CN113670203A - 一种pnp算法结合接触式测量的螺纹孔中心定位装置及方法 - Google Patents

一种pnp算法结合接触式测量的螺纹孔中心定位装置及方法 Download PDF

Info

Publication number
CN113670203A
CN113670203A CN202110990023.1A CN202110990023A CN113670203A CN 113670203 A CN113670203 A CN 113670203A CN 202110990023 A CN202110990023 A CN 202110990023A CN 113670203 A CN113670203 A CN 113670203A
Authority
CN
China
Prior art keywords
threaded hole
measurement
measuring
camera
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110990023.1A
Other languages
English (en)
Other versions
CN113670203B (zh
Inventor
刘常杰
郭漪涵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202110990023.1A priority Critical patent/CN113670203B/zh
Publication of CN113670203A publication Critical patent/CN113670203A/zh
Application granted granted Critical
Publication of CN113670203B publication Critical patent/CN113670203B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开一种PNP算法结合接触式测量的螺纹孔中心定位装置及方法,属于视觉测量领域,先对工业相机和测量靶标进行标定,工业机器人带动工业相机和测量靶球接近待测螺纹孔,测量靶球与待测螺纹孔紧密接触,工业相机获取测量靶标上圆形标记点的图像信息,上位机对圆形标记点的图像信息数据处理,获得待测螺纹孔的位置信息;最后与图纸标准值及公差值比较,得出螺纹孔位置是否合格的结论与置信概率。本发明装置使用机器人承载的工业相机结合可拆卸式的测量靶标,完成自动测量任务,由PNP算法实现螺纹孔空间位置信息的获取,实现了高精度、自动化、通用性强的螺纹孔中心位置测量。

Description

一种PNP算法结合接触式测量的螺纹孔中心定位装置及方法
技术领域
本发明涉及视觉测量领域,特别是涉及一种PNP算法结合接触式测量的螺纹孔中心定位装置及方法。
背景技术
在汽车制造工业中,测量汽车白车身上螺纹孔的位置变化是一个复杂、繁重的任务,目前该类工件由接触式三坐标机离线抽样测量,离线测量过程中采用的三坐标测量机精度高、通用型强,但是在测量过程中需要脱离制造现场,工件会由于搬运和重定位产生二次定位误差,这将严重影响工件最终的精度,此外还会消耗大量工时,导致生产周期延长、生产效率降低。
目前还没有成熟可靠的方法和装置来实现螺纹孔位置度变化的高精度在线测量。原因在于螺纹孔不同于通孔,其内部的螺纹易导致现有在线测量工业相机的图像中出现大量无规律边缘,导致图像处理算法无法有效、快速、可靠的提取出螺纹孔边缘信息,螺纹孔中心位置极易因误识别而出现错误。
发明内容
有鉴于此,本发明提供了一种PNP算法结合接触式测量的螺纹孔中心定位装置及方法,具有高精度、自动化、通用性强的优点,克服现有测量技术的不足,方便在螺纹孔中心位置的测量中使用,以提高测量精度以及测量效率。
为了实现上述目的,本发明采用如下技术方案:
1.一种基于PNP算法的接触式螺纹孔中心定位方法,包括如下步骤:
1)测量设备开启,工业机器人回到初始位置,进行各个坐标系之间的标定过程;
2)标定完成后开始测量,工业机器人带动工业相机移动到待测螺纹孔的位置,使测量靶球接近待测螺纹孔,同时由弹簧柔性结构来确保测量靶球始终与待测螺纹孔紧密接触;
3)工业相机对测量靶标的五个圆形标记点进行拍摄,由工业相机将拍摄到的图片上传至上位机;
4)上位机接收到图片后将图片中五个圆形标记点的位置数据进行数据处理,使其变换到待求的坐标系中,以此来获得待测螺纹孔在目标坐标系下的位置信息;
5)根据测量的中心位置坐标与图纸标准值及公差值进行比较,给出螺纹孔位置是否合格的判断与置信概率。
进一步地,步骤1)中,首先对相机坐标系、图像坐标系、像素坐标系、世界坐标系以及测量靶标坐标系的相对位置关系进行标定,从而确定各个坐标系之间的RT关系;其次标定工业相机和工业机器人之间的手眼关系。
进一步地,步骤2)通过弹簧柔性结构的弹性形变保证测量靶球与待测螺纹孔紧密接触,从而确保测量靶球的球心与待测螺纹孔的孔心共线。
进一步地,步骤4)中五个圆形标记点和工业相机是绝对式的空间定位,测得测量靶标上的五个圆形标记点位置即可测得待测螺纹孔的空间位置信息,通过PNP算法解算出测量靶标的位置关系,得出待测螺纹孔中心的位置坐标。
一种PNP算法结合接触式测量的螺纹孔中心定位装置,包括:工业机器人、相机装置和测量装置;所述相机装置一端安装在所述工业机器人上,相机装置的另一端与测量装置相连,所述相机装置拍摄所述测量装置通过PNP算法求得螺纹孔中心位置。
进一步地,所述相机装置包括:相机固定底座、相机外壳和工业相机;所述相机固定底座安装在所述工业机器人上,所述相机外壳固定安装在所述相机固定底座上,所述工业相机竖直向下安装在所述相机外壳上。
进一步地,所述测量装置包括:弹簧柔性结构、测量靶标、测量连杆和测量靶球;所述弹簧柔性结构安装在所述相机外壳的端部,所述测量靶标安装在所述弹簧柔性结构的底端,所述测量连杆安装在所述测量靶标的底端,所述测量靶球安装在所述测量连杆的底端。
进一步地,所述测量连杆与所述测量靶标为可拆卸式连接;所述测量靶球与所述测量连杆为可拆卸式连接。
进一步地,所述接触式测量的螺纹孔中心定位装置备有多个不同长短的所述测量连杆,备有多个不同形状和大小的所述测量靶球。
本发明的有益效果在于:
(1)测量便捷性:采用工业机器人携带工业相机进行测量的测量方式可以有效避免离线测量中工件移动与重定位的复杂过程,只需要控制工业机器人将工业相机移动到待测位置即可。同时也区别于传统测量方式,避免了脚手架等辅助装置的安装过程,有助于保护工作人员的人身安全。
(2)测量精确性:本方案采用PNP算法结合接触式测量的方式,通过测量靶标以及高分辨率相机拍照的方式进行测量,后期由PNP算法进行计算和定位,能够有效提高精度以及工作效率。
(3)测量通用性:针对不同位置以及不同大小的待测螺纹孔,可以更换适合长度的测量连杆以及适合大小、形状的测量靶头。
(4)测量自动化:在本方案中,工业机器人搭载工业相机等测量装置进行运动,待测螺纹孔中心位置由工业相机、测量连杆、测量靶标以及测量靶球共同测量得出。在测量过程中只需要将提前设置好的机器人运动路线输入到工业机器人中即可实现自动测量,不需要手动测量螺纹孔的具体位置,自动化程度较高。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为接触式测量的螺纹孔中心定位装置结构示意图。
图2为测量靶标圆形标记点示意图。
其中,图中:
1-工业机器人、2-相机固定底座、3-相机外壳、4-工业相机、5-弹簧柔性结构、6-测量靶标、7-测量靶球、8-待测螺纹孔、9-待测工件、10-测量连杆、11-圆形标记点。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种PNP算法结合接触式测量的螺纹孔中心定位方法:包括如下步骤:1)测量设备开启,工业机器人1回到初始位置,进行各个坐标系之间的标定过程;
2)标定完成后开始测量,工业机器人1带动工业相机4移动到待测螺纹孔8的位置,使测量靶球7接近待测螺纹孔8,同时由弹簧柔性结构5来确保测量靶球7始终与待测螺纹孔8紧密接触;
3)工业相机4对测量靶标6的五个圆形标记点11进行拍摄,由工业相机4将拍摄到的图片上传至上位机;
4)上位机接收到图片后将图片中五个圆形标记点11的位置数据进行数据处理,使其变换到待求的坐标系中,以此来获得待测螺纹孔8在目标坐标系下的位置信息;
5)根据测量的中心位置坐标与图纸标准值及公差值进行比较,给出螺纹孔位置是否合格的判断与置信概率。
参照附图1-2所示,本发明提供一种PNP算法结合接触式测量的螺纹孔中心定位装置,包括:工业机器人1、相机装置和测量装置;相机装置一端安装在工业机器人1上,测量装置安装在相机装置的另一端。相机装置包括:相机固定底座2、相机外壳3和工业相机4;相机固定底座2安装在工业机器人1上,相机外壳3固定安装在相机固定底座2上,工业相机4安装在相机外壳3内部。测量装置包括:弹簧柔性结构5、测量靶标6、测量连杆10和测量靶球7;弹簧柔性结构5安装在相机外壳3的端部,测量靶标6安装在弹簧柔性结构5的底端,测量连杆10安装在测量靶标6的底端,测量靶球7安装在测量连杆10的底端。
测量开始之前要进行标定过程,主要目的是将工业相机4与测量靶标6之间的3D-2D关系确定下来,以满足PNP算法的需求以及获取靶标的空间位置信息,同时完成其他标定过程,其中包含工业机器人1与工业相机4之间手眼关系的标定等具体内容。开始测量之后工业机器人1将移动工业相机4到待测工件9的上方,之后在弹簧柔性结构5的辅助之下将测量靶标6和测量靶球7固定在待测螺纹孔8之上,期间由弹簧柔性结构5来保证球状测头与待测螺纹孔8紧密接触,以确保测量靶球7的球心与待测螺纹孔8的孔心共线,在完成上述操作之后将进行拍照、上传到上位机、数据处理以及图像处理等过程。之后通过PNP算法对测量靶标6上五个圆形标记点11的位置精确解算便可获取待测螺纹孔8的中心位置。
如此,测量装置在初始位置与其他待测位置之间运动,由工业相机4拍照并测量数据便可以得到每个待测螺纹孔8的中心位置,从而实现对车身螺纹孔位置的精确测量。
针对不同位置以及不同大小的待测螺纹孔8,可以更换适合长度的测量连杆10以及适合大小、形状的测量靶球7。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

1.一种基于PNP算法的接触式螺纹孔中心定位方法,其特征在于,包括如下步骤:
1)测量设备开启,工业机器人回到初始位置,进行各个坐标系之间的标定过程;
2)标定完成后开始测量,工业机器人带动工业相机移动到待测螺纹孔的位置,使测量靶球接近待测螺纹孔,同时由弹簧柔性结构来确保测量靶球始终与待测螺纹孔紧密接触;
3)工业相机对测量靶标的五个圆形标记点进行拍摄,由工业相机将拍摄到的图片上传至上位机;
4)上位机接收到图片后将图片中五个圆形标记点的位置数据进行数据处理,使其变换到待求的坐标系中,以此来获得待测螺纹孔在目标坐标系下的位置信息;
5)根据测量的中心位置坐标与图纸标准值及公差值进行比较,给出螺纹孔位置是否合格的判断与置信概率。
2.根据权利要求1所述的一种基于视觉测量的接触式螺纹孔中心定位方法,其特征在于,步骤1)中,首先对相机坐标系、图像坐标系、像素坐标系、世界坐标系以及测量靶标坐标系的相对位置关系进行标定,从而确定各个坐标系之间的RT关系;其次标定工业相机和工业机器人之间的手眼关系。
3.根据权利要求1所述的一种基于视觉测量的接触式螺纹孔中心定位方法,其特征在于,步骤2)通过弹簧柔性结构的弹性形变保证测量靶球与待测螺纹孔紧密接触,从而确保测量靶球的球心与待测螺纹孔的孔心共线。
4.根据权利要求1所述的一种基于视觉测量的接触式螺纹孔中心定位方法,其特征在于,步骤4)中五个圆形标记点和工业相机是绝对式的空间定位,测得测量靶标上的五个圆形标记点位置即可测得待测螺纹孔的空间位置信息,通过PNP算法解算出测量靶标的位置关系,得出待测螺纹孔中心的位置坐标。
5.一种PNP算法结合接触式测量的螺纹孔中心定位装置,其特征在于,包括:工业机器人、相机装置和测量装置;所述相机装置一端安装在所述工业机器人上,相机装置的另一端与测量装置相连,所述相机装置拍摄所述测量装置通过PNP算法求得螺纹孔中心位置。
6.根据权利要求5所述的一种PNP算法结合接触式测量的螺纹孔中心定位装置,其特征在于,所述相机装置包括:相机固定底座、相机外壳和工业相机;所述相机固定底座安装在所述工业机器人上,所述相机外壳固定安装在所述相机固定底座上,所述工业相机竖直向下安装在所述相机外壳上。
7.根据权利要求5所述的一种PNP算法结合接触式测量的螺纹孔中心定位装置,其特征在于,所述测量装置包括:弹簧柔性结构、测量靶标、测量连杆和测量靶球;所述弹簧柔性结构安装在所述相机外壳的端部,所述测量靶标安装在所述弹簧柔性结构的底端,所述测量连杆安装在所述测量靶标的底端,所述测量靶球安装在所述测量连杆的底端。
8.根据权利要求6所述的一种PNP算法结合接触式测量的螺纹孔中心定位装置,所述测量连杆与所述测量靶标为可拆卸式连接;所述测量靶球与所述测量连杆为可拆卸式连接。
9.根据权利要求7所述的一种PNP算法结合接触式测量的螺纹孔中心定位装置,其特征在于,所述接触式测量的螺纹孔中心定位装置备有多个不同长短的所述测量连杆,备有多个不同形状和大小的所述测量靶球。
CN202110990023.1A 2021-08-26 2021-08-26 一种pnp算法结合接触式测量的螺纹孔中心定位装置及方法 Active CN113670203B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110990023.1A CN113670203B (zh) 2021-08-26 2021-08-26 一种pnp算法结合接触式测量的螺纹孔中心定位装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110990023.1A CN113670203B (zh) 2021-08-26 2021-08-26 一种pnp算法结合接触式测量的螺纹孔中心定位装置及方法

Publications (2)

Publication Number Publication Date
CN113670203A true CN113670203A (zh) 2021-11-19
CN113670203B CN113670203B (zh) 2022-07-22

Family

ID=78546630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110990023.1A Active CN113670203B (zh) 2021-08-26 2021-08-26 一种pnp算法结合接触式测量的螺纹孔中心定位装置及方法

Country Status (1)

Country Link
CN (1) CN113670203B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114252012A (zh) * 2021-12-22 2022-03-29 上海原能细胞生物低温设备有限公司 一种冻存盒孔位的获取方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106247932A (zh) * 2016-07-25 2016-12-21 天津大学 一种基于摄影系统的机器人在线误差补偿装置及方法
CN106705956A (zh) * 2017-02-28 2017-05-24 南京工程学院 工业机器人末端位姿快速测量装置及其测量方法
CN106887022A (zh) * 2017-02-17 2017-06-23 大连理工大学 基于自发光球摄像机标定靶的快速提取方法
CN107167100A (zh) * 2017-05-15 2017-09-15 武汉捷众汽车零部件有限公司 一种螺纹孔二维位置度在线自动化测量方法
CN107610178A (zh) * 2017-07-27 2018-01-19 北京航天计量测试技术研究所 一种工业摄影测量系统相机参数移动式标定方法
CN109079581A (zh) * 2018-07-26 2018-12-25 大连理工大学 一种数控机床动态轮廓误差视觉测量装置
CN109443207A (zh) * 2018-11-19 2019-03-08 华中科技大学 一种光笔式机器人原位测量系统与方法
CN111426270A (zh) * 2020-04-27 2020-07-17 南京工程学院 一种工业机器人位姿测量靶标装置和关节位置敏感误差标定方法
CN111531547A (zh) * 2020-05-26 2020-08-14 华中科技大学 一种基于视觉测量的机器人标定及检测方法
CN112116667A (zh) * 2020-09-22 2020-12-22 扬州大学 一种发动机表面加工孔直径测量算法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106247932A (zh) * 2016-07-25 2016-12-21 天津大学 一种基于摄影系统的机器人在线误差补偿装置及方法
CN106887022A (zh) * 2017-02-17 2017-06-23 大连理工大学 基于自发光球摄像机标定靶的快速提取方法
CN106705956A (zh) * 2017-02-28 2017-05-24 南京工程学院 工业机器人末端位姿快速测量装置及其测量方法
CN107167100A (zh) * 2017-05-15 2017-09-15 武汉捷众汽车零部件有限公司 一种螺纹孔二维位置度在线自动化测量方法
CN107610178A (zh) * 2017-07-27 2018-01-19 北京航天计量测试技术研究所 一种工业摄影测量系统相机参数移动式标定方法
CN109079581A (zh) * 2018-07-26 2018-12-25 大连理工大学 一种数控机床动态轮廓误差视觉测量装置
CN109443207A (zh) * 2018-11-19 2019-03-08 华中科技大学 一种光笔式机器人原位测量系统与方法
CN111426270A (zh) * 2020-04-27 2020-07-17 南京工程学院 一种工业机器人位姿测量靶标装置和关节位置敏感误差标定方法
CN111531547A (zh) * 2020-05-26 2020-08-14 华中科技大学 一种基于视觉测量的机器人标定及检测方法
CN112116667A (zh) * 2020-09-22 2020-12-22 扬州大学 一种发动机表面加工孔直径测量算法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114252012A (zh) * 2021-12-22 2022-03-29 上海原能细胞生物低温设备有限公司 一种冻存盒孔位的获取方法
CN114252012B (zh) * 2021-12-22 2024-01-16 上海原能细胞生物低温设备有限公司 一种冻存盒孔位的获取方法

Also Published As

Publication number Publication date
CN113670203B (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
JP6468741B2 (ja) ロボットシステム及びロボットシステムの校正方法
CN110370316B (zh) 一种基于垂直反射的机器人tcp标定方法
CN109227551B (zh) 一种视觉定位机器人手眼坐标转换方法
US20070075048A1 (en) Welding teaching point correction system and calibration method
TWI609750B (zh) 用於機械系統校正及監測的裝置與方法
JP6576655B2 (ja) ステージ機構
CN113701631A (zh) 视觉测量结合接触式测量的螺纹孔中心定位装置及方法
US20180207755A1 (en) Gear mechanism assembly apparatus and assembly method
CN110978059A (zh) 一种便携式六轴机械手标定装置及其标定方法
CN106584513A (zh) 一种工业机器人重复定位精度测试方法及测试装置
CN113670203B (zh) 一种pnp算法结合接触式测量的螺纹孔中心定位装置及方法
CN107219845B (zh) 可通过手动操作辅助机器人实现空间配准的系统及方法
CN110686595A (zh) 非正交轴系激光全站仪的激光束空间位姿标定方法
CN114643578A (zh) 一种提高机器人视觉引导精度的标定装置及方法
CN113781558B (zh) 一种姿态与位置解耦的机器人视觉寻位方法
US9341460B2 (en) Double cone stylus, touch probe, and method of calibrating double cone stylus
CN112762822B (zh) 一种基于激光跟踪仪的机械臂校准方法及系统
CN106840130B (zh) 高精度工程测量放样放点方法
CN111710002A (zh) 一种基于Optitrack系统的相机外参标定方法
CN105855994A (zh) 一种机械加工机床定位方法
CN111006706A (zh) 一种基于线激光视觉传感器的旋转轴标定方法
CN109737902B (zh) 基于坐标测量仪的工业机器人运动学标定方法
CN114227539A (zh) 汽车轮毂去毛刺工作站机器人标定工具及其标定方法
CN109263252B (zh) 一种晶硅光伏太阳能电池的换网自适应印刷方法及装置
CN115200475B (zh) 一种臂载式多视觉传感器快速校正方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant