CN113667114B - 一种主链可消除的so2纳米前药的制备方法及其用途 - Google Patents

一种主链可消除的so2纳米前药的制备方法及其用途 Download PDF

Info

Publication number
CN113667114B
CN113667114B CN202110883122.XA CN202110883122A CN113667114B CN 113667114 B CN113667114 B CN 113667114B CN 202110883122 A CN202110883122 A CN 202110883122A CN 113667114 B CN113667114 B CN 113667114B
Authority
CN
China
Prior art keywords
mpeg
nano
prodrug
hdi
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110883122.XA
Other languages
English (en)
Other versions
CN113667114A (zh
Inventor
刘朋
陈英奇
翁鉴
于斐
康斌
曾晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University Shenzhen Hospital
Original Assignee
Peking University Shenzhen Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University Shenzhen Hospital filed Critical Peking University Shenzhen Hospital
Priority to CN202110883122.XA priority Critical patent/CN113667114B/zh
Publication of CN113667114A publication Critical patent/CN113667114A/zh
Application granted granted Critical
Publication of CN113667114B publication Critical patent/CN113667114B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/04Sulfur, selenium or tellurium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/26Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids
    • C07C303/28Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids by reaction of hydroxy compounds with sulfonic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • C07F7/1872Preparation; Treatments not provided for in C07F7/20
    • C07F7/188Preparation; Treatments not provided for in C07F7/20 by reactions involving the formation of Si-O linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33348Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing isocyanate group
    • C08G65/33351Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing isocyanate group acyclic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Abstract

本发明公开了一种主链可消除的SO2纳米前药的制备方法及其用途,上述制备方法包括以下步骤S1提供有机溶剂;S2合成单体DN;S3合成mPEG‑P(HDI‑DN);S4将mPEG‑P(HDI‑DN)溶于有机溶剂中,然后滴入水中,用透析袋透析。所述合成mPEG‑P(HDI‑DN)的步骤如下:S31提供mPEG、己二异氰酸酯、催化剂;S32将mPEG、己二异氰酸酯以及单体DN溶于有机溶剂中进行缩聚反应。本发明采用将DN、mPEG和己二异氰酸酯通过缩聚反应的制备方法来获得两亲性二氧化硫前药聚合物,然后在水中自组装形成纳米前药,可制备得到具有可有效递送SO2特点的SO2纳米前药,其使聚合物主链降解消除而形成小分子,使得SO2纳米前药容易从体内代谢,降低潜在的毒副作用和长期毒性,该纳米前药还可以负载其他疏水性药物进行协同治疗。

Description

一种主链可消除的SO2纳米前药的制备方法及其用途
技术领域
本发明属于生物医学技术领域,具体涉及一种主链可消除的SO2纳米前药的制备方法,还涉及采用所述制备方法制备获得的SO2纳米前药、所述SO2纳米前药的应用。
背景技术
肿瘤是一个全球性的公共健康问题,当前临床上针对骨肿瘤的治疗方法包括手术、放疗、化疗等,但这些传统的治疗方法均存在一定的不足,因此,临床上迫切需求研发新型高效、安全的骨肿瘤治疗方法,气体疗法作为一种新兴的“绿色”肿瘤治疗方法受到了广泛的关注,其通过气体分子(NO、CO和H2S等)在高浓度下杀死肿瘤细胞,而基于二氧化硫(SO2)的气体治疗近年来引起了人们的广泛兴趣,由于高浓度的SO2可以通过消耗细胞内过量的还原剂谷胱甘肽(GSH)和提高细胞内活性氧(ROS)水平来破坏细胞内的氧化还原平衡,从而引起细胞损伤,然而,SO2作为一种气体一些固有的缺点却限制了其临床应用。通常气体分子会无目的的在体内扩散,对肿瘤组织缺少特定的靶向性,从而会引起毒副作用和导致治疗效果低下。
基于SO2的气体治疗研究目前还处于早期阶段,仍缺少有效的SO2递送体系,虽然已有基于聚合物的SO2纳米前药递送体系被开发用于SO2的递送,但是其存在一些缺点与不足,在SO2释放后,聚合物骨架还保留,从而导致其体内降解和代谢慢,因此,这类体系的安全性和长期毒性等限制了其临床应用。
发明内容
本发明的目的是为了解决现有技术中存在的在SO2释放后,聚合物骨架还保留,从而导致其体内降解和代谢慢,安全性和长期毒性等限制了其临床应用的问题,而提出的一种主链可消除的SO2纳米前药的制备方法及其用途。
为了实现上述目的,本发明采用了如下技术方案:
一种主链可消除的SO2纳米前药的制备方法,包括以下步骤:
S1提供所述有机溶剂;
S2合成单体DN,备用;
S21提供2-羟基-5-甲基间苯二甲醇、咪唑、叔丁基二甲基氯硅烷、三乙胺、二氯甲烷、2,4-二硝基苯磺酰氯、甲醇、对甲基苯磺酸;
S22取所述2-羟基-5-甲基间苯二甲醇和咪唑溶于所述有机溶剂中,后加入所述叔丁基二甲基氯硅烷,经萃取、水洗和干燥,获得化合物A;
S23取所述化合物A和三乙胺溶于所述二氯甲烷中,并滴入2,4-二硝基苯磺酰氯进行反应,最后经硅胶柱纯化得到化合物B;
S24将所述化合物B溶于所述甲醇中,并加入所述对甲基苯磺酸,后经硅胶柱纯化获得单体DN;
所述单体DN为可聚合的二氧化硫前药;
S3合成mPEG-P(HDI-DN),备用;
S31提供mPEG、己二异氰酸酯、催化剂;
S32将所述mPEG、己二异氰酸酯以及所述单体DN溶于所述有机溶剂中,并加入所述催化剂进行缩聚反应,获得mPEG-P(HDI-DN),即SO2聚合物前药;
S4将所述mPEG-P(HDI-DN)溶于所述有机溶剂中,然后滴入水中,用透析袋透析,制得mPEG-P(HDI-DN)纳米颗粒,即SO2纳米前药颗粒。
上述制备方法,采用将DN、mPEG和己二异氰酸酯(HDI)通过缩聚反应的制备方法来获得两亲性二氧化硫前药聚合物,基于该制备方法可制备得到具有可有效递送SO2特点的SO2纳米前药,其在肿瘤部位释放二氧化硫进行气体治疗的过程中,同时导致聚合物主链降解消除而形成小分子,从而使得SO2纳米前药容易从体内代谢,降低潜在的毒副作用和长期毒性。
作为上述方案的进一步改进,将所述化合物A和三乙胺溶于所述二氯甲烷中,然后在0℃的温度环境下,边搅拌边缓慢地滴入所述2,4-二硝基苯磺酰氯进行反应,将反应液搅拌过夜,然后通过旋蒸除去二氯甲烷,后利用硅胶柱纯化得到化合物B。
作为上述方案的进一步改进,所述缩聚反应的反应温度为25~100℃,反应时间为4~72h。
作为上述方案的进一步改进,所述催化剂的加入量为5~50μL;所述催化剂选用二月桂酸二丁基锡;
所述S22和S32中有机溶剂的用量比为7:1。
作为上述方案的进一步改进,所述透析袋的截留分子量为1000~14000。
作为上述方案的进一步改进,将所述mPEG-P(HDI-DN)溶于有机溶剂中,然后滴入快速搅拌的水中,搅拌后,放入透析袋在水中透析过夜,制得mPEG-P(HDI-DN)纳米颗粒,即SO2纳米前药颗粒;
或,将所述mPEG-P(HDI-DN)和药物溶于有机溶剂中,然后滴入快速搅拌的水中,搅拌后,放入透析袋在水中透析过夜,制得mPEG-P(HDI-DN)纳米颗粒,即SO2纳米前药载药颗粒。
进一步地,所述有机溶剂选用DMF或DMSO;所述药物选用喜树碱、阿霉素、紫杉醇、二氢卟吩e6和IR-780中的至少一种。
作为上述方案的进一步改进,所述SO2纳米前药具有以下组分:mPEG、己二异氰酸酯和DN按比例制作所述SO2纳米前药。
进一步地,所述mPEG、己二异氰酸酯和DN的重量份配比为6.25~50:84:200。
一种主链可消除的SO2纳米前药在制备抗肿瘤药物中的应用。
与现有技术相比,本发明的有益效果是:
本发明,首先制备可聚合的二氧化硫前药单体DN,然后将DN、mPEG和己二异氰酸酯(HDI)通过缩聚反应制备两亲性二氧化硫前药聚合物,通过控制各组分的不同比例以及不同分子量的mPEG从而得到不同分子量的聚合物前药。基于本发明的制备方法制备获得的SO2纳米前药,具有可有效递送SO2的特点,该SO2递送体系可在肿瘤细胞内还原环境下,释放SO2进行气体治疗,同时聚合物前药降解为小分子,使其容易从体内代谢,降低载体潜在的长期毒性和毒副作用。
本发明,采用上述制备方法制备获得的SO2纳米前药,具有可有效递送SO2的特点,使用SO2纳米前药,其在肿瘤部位释放二氧化硫的过程中,同时导致聚合物主链降解消除而形成小分子,从而使得SO2纳米前药容易从体内代谢,降低潜在的毒副作用和长期毒性,利于推动SO2前药的广泛临床应用。并且,本发明制备得到的SO2纳米前药还可以负载如化疗药物、光动力试剂、光热试剂等其他治疗分子,来实现对肿瘤的协同治疗。
综上,本发明采用将DN、mPEG和己二异氰酸酯(HDI)通过缩聚反应的制备方法来获得两亲性二氧化硫前药聚合物,然后在水中自组装形成纳米前药,基于该制备方法可制备得到具有可有效递送SO2特点的SO2纳米前药,其在肿瘤部位释放二氧化硫进行气体治疗的过程中,同时导致聚合物主链降解消除而形成小分子,从而使得SO2纳米前药容易从体内代谢,降低潜在的毒副作用和长期毒性。此外,该纳米前药还可以负载其他疏水性药物进行协同治疗。
附图说明
图1为本发明提出的一种主链可消除的SO2纳米前药的制备方法的流程图。
图2为图1中合成单体DN的流程图。
图3为图1中合成mPEG-P(HDI-DN)的流程图。
图4所示为本发明实施例1中mPEG-P(HDI-DN)的核磁图。
图5中a所示为本发明实施例1中mPEG-P(HDI-DN)纳米颗粒的粒径分布图;b所示为本发明实施例1中mPEG-P(HDI-DN)纳米颗粒的的TEM图。
图6所示为本发明实施例1中mPEG-P(HDI-DN)纳米颗粒的SO2释放表征图。
图7所示为本发明实施例1中mPEG-P(HDI-DN)纳米颗粒的抗骨肉瘤效果。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
请参阅图1-3,本发明提供了一种主链可消除的SO2纳米前药的制备方法,包括以下步骤。
S1提供有机溶剂。
S2合成单体DN,备用;
S21提供2-羟基-5-甲基间苯二甲醇、咪唑、叔丁基二甲基氯硅烷、三乙胺、二氯甲烷、2,4-二硝基苯磺酰氯、甲醇、对甲基苯磺酸;
S22取所述2-羟基-5-甲基间苯二甲醇和咪唑溶于所述有机溶剂中,后加入所述叔丁基二甲基氯硅烷,经萃取、水洗和干燥,获得化合物A;
取2-羟基-5-甲基间苯二甲醇和咪唑溶于有机溶剂中,然后在0℃的温度环境下,边搅拌边加入叔丁基二甲基氯硅烷,后置于室温环境下搅拌,得到混合液,用乙醚对混合液进行萃取,后依次对萃取产物进行水洗、无水硫酸钠干燥和旋干处理后,得到化合物A;
