coder |
KR20070022905A (ko) * | 2005-08-22 | 2007-02-28 | 삼성전자주식회사 | 샘플링 주파수 오프셋 추정방법 및 이 방법이 적용되는ofdm 시스템 |
US20100169490A1 (en) * | 2008-12-31 | 2010-07-01 | Cerner Innovation, Inc. | Load-balancing and technology sharing using lempel-ziv complexity to select optimal client-sets |
CN102449445A (zh) * | 2009-05-05 | 2012-05-09 | S.P.M.仪器公司 | 用于分析具有旋转部件的机器振动的设备和方法 |
US20140361907A1 (en) * | 2013-06-06 | 2014-12-11 | Power Tagging Technologies, Inc. | System and method for inferring schematic relationships between load points and service transformers |
CN105806613A (zh) * | 2015-11-24 | 2016-07-27 | 国网内蒙古东部电力有限公司电力科学研究院 | 一种基于阶比复杂度的行星齿轮箱故障诊断方法 |
CN105973621A (zh) * | 2016-05-02 | 2016-09-28 | 国家电网公司 | 一种基于异常振动分析的gis机械故障诊断方法和系统 |
CN106404394A (zh) * | 2016-08-30 | 2017-02-15 | 北京工业大学 | 一种基于信号复杂度的轴承内外圈故障的定量趋势诊断方法 |
CN106771527A (zh) * | 2016-12-28 | 2017-05-31 | 国网浙江省电力公司电力科学研究院 | 一种基于变压器的抗短路电流的预警方法及装置 |
CN107101714A (zh) * | 2017-05-09 | 2017-08-29 | 华北电力大学(保定) | 一种基于多测点振动信号特征的变压器健康状况评估方法 |
CN109029699A (zh) * | 2018-06-12 | 2018-12-18 | 国网四川省电力公司乐山供电公司 | 一种变压器振动在线异常检测方法 |
CN110186684A (zh) * | 2019-06-25 | 2019-08-30 | 东北大学 | 一种航空发动机机械振动故障信号特征提取方法 |
CN110728257A (zh) * | 2019-10-22 | 2020-01-24 | 中国计量大学 | 基于振动灰度图像的变压器绕组故障监测方法 |
CN112307918A (zh) * | 2020-10-21 | 2021-02-02 | 华北电力大学 | 一种基于模糊神经网络的变压器直流偏磁的诊断方法 |
CN112611987A (zh) * | 2020-12-09 | 2021-04-06 | 浙江上青元电力科技有限公司 | 一种基于物联网技术的变压器声纹振动监测系统及方法 |
WO2021108680A1 (en) * | 2019-11-25 | 2021-06-03 | Strong Force Iot Portfolio 2016, Llc | Intelligent vibration digital twin systems and methods for industrial environments |
CN115754507A (zh) * | 2022-09-27 | 2023-03-07 | 中国长江三峡集团有限公司 | 一种基于振动信号的变压器故障诊断方法、装置和设备 |
-
2021
- 2021-07-19 CN CN202110811692.8A patent/CN113670428B/zh active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5412429A (en) * | 1993-03-11 | 1995-05-02 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Picture data compression coder using subband/transform coding with a Lempel-Ziv-based coder |
KR20070022905A (ko) * | 2005-08-22 | 2007-02-28 | 삼성전자주식회사 | 샘플링 주파수 오프셋 추정방법 및 이 방법이 적용되는ofdm 시스템 |
US20100169490A1 (en) * | 2008-12-31 | 2010-07-01 | Cerner Innovation, Inc. | Load-balancing and technology sharing using lempel-ziv complexity to select optimal client-sets |
CN102449445A (zh) * | 2009-05-05 | 2012-05-09 | S.P.M.仪器公司 | 用于分析具有旋转部件的机器振动的设备和方法 |
US20140361907A1 (en) * | 2013-06-06 | 2014-12-11 | Power Tagging Technologies, Inc. | System and method for inferring schematic relationships between load points and service transformers |
CN105806613A (zh) * | 2015-11-24 | 2016-07-27 | 国网内蒙古东部电力有限公司电力科学研究院 | 一种基于阶比复杂度的行星齿轮箱故障诊断方法 |
CN105973621A (zh) * | 2016-05-02 | 2016-09-28 | 国家电网公司 | 一种基于异常振动分析的gis机械故障诊断方法和系统 |
CN106404394A (zh) * | 2016-08-30 | 2017-02-15 | 北京工业大学 | 一种基于信号复杂度的轴承内外圈故障的定量趋势诊断方法 |
CN106771527A (zh) * | 2016-12-28 | 2017-05-31 | 国网浙江省电力公司电力科学研究院 | 一种基于变压器的抗短路电流的预警方法及装置 |
CN107101714A (zh) * | 2017-05-09 | 2017-08-29 | 华北电力大学(保定) | 一种基于多测点振动信号特征的变压器健康状况评估方法 |
CN109029699A (zh) * | 2018-06-12 | 2018-12-18 | 国网四川省电力公司乐山供电公司 | 一种变压器振动在线异常检测方法 |
CN110186684A (zh) * | 2019-06-25 | 2019-08-30 | 东北大学 | 一种航空发动机机械振动故障信号特征提取方法 |
CN110728257A (zh) * | 2019-10-22 | 2020-01-24 | 中国计量大学 | 基于振动灰度图像的变压器绕组故障监测方法 |
WO2021108680A1 (en) * | 2019-11-25 | 2021-06-03 | Strong Force Iot Portfolio 2016, Llc | Intelligent vibration digital twin systems and methods for industrial environments |
CN112307918A (zh) * | 2020-10-21 | 2021-02-02 | 华北电力大学 | 一种基于模糊神经网络的变压器直流偏磁的诊断方法 |
CN112611987A (zh) * | 2020-12-09 | 2021-04-06 | 浙江上青元电力科技有限公司 | 一种基于物联网技术的变压器声纹振动监测系统及方法 |
CN115754507A (zh) * | 2022-09-27 | 2023-03-07 | 中国长江三峡集团有限公司 | 一种基于振动信号的变压器故障诊断方法、装置和设备 |
Non-Patent Citations (2)
Title |
---|
宋天慧: "运行中变压器表面振动信号特征分析与提取", 《中国优秀硕士学位论文全文数据库信息科技辑》, no. 3, pages 1136 - 148 * |
张雨琦;邹金慧;马军;: "CEEMD与Lempel-Ziv复杂度相结合的滚动轴承损伤程度评估方法", 机械科学与技术, no. 09, pages 102 - 108 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115879345A (zh) * | 2022-12-14 | 2023-03-31 | 兰州理工大学 | 一种基于磁力声的变压器健康状态评估方法及系统 |
CN115879345B (zh) * | 2022-12-14 | 2023-11-03 | 兰州理工大学 | 一种基于磁力声的变压器健康状态评估方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN113670428B (zh) | 2023-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7894169B2 (en) | High resistance ground protection employing AC drive characteristics | |
JP6190841B2 (ja) | 電動機の診断装置 | |
US10281504B2 (en) | Method and apparatus for analyzing waveform signals of a power system | |
CN116701973A (zh) | 基于大数据的电机异常振动检测预警方法 | |
CN109318716B (zh) | 一种牵引电机轴温监测报警控制方法、系统及相关装置 | |
CN103020166B (zh) | 一种电力实时数据异常检测方法 | |
CN1270640A (zh) | 检测并防止rf等离子体系统中电弧放电的装置和方法 | |
JPWO2019202651A1 (ja) | 電動機の診断装置 | |
WO2018020563A1 (ja) | 電動機の診断装置 | |
JP2010250384A (ja) | 監視装置、監視装置の制御方法、および制御プログラム | |
CN113670428A (zh) | 一种变压器振动在线异常检测方法 | |
CN116380176A (zh) | 一种基于数字信号处理的逆变器的负载预警系统 | |
CN113533910A (zh) | 一种适用于换流变压器局部放电预警的方法及系统 | |
JP6135192B2 (ja) | 時系列データの異常監視装置、異常監視方法及びプログラム | |
TW202101141A (zh) | 設備異常偵測方法及系統 | |
CN115169650B (zh) | 一种大数据分析的装备健康预测方法 | |
KR20240086258A (ko) | 2 단계 ai 분석을 통한 모터 이상 상태 탐지 시스템 및 방법 | |
CN115685012A (zh) | 一种基于电压分析的变压器故障检测定位方法 | |
CN115684800A (zh) | 一种基于振动分析的电抗器状态诊断方法 | |
Bonaldi et al. | Using rough sets techniques as a fault diagnosis classifier for induction motors | |
Arabacı et al. | Detection of induction motor broken rotor bar faults under no load condition by using support vector machines | |
CN110879370B (zh) | 基于多数据窗的故障电流快速判断方法 | |
CN215866922U (zh) | 一种风扇故障检测电路及装置 | |
CN118114162A (zh) | 一种机电设备故障预测方法及系统 | |
CN116643165B (zh) | 一种永磁外转子滚筒电机失磁故障检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |