CN113663896A - 透明的超疏水和光催化二氧化钛涂层的制备方法 - Google Patents

透明的超疏水和光催化二氧化钛涂层的制备方法 Download PDF

Info

Publication number
CN113663896A
CN113663896A CN202111098652.XA CN202111098652A CN113663896A CN 113663896 A CN113663896 A CN 113663896A CN 202111098652 A CN202111098652 A CN 202111098652A CN 113663896 A CN113663896 A CN 113663896A
Authority
CN
China
Prior art keywords
titanium dioxide
coating
substrate
soot
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111098652.XA
Other languages
English (en)
Inventor
王丹琴
洪桥峰
刘双科
郑春满
李宇杰
洪晓斌
许静
谢威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202111098652.XA priority Critical patent/CN113663896A/zh
Publication of CN113663896A publication Critical patent/CN113663896A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0231Halogen-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0274Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0275Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 also containing elements or functional groups covered by B01J31/0201 - B01J31/0269
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • B05D3/0272After-treatment with ovens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0406Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being air
    • B05D3/0426Cooling with air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及超润湿和光催化材料制备技术领域,提供了一种透明的超疏水和光催化涂层的制备方法。本发明利用蜡烛烟灰或煤油烟灰作为模板,在沉积有蜡烛烟灰或煤油烟灰的模板的基底上制备一层既具有超疏水特性,又能够在光照下降解有机污染物的透明二氧化钛涂层。该涂层可以在玻璃基底、不锈钢基底等各种基底上制备,制备工艺简单易行,有利于大规模的工业化生产,可广泛应用于电子设备显示屏、镜头、探测器等光电子设备以及光伏行业的防护和自清洁方面。

Description

透明的超疏水和光催化二氧化钛涂层的制备方法
技术领域
本发明涉及超润湿和光催化材料制备技术领域,尤其涉及一种透明的超疏水和光催化涂层的制备方法。
背景技术
超疏水表面的基本要求是静态接触角大于150°,滚动接触角小于10°。不同疏水材料的制备主要是通过两种方法来实现的:一种是在固体表面引入大量细小的微纳米结构,通常用SiO2、TiO2和天然沸石等无机粒子添加到涂层中构建粗糙结构,当液滴落在表面上时,微结构中捕获了空气,从而增加了疏水性;另一种是在固体表面覆盖一层表面张力较小的材料,增大接触角的同时,阻隔液滴与衬底材料的接触。在实际的研究中,这两种方法常常结合在一起使用,即在具有微纳米结构的材料表面再覆盖具有较小表面张力的材料,取得很好的疏水效果。目前制备超疏水涂层的方法有刻蚀法、化学气相沉积法、溶胶-凝胶法、层层自组装法以及模板法等。除在玻璃表面上以外,在铜、钢、铝、镁、锌等不同金属的表面上均可制备超疏水涂层。
材料表面实现自清洁的方式有两种,一种是通过超疏水表面,即滚动的水滴在超疏水表面滚动并将表面的污渍带走,从而实现材料表面的自清洁。另一种方式是光催化材料在光照条件下激发出超氧自由基和羟基自由基去降解有机物,从而达到清洁污染的效果。然而,同时实现以上两种自清洁机理的涂层报道较少。因此对于同时有宏观小颗粒和有机分子污渍同时污染的表面,如何保持材料表面的自清洁性仍是极大的考验。
除此之外,自清洁涂层的制备从理论研究到实际应用依然存在着诸多难题。首先是传统的超疏水材料的制备原料昂贵、工艺繁复,导致成本较为高昂;其次是超疏水材料的微-纳米结构脆弱,当受到外界冲击、刮擦时很容易被破坏,进而丧失其超疏水特性,失去使用价值。高昂的成本和脆弱的机械稳定性仍然严重制约着超疏水涂层的实际应用。
发明内容
针对现有技术存在的问题,本发明的目的是提供一种透明的超疏水和光催化二氧化钛涂层的制备方法。
本发明利用蜡烛烟灰或煤油烟灰作为模板,在沉积有蜡烛烟灰或煤油烟灰的模板的基底上制备一层既具有超疏水特性,又能够在光照下降解有机污染物的透明二氧化钛涂层。该涂层可以在玻璃基底、不锈钢基底等各种基底上制备,制备工艺简单易行,有利于大规模的工业化生产,可广泛应用于电子设备显示屏、镜头、探测器等光电子设备以及光伏行业的防护和自清洁方面。
本发明主要通过以下技术方案来实现:
透明的超疏水和光催化二氧化钛涂层的制备方法,包括以下步骤:
(1)烟灰模板的制备:将洗净的干燥基底放置于蜡烛火焰或煤油火焰的芯部或者尖部,在基底表面迅速沉积一层黑色烟灰;沉积时间一般为30-60s左右。
调节基底相对于火焰的位置,可以进一步调节烟灰纳米颗粒的尺寸,进而改变以烟灰为模板的二氧化钛壳层的尺寸大小,并调节涂层的超疏水性能。
(2)二氧化钛溶胶的制备:将钛酸盐-醇体系室温下搅拌1-3h,得到半透明二氧化钛溶胶,溶胶中二氧化钛的含量控制在 0.01-0.5mol/L。
(3)二氧化钛涂层的制备:采用液相浸涂法制备二氧化钛涂层。首先将沉积有烟灰的基底竖直缓慢地浸入二氧化钛溶胶中,当基底被二氧化钛溶胶完全浸没后保持1-60min,然后缓慢取出。取出后静置20-48h,即可制得一层二氧化钛涂层。
可以通过调节浸没次数和浸没时间控制基底上TiO2涂层的厚度和均匀性。
(4)烟灰模板的去除:将上述沉积有二氧化钛涂层的基底放入马弗炉中,在450-600℃下保温2h,最后随炉冷却。基底表面黑色烟灰消失,得到透明的二氧化钛涂层。
(5)氟化处理:将经步骤(5)处理后的基底放入干燥器,同时量取低表面能氟化物放入干燥器中,将干燥器放入电热鼓风干燥箱,在70-160℃下保温约10-36h后取出,基底表面制得一层透明的具有超疏水和光催化性能的二氧化钛涂层。
进一步的,上述制备方法中,所述基底选自载玻片、不锈钢片、纸张、陶瓷基复合材料、以及棉、毛、丝、麻、涤棉、尼龙或涤纶织物。
将基底通过超声和乙醇清洗,去除表面油污。
进一步的,上述制备方法中,步骤(2)所述的钛酸盐为钛酸四乙酯、钛酸四丁酯或异丙醇钛,所述的醇为无水乙醇、甲醇、异丙醇、丙醇、丁醇或乙二醇。
进一步的,上述制备方法中,步骤(3)所述的液相浸涂法用喷涂法或者旋涂法替代。
进一步的,上述制备方法中,步骤(5)所述的低表面能氟化物为全氟丁酸、氟氯戊酸、含氟烷基磺酸钠、全氟氧杂酰胺基季铵盐、全氟辛醇、氟烷基有机硅烷(全氟癸基三氯硅烷)、聚四氟乙烯中的一种以上。
蜡烛或煤油燃烧时产生的烟灰由纳米级颗粒组成,烟灰颗粒呈球形,平均粒径在40nm左右。局部区域内颗粒之间随机连接形成碳纳米球链,大范围内颗粒簇连续结合成蜂窝状的纳米级颗粒网络,具有大的表面粗糙度。本发明创造性的利用蜡烛烟灰或者煤油烟灰的形貌,通过模板法制备出透明的超疏水和光催化二氧化钛涂层。
与现有技术相比,本发明具有以下有益效果:
(1)采用的原材料成本低廉,容易得到。合成路线简单,整个过程没有用到精密昂贵的仪器,利用非常简单的方法制备出了透明同时具有超疏水性能和光催化性能的涂层表面。
(2)本发明采用的技术方案可以简单快速地复刻出蜡烛或煤油烟灰的珊瑚型粗糙结构,进而通过表面改性得到超疏水表面,适合大规模批量化生产。这些涂层表面超疏水性能优异,接触角在160°以上,滚动角在4°以下,液滴粘附性非常小,极易滚落。
(3)本发明制得的超疏水涂层的组分是二氧化钛,具有光催化功能,在紫外光照射下,可分解有机物。
(4)本发明制备的二氧化钛涂层具有良好的自清洁性、机械稳定性与防污性能。以重20克的砝码作为测试载荷,用粒度为600的长条形干磨砂纸条水平拖动砝码摩擦涂层,摩擦45次,接触角从159度下降至142度。
附图说明
图1为本发明实施例1中烟灰薄膜的扫描电子显微镜(SEM)图。
图2为本发明实施例1制备得到的超疏水和光催化二氧化钛涂层的扫描电子显微镜(SEM)图。
图3为本发明实施例1制备得到的超疏水和光催化二氧化钛涂层热处理前的XRD图。
图4为本发明实施例1制备得到的超疏水和光催化二氧化钛涂层热处理后的XRD图。
图5为本发明实施例1制备得到的超疏水和光催化二氧化钛涂层防污性能示意图,a为干燥碳粉均匀铺撒在载玻片超疏水涂层的表面的图例,b为水滴触碰到倾斜放置的载玻片超疏水涂层表面后的图例。
图6为本发明实施例1中添加超疏水和光催化二氧化钛涂层粉末的甲基橙溶液的紫外-可见光吸收光谱变化图。
图7为本发明实施例1中添加超疏水和光催化二氧化钛涂层粉末的甲基橙溶液的光催化降解率变化曲线图。
图8为本发明实施例2制备得到的超疏水和光催化涂层热处理后的XRD衍射图。
图9为本发明实施例2制备得到的超疏水和光催化涂层与水的接触角测试示意图。
具体实施方式
下面通过实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(1)基底预处理:将长76.2mm,宽25.4mm,厚度为1mm-1.2mm的载玻片先用清洁剂进行清洗,去除表面可能存在的油污,然后分别在去离子水和无水乙醇中超声清洗10min,使表面上的水既不聚集成水滴,也不会成股流下,而是形成均匀水膜,最后吹干备用。
(2)烟灰模板的制备:首先选取市面上常见的照明用蜡烛,将其固定后点燃。待火焰高度稳定后,将洗净的干燥基底放置于火焰的芯部,基底表面将迅速沉积上一层黑色烟灰。为使选取的区域内烟灰薄膜尽可能均匀,应缓慢、匀速且稳定地平移基底。沉积时间为30s。
(3)稳定的二氧化钛溶胶制备:称量1.7克钛酸四丁酯溶于50ml乙醇中,用保鲜膜密封后在磁力搅拌器上搅拌1小时,得到半透明二氧化钛溶胶。
(4)二氧化钛涂层的制备:将沉积有烟灰薄膜的基底竖直缓慢地浸入钛酸四丁酯溶液中,由于烟灰薄膜极易被溶液表面张力撕裂破坏,浸入过程应适当放慢速度。当基底被溶液完全浸没后开始计时,1min后缓慢取出。浸没3次后取出,水平放置于桌面上静置约20h。
(5)烟灰模板的去除:将上述基底放入马弗炉中,60min升温至520℃后保温2h,最后随炉冷却。基底表面黑色烟灰消失,得到呈透明状涂层。
(6)氟化处理:将上述基底放入干燥器,同时在表面皿中量取0.1ml的全氟癸基三氯硅烷在表面皿中作为低表面能修饰物。最后用将干燥器进行密封后放入电热鼓风干燥箱,在70℃下保温约24h后取出,得到超疏水和光催化二氧化钛涂层。
图1为实施例1中蜡烛烟灰的颗粒形貌,可以看出蜡烛燃烧时产生的烟灰由纳米级颗粒组成,烟灰颗粒呈球形,平均粒径在40nm左右。图2所示为实施例1制备得到的超疏水和光催化二氧化钛涂层的SEM图,可以看出二氧化钛颗粒呈球状,直径为20-40纳米之间,颗粒之间相互紧密连接,构成了三维立体的复杂空间网络结构,与蜡烛烟灰的微观表面形貌类似。实施例1制备得到的超疏水和光催化二氧化钛涂层经接触角仪测试,涂层与水的接触角值为160°,滚动角小于4°。图3和图4为实施例1制备得到的超疏水和光催化二氧化钛涂层热处理前后的XRD衍射图,可以看出室温下的TiO2颗粒结晶度很低,为非晶态结构,而在520℃热处理过的TiO2颗粒结晶度较高,为纯相锐钛矿型TiO2,没有杂质以及金红石锐钛矿或板钛矿晶体存在。图5为实施例1制备得到的超疏水和光催化二氧化钛涂层的防污性能示意图,如图所示,将干燥碳粉均匀地铺撒在载玻片超疏水涂层的表面(如图a所示),然后用滴管吸取约5ml的去离子水从涂层正上方滴落,可以观察到水滴触碰到倾斜放置的涂层表面后发生了弹跳并向下滚动(如图b所示),在此过程中涂层表面碳粉基本去除,达到了防污的效果。
进一步测试制备得到的超疏水和光催化二氧化钛涂层的光催化性能:配制20mg/L的甲基橙溶液,然后将实施例1中制得的超疏水和光催化二氧化钛涂层刮下,加入到甲基橙溶液中磁力搅拌10min后,将其放置到紫外光环境下进行照射。按照不同的照射时间进行取样并命名。紫外光照射时间分别为0分钟、30分钟、60分钟、90分钟和120分钟时进行取样,样品分别命名为0#、1#、2#、3#和4#。未添加超疏水和光催化二氧化钛涂层粉末的样品做为对照试验,按照上述同样的方法进行测试,两组样品对照实验结果:未添加超疏水和光催化二氧化钛粉末的甲基橙的颜色随紫外光照射时间的延长未发生改变,而添加超疏水和光催化二氧化钛粉末的甲基橙溶液的颜色随着紫外光照射时间的延长逐渐变浅,说明甲基橙在紫外光照射下明显降解。图6为添加超疏水和光催化二氧化钛涂层粉末的甲基橙溶液的紫外-可见光吸收光谱变化,甲基橙的紫外特征吸收峰强度随照射时间延长而逐渐减弱,说明甲基橙在紫外光的照射下明显被降解。从图7可以看出,紫外光照射九十分钟后,甲基橙的降解率达到100%。
实施例2
(1)基底预处理:将长10cm,宽3cm,厚度为0.5mm的不锈钢基底先用清洁剂进行清洗,然后分别在去离子水和无水乙醇中超声清洗10min,最后吹干备用。
(2)烟灰模板的制备:首先选取市面上常见的照明用蜡烛,将其固定后点燃。待火焰高度稳定后,将洗净的干燥基底放置于火焰的芯部,基底表面将迅速沉积上一层黑色烟灰。为使选取的区域内烟灰薄膜尽可能均匀,应缓慢、匀速且稳定地平移基底。沉积时间为30s。
(3)稳定的二氧化钛溶胶制备:称量2.0克钛酸四乙酯溶于50ml乙醇中,用保鲜膜密封后在磁力搅拌器上搅拌1小时,得到半透明二氧化钛溶胶。
(4)二氧化钛涂层的制备:将沉积有烟灰薄膜的基底竖直缓慢地浸入钛酸四丁酯溶液中,由于烟灰薄膜极易被溶液表面张力撕裂破坏,浸入过程应适当放慢速度。当基底被溶液完全浸没后开始计时,1min后缓慢取出。浸没3次后取出,水平放置于桌面上静置约20h。
(5)烟灰模板的去除:将上述基底放入马弗炉中,60min升温至570℃后保温2h,最后随炉冷却。基底表面黑色烟灰消失,得到呈透明状涂层。
(6)氟化处理:将上述基底放入干燥器,同时在表面皿中量取0.1ml的全氟辛醇在表面皿中作为低表面能修饰物。最后用将干燥器进行密封后放入电热鼓风干燥箱,在120℃下保温约24h后取出,制备得到超疏水和光催化二氧化钛涂层。
本实施例中制备得到的超疏水和光催化二氧化钛涂层颗粒结晶度较高,为纯相锐钛矿型TiO2,没有杂质以及金红石锐钛矿或板钛矿晶体存在,XRD衍射分析结果如图8所示。该超疏水和光催化二氧化钛涂层与水的接触角为159°,如图9所示。
实施例3
(1)基底预处理:将长76.2mm,宽25.4mm,厚度为1mm-1.2mm的载玻片先用清洁剂进行清洗,去除表面可能存在的油污,然后分别在去离子水和无水乙醇中超声清洗10min后吹干备用。
(2)烟灰模板的制备:选取市面上销售的煤油灯,将其点燃后,将上述干燥基底放置于火焰的芯部,基底表面将迅速沉积上一层黑色烟灰。为使选取的区域内烟灰薄膜尽可能均匀,应缓慢、匀速且稳定地平移基底。沉积时间为30s。
(3)稳定的二氧化钛溶胶制备:称量1.7克钛酸四丁酯溶于50ml乙醇中,用保鲜膜密封后在磁力搅拌器上搅拌1小时,得到半透明二氧化钛溶胶。
(4)二氧化钛涂层的制备:将沉积有烟灰薄膜的基底竖直缓慢地浸入钛酸四丁酯溶液中,由于烟灰薄膜极易被溶液表面张力撕裂破坏,浸入过程应适当放慢速度。当基底被溶液完全浸没后开始计时,1min后缓慢取出。浸没3次后取出,水平放置于桌面上静置约20h。
(5)烟灰模板的去除:将上述基底放入马弗炉中,60min升温至520℃后保温2h,最后随炉冷却。基底表面黑色烟灰消失,得到呈透明状涂层。
(6)氟化处理:将上述基底放入干燥器,同时在表面皿中量取0.1ml的全氟癸基三氯硅烷在表面皿中作为低表面能修饰物。最后用将干燥器进行密封后放入电热鼓风干燥箱,在70℃下保温约24h后取出,得到超疏水和光催化二氧化钛涂层。
本实施例制备得到的超疏水和光催化二氧化钛涂层与水的接触角为160°,滚动角小于4°。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

1.一种透明的超疏水和光催化二氧化钛涂层的制备方法,其特征在于,包括以下步骤:
(1)烟灰模板的制备:将洗净的干燥基底放置于蜡烛火焰或煤油火焰的芯部或者尖部,在基底表面迅速沉积一层黑色烟灰;
(2)二氧化钛溶胶的制备:将钛酸盐-醇体系室温下搅拌1-3h,得到半透明二氧化钛溶胶;
(3)二氧化钛涂层的制备:采用液相浸涂法制备二氧化钛涂层:首先将沉积有烟灰的基底竖直缓慢地浸入二氧化钛溶胶中,当基底被二氧化钛溶胶完全浸没后保持1-60min,然后缓慢取出;取出后静置20-48h,即制得二氧化钛涂层;
(4)烟灰模板的去除:将步骤(3)中沉积有二氧化钛涂层的基底放入马弗炉中,在450-600℃下保温2h,最后随炉冷却,得到透明的二氧化钛涂层;
(5)氟化处理:将经步骤(4)处理后的基底放入干燥器,同时量取低表面能氟化物放入干燥器中,将干燥器放入干燥箱,在70-160℃下保温10-36h后取出,基底表面制得一层透明的具有超疏水和光催化性能的二氧化钛涂层。
2.如权利要求1所述的透明的超疏水和光催化二氧化钛涂层的制备方法,其特征在于,所述基底选自载玻片、不锈钢片、纸张、陶瓷基复合材料、以及棉、毛、丝、麻、涤棉、尼龙或涤纶织物。
3.如权利要求1所述的透明的超疏水和光催化二氧化钛涂层的制备方法,其特征在于,步骤(1)中所述的沉积的时间为30-60s。
4.如权利要求1所述的透明的超疏水和光催化二氧化钛涂层的制备方法,其特征在于,步骤(2)所述的钛酸盐为钛酸四乙酯、钛酸四丁酯或异丙醇钛,所述的醇为无水乙醇、甲醇、异丙醇、丙醇、丁醇或乙二醇。
5.如权利要求1或4所述的透明的超疏水和光催化二氧化钛涂层的制备方法,其特征在于,所述二氧化钛溶胶中二氧化钛的含量控制在 0.01-0.5mol/L。
6.如权利要求1所述的透明的超疏水和光催化二氧化钛涂层的制备方法,其特征在于,用喷涂法或者旋涂法替代步骤(3)所述的液相浸涂法。
7.如权利要求1所述的透明的超疏水和光催化二氧化钛涂层的制备方法,其特征在于,步骤(5)所述的低表面能氟化物为全氟丁酸、氟氯戊酸、含氟烷基磺酸钠、全氟氧杂酰胺基季铵盐、全氟辛醇、氟烷基有机硅烷、聚四氟乙烯中的一种以上。
CN202111098652.XA 2021-09-18 2021-09-18 透明的超疏水和光催化二氧化钛涂层的制备方法 Pending CN113663896A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111098652.XA CN113663896A (zh) 2021-09-18 2021-09-18 透明的超疏水和光催化二氧化钛涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111098652.XA CN113663896A (zh) 2021-09-18 2021-09-18 透明的超疏水和光催化二氧化钛涂层的制备方法

Publications (1)

Publication Number Publication Date
CN113663896A true CN113663896A (zh) 2021-11-19

Family

ID=78549715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111098652.XA Pending CN113663896A (zh) 2021-09-18 2021-09-18 透明的超疏水和光催化二氧化钛涂层的制备方法

Country Status (1)

Country Link
CN (1) CN113663896A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114656741A (zh) * 2022-02-09 2022-06-24 宁波大学 一种湿敏复合材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553359A (zh) * 2013-10-23 2014-02-05 傅逸承 以烟灰为模板廉价构建透明超疏水自清洁纳米涂层的方法
CN111019476A (zh) * 2019-12-11 2020-04-17 中国地质大学(武汉) 一种超疏水和光催化油漆及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553359A (zh) * 2013-10-23 2014-02-05 傅逸承 以烟灰为模板廉价构建透明超疏水自清洁纳米涂层的方法
CN111019476A (zh) * 2019-12-11 2020-04-17 中国地质大学(武汉) 一种超疏水和光催化油漆及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114656741A (zh) * 2022-02-09 2022-06-24 宁波大学 一种湿敏复合材料及其制备方法和应用
CN114656741B (zh) * 2022-02-09 2023-05-16 宁波大学 一种湿敏复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
Adachi et al. Photocatalytic, superhydrophilic, self-cleaning TiO2 coating on cheap, light-weight, flexible polycarbonate substrates
Zhong et al. TiO2/silane coupling agent composed of two layers structure: A super-hydrophilic self-cleaning coating applied in PV panels
Zheng et al. TiO2 (R)/VO2 (M)/TiO2 (A) multilayer film as smart window: Combination of energy-saving, antifogging and self-cleaning functions
Černigoj et al. Photocatalytically active TiO2 thin films produced by surfactant-assisted sol–gel processing
Jiang et al. Facile fabrication of robust fluorine-free self-cleaning cotton textiles with superhydrophobicity, photocatalytic activity, and UV durability
Zhang et al. The effect of SiO2 on TiO2-SiO2 composite film for self-cleaning application
Tao et al. Fabrication of robust, self-cleaning, broadband TiO2SiO2 double-layer antireflective coatings with closed-pore structure through a surface sol-gel process
Ren et al. Robust TiO2 nanorods-SiO2 core-shell coating with high-performance self-cleaning properties under visible light
JP5511159B2 (ja) 光触媒膜、光触媒膜の製造方法、物品および親水化方法
Xu et al. Fabrication of mechanically robust films with high transmittance and durable superhydrophilicity by precursor-derived one-step growth and post-treatment
JP2009120835A (ja) 透明基材の可視光及び太陽光の透光率が低下しない透明アクアベースナノゾル・ゲルコーティング剤組成物およびそのコーティング方法
CN113663896A (zh) 透明的超疏水和光催化二氧化钛涂层的制备方法
Jahromi et al. Effects of pH and polyethylene glycol on surface morphology of TiO2 thin film
Anderson et al. A preferential precursor for photocatalytically active titanium dioxide thin films: Titanium bis-ammonium lactato dihydroxide as an alternative to titanium tetra iso-propoxide
Seifi et al. Enhanced photocatalytic activity of highly transparent superhydrophilic doped TiO2 thin films for improving the self-cleaning property of solar panel covers
Khajeh Aminian et al. Hydrophilic and photocatalytic properties of TiO2/SiO2 nano-layers in dry weather
CN113061357B (zh) 一种增透疏水涂层及其制备方法
EP2593220A2 (en) A doped material
CN111440468A (zh) 纳米超疏水涂料添加剂及其制备方法和应用
Kim et al. Self-cleaning performance of sol–gel-derived TiO 2/SiO 2 double-layer thin films
Jiang et al. Fabrication of a superamphiphobic coating by a simple and flexible method
Medda et al. Photocatalytic evaluation of anatase tio2 coating on ceramic tiles by raman spectroscopy
Liau et al. Effect of poly (ethylene glycol) additives on the photocatalytic activity of TiO2 films prepared by sol–gel processing and low temperature treatments
Carneiro et al. Surface properties of doped and undoped TiO2 thin films deposited by magnetron sputtering
Sahnesarayi et al. Influence of Multiple Coating and Heat Treatment Cycles on the Perfor-mance of a Nano-TiO 2 Coating in the Protection of 316L Stainless Steel Against Corrosion under UV Illumination and Dark Conditions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211119