S23取所述化合物A和三乙胺溶于所述二氯甲烷中,并滴入2,4-二硝基苯磺酰氯进行反应,最后经硅胶柱纯化得到化合物B;
将化合物A和三乙胺溶于二氯甲烷中,然后在0℃的温度环境下,边搅拌边缓慢地滴入2,4-二硝基苯磺酰氯进行反应,将反应液搅拌过夜,然后通过旋蒸除去二氯甲烷,后利用硅胶柱纯化得到化合物B;
S24将所述化合物B溶于所述甲醇中,并加入所述对甲基苯磺酸,后经硅胶柱纯化获得单体DN;
将化合物B溶于甲醇,然后加入对甲基苯磺酸,置于室温环境下搅拌,通过旋蒸以除去甲醇后,通过硅胶柱纯化获得化合物DN,即单体DN;
所述单体DN为可聚合的二氧化硫前药。
S3合成mPEG-P(HDI-DN),备用;
S31提供mPEG、己二异氰酸酯、催化剂;
S32将所述mPEG、己二异氰酸酯以及所述单体DN溶于所述DMF中,并加入催化剂进行缩聚反应,获得mPEG-P(HDI-DN),即SO2聚合物前药;
所述催化剂的加入量为5~50μL;所述催化剂可选用二月桂酸二丁基锡;
所述缩聚反应的反应温度为25~100℃,反应时间为4~72h;
所述S22和S32中有机溶剂的用量比为7:1;
将mPEG,己二异氰酸酯(HDI)和单体DN溶于有机溶剂中,并加入催化剂,在40~60℃的温度条件下缩聚反应24~72h后,将缩聚反应物沉入乙醚中,后离心得到沉淀,对沉淀物进行真空干燥处理,得到SO2聚合物前药。
S4将所述mPEG-P(HDI-DN)溶于所述有机溶剂中,然后滴入水中,用透析袋透析,制得mPEG-P(HDI-DN)纳米颗粒,即SO2纳米前药颗粒;
mPEG-P(HDI-DN)溶于有机溶剂中,然后滴入水中,mPEG-P(HDI-DN)在水中自组装形成纳米颗粒,后放入透析袋中透析以除去溶液中的DMF,获得纯的纳米前药颗粒。
所述透析袋的截留分子量为1000~14000;
将所述mPEG-P(HDI-DN)溶于有机溶剂中,然后滴入快速搅拌的水中,搅拌后,放入透析袋在水中透析过夜,制得mPEG-P(HDI-DN)纳米颗粒,即SO2纳米前药颗粒;
或,将所述mPEG-P(HDI-DN)和药物溶于有机溶剂中,然后滴入快速搅拌的水中,搅拌后,放入透析袋在水中透析过夜,制得mPEG-P(HDI-DN)纳米颗粒,即SO2纳米前药载药颗粒;
其中,所述有机溶剂可选用DMF或DMSO,也可选用其他如可以溶解mPEG-P(HDI-DN)并且和水互溶的溶剂;
所述药物选用喜树碱、阿霉素、紫杉醇、二氢卟吩e6和IR-780中的至少一种。在其他实施例中,也可选用其他的疏水性药物和mPEG-P(HDI-DN)一并溶于溶剂中。本发明,通过将mPEG-P(HDI-DN)和药物相结合,实现其他治疗分子负载在SO2纳米前药上,从而实现对肿瘤的协同治疗。本发明的mPEG-P(HDI-DN)聚合物可包载疏水性的药物,实现协同治疗。
综上,本发明,首先制备可聚合的二氧化硫前药单体DN,然后将DN、mPEG和己二异氰酸酯(HDI)通过缩聚反应制备两亲性二氧化硫前药聚合物,然后在水中自组装形成纳米前药,通过控制各组分的不同比例以及不同分子量的mPEG从而得到不同分子量的聚合物前药。基于本发明的制备方法制备获得的SO2纳米前药,具有可有效递送SO2的特点,该SO2递送体系可在肿瘤细胞内还原环境下,释放SO2进行气体治疗,同时聚合物前药降解为小分子,使其容易从体内代谢,降低载体潜在的长期毒性和毒副作用。并且,该纳米前药还可以负载其他疏水性药物对肿瘤进行协同治疗。
此外,本发明还提供了一种主链可消除的SO2纳米前药的制备方法在肿瘤治疗中的应用。
实施例1
本实施例提供了一种主链可消除的SO2纳米前药的制备方法,其操作如下。
(1)单体DN的合成:
将1.68g 2-羟基-5-甲基间苯二甲醇和1.54g咪唑溶于7ml DMF(N,N-二甲基甲酰胺)中,然后在0℃搅拌条件下滴入3.31g叔丁基二甲基氯硅烷,室温搅拌2h,用乙醚萃取,水洗,无水硫酸钠干燥,旋干得到化合物1;
将5g化合物1和2.6ml三乙胺溶于50ml二氯甲烷中,然后在0℃搅拌的条件下缓慢滴入5g 2,4-二硝基苯磺酰氯,将反应液搅拌过夜,然后通过旋蒸除去二氯甲烷,利用硅胶柱纯化得到化合物2;
将0.5g化合物2溶于10ml甲醇,然后加入31mg对甲基苯磺酸,室温搅拌1h,然后通过旋蒸除去甲醇,通过硅胶柱纯化的到化合物DN。
(2)mPEG-P(HDI-DN)的合成:
将50mg mPEG(分子量2000),84mg己二异氰酸酯和200mg DN溶于1ml DMF中,然后加入5μL的二月桂酸二丁基锡,在60℃反应24h,反应完之后沉入并乙醚中,离心得到沉淀,真空干燥,得到SO2聚合物前药。
本实施例以催化剂选取二月桂酸二丁基锡为例进行说明,在其他实施例中,催化剂可根据实际合成条件进行选取。
本实施例,以采用mPEG、己二异氰酸酯和DN通过缩聚反应的制备方法来获得两亲性二氧化硫前药聚合物为例进行说明,在其他实施例中,也可将mPEG换成其它带单羟基的亲水聚合物,将己二异氰酸酯换成包含类似结构的带两个异氰酸酯基团的试剂来通过缩聚反应的制备方法,来获得两亲性二氧化硫前药聚合物,在此不再进行详细赘述。
(3)mPEG-P(HDI-DN)纳米颗粒的制备:
将5mg mPEG-P(HDI-DN)溶于1ml DMF中,然后滴入快速搅拌的3ml水中,搅拌30min,然后放入透析袋(截留分子量3500),在水中透析过夜,得SO2纳米前药颗粒。
图4所示为本实施例中mPEG-P(HDI-DN)的核磁图。核磁图中的各峰可以很好的归属于mPEG-P(HDI-DN)中各部分的氢质子。通过对图4进行分析,特征峰a,b属于mPEG,特征峰c,d,e属于HDI,特征峰f,g,h,i,j,k归属于DN。这一核磁结果证明了本实施例的mPEG-P(HDI-DN)被成功制备。
图5中a所示为本实施例中mPEG-P(HDI-DN)纳米颗粒的粒径分布图,b所示为本实施例中mPEG-P(HDI-DN)纳米颗粒的的TEM(透射电镜图)图。通过对图5进行分析可知,本实施例所得的mPEG-P(HDI-DN)在水中自组装形成的纳米颗粒粒径在80nm左右,形状为球形。
图6所示为本实施例中mPEG-P(HDI-DN)纳米颗粒的SO2释放表征图。由于SO2气体在水中可以快速形成HSO3 -,因此通过荧光探针7-(二乙氨基基)香豆素-3-甲醛来检测水中HSO3 -的含量来表征SO2的形成。通过对图6进行分析,可知,在没有GSH加入的情况下,探针的荧光强度不变,表明无SO2释放,而在加入GSH的情况下,溶液荧光强度快速上升,表明GSH可以触发SO2的释放。
图7所示为本实施例中mPEG-P(HDI-DN)纳米颗粒的抗骨肉瘤效果。建立骨肉瘤的皮下移植瘤模型,然后按不同mPEG-P(HDI-DN)剂量给药(10,20,40mg/kg),每4天给药一次,结果证明mPEG-P(HDI-DN)可有效的抑制骨肉瘤的生长,高剂量的mPEG-P(HDI-DN)具有更好的肿瘤抑制效率。
本实施例对各步骤中的操作参数进行说明,同时,在遵循原料加入量配比的前提下,具体指出在合成单体DN中,所选2-羟基-5-甲基间苯二甲醇、咪唑、叔丁基二甲基氯硅烷、三乙胺、二氯甲烷、2,4-二硝基苯磺酰氯、甲醇以及对甲基苯磺酸的加入量,并具体指出在合成mPEG-P(HDI-DN)中,所取mPEG、己二异氰酸酯以及DN材料的用量。综上,本实施例提出的制备方法不再进行赘述。
实施例2
本实施例与实施例1的区别在于:在mPEG-P(HDI-DN)的合成中,将50mg mPEG(分子量5000),168mg己二异氰酸酯和400mg DN溶于1ml DMF中,在40℃反应48h。
在mPEG-P(HDI-DN)纳米颗粒的制备中,将10mg mPEG-P(HDI-DN)溶于1ml DMF中;放入透析袋(截留分子量1000)在水中透析过夜。
实施例3
本实施例与实施例1的区别在于:在mPEG-P(HDI-DN)的合成中,将50mg mPEG(分子量2000),168mg己二异氰酸酯和400mg DN溶于1ml DMF中,在40℃反应48h。
在mPEG-P(HDI-DN)纳米颗粒的制备中,将10mg mPEG-P(HDI-DN)和2mg药物(如喜树碱、阿霉素、紫杉醇等)溶于1ml DMF中;放入透析袋(截留分子量1000)在水中透析过夜;获得SO2纳米前药载药颗粒。
实施例4
本实施例与实施例1的区别在于:在mPEG-P(HDI-DN)的合成中,将25mg mPEG(分子量5000),168mg己二异氰酸酯和400mg DN溶于1ml DMF中,反应48h。
在mPEG-P(HDI-DN)纳米颗粒的制备中,将10mg mPEG-P(HDI-DN)和3mg药物(如喜树碱、阿霉素、紫杉醇等)溶于2ml DMSO(二甲基亚砜)中,然后滴入快速搅拌的5ml水中,搅拌60min,放入透析袋(截留分子量3500)在水中透析过夜;获得SO2纳米前药载药颗粒。
实施例5
本实施例与实施例1的区别在于:在mPEG-P(HDI-DN)的合成中,将25mg mPEG(分子量5000),168mg己二异氰酸酯和400mg DN溶于1ml DMF中,然后加入10μL的二月桂酸二丁基锡,反应72h。
在mPEG-P(HDI-DN)纳米颗粒的制备中,将10mg mPEG-P(HDI-DN)和1mg药物(如喜树碱、阿霉素、紫杉醇等)溶于1ml DMSO(二甲基亚砜)中,然后滴入快速搅拌的10ml水中,然后放入透析袋(截留分子量14000)在水中透析2d;获得SO2纳米前药载药颗粒。
实施例6
本实施例与实施例1的区别在于:在mPEG-P(HDI-DN)的合成中,将12.5mg mPEG(分子量5000),168mg己二异氰酸酯和400mg DN溶于1ml DMF中,然后加入10μL的二月桂酸二丁基锡,反应72h。
在mPEG-P(HDI-DN)纳米颗粒的制备中,将10mg mPEG-P(HDI-DN)和1mg药物(如二氢卟吩e6,IR780等光学治疗药物)溶于2ml DMF中,然后滴入快速搅拌的10ml水中,在水中透析2d;获得SO2纳米前药载药颗粒。
实施例7
本实施例提供了一种主链可消除的SO2纳米前药,其采用如实施例1至实施例6中任意一项的所述主链可消除的SO2纳米前药的制备方法制备得到。所述SO2纳米前药具有以下组分:mPEG、己二异氰酸酯和DN按比例制作所述SO2纳米前药;其中,所述mPEG、己二异氰酸酯和DN的重量份配比为6.25~50:84:200。
本实施例的SO2纳米前药,具有可有效递送SO2的特点,使用该SO2纳米前药,其在肿瘤部位释放二氧化硫进行气体治疗的过程中,同时导致聚合物主链降解消除而形成小分子,从而使得SO2纳米前药容易从体内代谢,降低潜在的毒副作用和长期毒性,利于推动SO2前药的广泛临床应用。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种主链可消除的SO2纳米前药的制备方法,其特征在于,包括以下步骤:
S1提供有机溶剂;
S2合成单体DN,备用;
S21提供2-羟基-5-甲基间苯二甲醇、咪唑、叔丁基二甲基氯硅烷、三乙胺、二氯甲烷、2,4-二硝基苯磺酰氯、甲醇、对甲基苯磺酸;
S22取所述2-羟基-5-甲基间苯二甲醇和咪唑溶于所述有机溶剂中,后加入所述叔丁基二甲基氯硅烷,经萃取、水洗和干燥,获得化合物A;
S23取所述化合物A和三乙胺溶于所述二氯甲烷中,并滴入2,4-二硝基苯磺酰氯进行反应,最后经硅胶柱纯化得到化合物B;
S24将所述化合物B溶于所述甲醇中,并加入所述对甲基苯磺酸,后经硅胶柱纯化获得单体DN;
所述单体DN为可聚合的二氧化硫前药;
S3合成mPEG-P(HDI-DN),备用;
S31提供mPEG、己二异氰酸酯、催化剂;
S32将所述mPEG、己二异氰酸酯以及所述单体DN溶于所述有机溶剂中,并加入所述催化剂进行缩聚反应,获得mPEG-P(HDI-DN),即SO2聚合物前药;
S4将所述mPEG-P(HDI-DN)溶于所述有机溶剂中,然后滴入水中,用透析袋透析,制得mPEG-P(HDI-DN)纳米颗粒,即SO2纳米前药颗粒。
2.根据如权利要求1所述的主链可消除的SO2纳米前药的制备方法,其特征在于,将所述化合物A和三乙胺溶于所述二氯甲烷中,然后在0℃的温度环境下,边搅拌边缓慢地滴入所述2,4-二硝基苯磺酰氯进行反应,将反应液搅拌过夜,然后通过旋蒸除去二氯甲烷,后利用硅胶柱纯化得到化合物B。
3.根据如权利要求1所述的主链可消除的SO2纳米前药的制备方法,其特征在于,所述缩聚反应的反应温度为25~100℃,反应时间为4~72h。
4.根据如权利要求1所述的主链可消除的SO2纳米前药的制备方法,其特征在于,所述催化剂的加入量为5~50μL;所述催化剂选用二月桂酸二丁基锡;
所述S22和S32中有机溶剂的用量比为7:1。
5.根据如权利要求1所述的主链可消除的SO2纳米前药的制备方法,其特征在于,所述透析袋的截留分子量为1000~14000。
6.根据如权利要求1所述的主链可消除的SO2纳米前药的制备方法,其特征在于,将所述mPEG-P(HDI-DN)溶于所述有机溶剂中,然后滴入快速搅拌的水中,搅拌后,放入透析袋在水中透析过夜,制得mPEG-P(HDI-DN)纳米颗粒,即SO2纳米前药颗粒;
或,将所述mPEG-P(HDI-DN)和药物溶于所述有机溶剂中,然后滴入快速搅拌的水中,搅拌后,放入透析袋在水中透析过夜,制得mPEG-P(HDI-DN)纳米颗粒,即SO2纳米前药载药颗粒。
7.根据如权利要求6所述的主链可消除的SO2纳米前药的制备方法,其特征在于,所述有机溶剂选用DMF或DMSO;
所述药物选用喜树碱、阿霉素、紫杉醇、二氢卟吩e6和IR-780中的至少一种。
8.根据如权利要求1-7中任意一项所述的主链可消除的SO2纳米前药的制备方法,其用于制备获得SO2纳米前药,其特征在于,所述SO2纳米前药具有以下组分:mPEG、己二异氰酸酯和DN按比例制作所述SO2纳米前药。
9.根据如权利要求8所述的主链可消除的SO2纳米前药的制备方法,其特征在于,所述mPEG、己二异氰酸酯和DN的重量份配比为6.25~50:84:200。
10.根据如权利要求1-9中任意一项所述的主链可消除的SO2纳米前药在制备抗肿瘤药物中的应用。
CN202110883122.XA 2021-08-02 2021-08-02 一种主链可消除的so2纳米前药的制备方法及其用途 Active CN113667114B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110883122.XA CN113667114B (zh) 2021-08-02 2021-08-02 一种主链可消除的so2纳米前药的制备方法及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110883122.XA CN113667114B (zh) 2021-08-02 2021-08-02 一种主链可消除的so2纳米前药的制备方法及其用途

Publications (2)

Publication Number Publication Date
CN113667114A CN113667114A (zh) 2021-11-19
CN113667114B true CN113667114B (zh) 2023-07-14

Family

ID=78541165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110883122.XA Active CN113667114B (zh) 2021-08-02 2021-08-02 一种主链可消除的so2纳米前药的制备方法及其用途

Country Status (1)

Country Link
CN (1) CN113667114B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106667911A (zh) * 2017-01-25 2017-05-17 东华大学 一种两亲性聚氨酯自组装纳米颗粒及其制备和应用
CN108329454A (zh) * 2018-03-05 2018-07-27 河南省科学院高新技术研究中心 一种聚氨酯及其制备方法和载药胶束
CN109771660A (zh) * 2019-03-07 2019-05-21 北京林业大学 一种具有pH响应果胶-阿霉素/雷公藤红素纳米粒子的制备
CN110590950A (zh) * 2013-12-13 2019-12-20 基因泰克公司 抗cd33抗体和免疫缀合物
CN111643482A (zh) * 2020-07-28 2020-09-11 南京邮电大学 一种在乏氧条件下释放硫化氢的纳米粒子及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106905519B (zh) * 2015-12-22 2019-07-12 博瑞生物医药(苏州)股份有限公司 生物可降解双亲性聚合物、由其制备的聚合物囊泡及在制备肺癌靶向治疗药物中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110590950A (zh) * 2013-12-13 2019-12-20 基因泰克公司 抗cd33抗体和免疫缀合物
CN106667911A (zh) * 2017-01-25 2017-05-17 东华大学 一种两亲性聚氨酯自组装纳米颗粒及其制备和应用
CN108329454A (zh) * 2018-03-05 2018-07-27 河南省科学院高新技术研究中心 一种聚氨酯及其制备方法和载药胶束
CN109771660A (zh) * 2019-03-07 2019-05-21 北京林业大学 一种具有pH响应果胶-阿霉素/雷公藤红素纳米粒子的制备
CN111643482A (zh) * 2020-07-28 2020-09-11 南京邮电大学 一种在乏氧条件下释放硫化氢的纳米粒子及其制备方法和应用

Also Published As

Publication number Publication date
CN113667114A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
CN102276813B (zh) 含叶酸靶向高分子药物载体及其制备方法
John et al. pH/redox dual stimuli-responsive sheddable nanodaisies for efficient intracellular tumour-triggered drug delivery
CN103224607B (zh) 梳形功能化聚氨酯材料及其制备方法
Najafi et al. Nitric oxide releasing nanofibrous Fmoc-dipeptide hydrogels for amelioration of renal ischemia/reperfusion injury
US20170313828A1 (en) In situ-forming of dendrimer hydrogels using michael-addition reaction
KR20180097707A (ko) 생분해성 양친매성 폴리머, 그것에 의해 제조되는 폴리머 베시클, 및 폐암표적 치료제의 제조에 있어서의 사용
CN108310395A (zh) 一种表面电荷可转换的聚合物纳米药物载体及制备方法和应用
CN109438707A (zh) 一种用于抗肿瘤药物递送的聚二硫苏糖醇纳米体系及其制备方法和应用
He et al. Programmable therapeutic nanoscale covalent organic framework for photodynamic therapy and hypoxia-activated cascade chemotherapy
Liu et al. Hydrogen peroxide-responsive micelles self-assembled from a peroxalate ester-containing triblock copolymer
CN112004848B (zh) 嵌段共聚物和由其形成的自组装纳米颗粒
CN113667114B (zh) 一种主链可消除的so2纳米前药的制备方法及其用途
CN108186571B (zh) 可逆交联不对称囊泡在制备治疗急性白血病药物中的应用
CN107823184B (zh) 氧化还原敏感诱导pH响应纳米药物载体的制备方法与应用
CN113081965A (zh) 一种基于ros敏感及h2s响应的多功能脂质体及其制备方法和应用
CN105920614B (zh) 一种超分子水凝胶药物与基因双重载体材料及其制备方法
CN111484622B (zh) 两亲性聚氟化物,其制备方法及用途
CN113512200B (zh) 一种以聚-l-谷氨酸酯为主链的分子刷状聚合物及其制备方法和应用
CN104758244B (zh) 一种纳米凝胶、其制备方法和抗肿瘤纳米凝胶载药体系及其制备方法
CN109096495B (zh) 一种酸敏感两亲性嵌段聚合物及合成方法和应用
CN113262309B (zh) 一种负载抗肿瘤药物的超支化-嵌段共接枝药物载体及其制备方法和应用
CN108329463B (zh) 一种pH响应型维生素E载药材料及其制备方法和应用
CN106667911A (zh) 一种两亲性聚氨酯自组装纳米颗粒及其制备和应用
CN113116857A (zh) 一种具有粘附功能的泡腾颗粒及其应用
CN113509550B (zh) 一种分子刷纳米粒子及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant