CN113652635A - 一种Zr-4包壳表面CrN-Cr-CrN复合防护涂层的制备方法 - Google Patents

一种Zr-4包壳表面CrN-Cr-CrN复合防护涂层的制备方法 Download PDF

Info

Publication number
CN113652635A
CN113652635A CN202110871765.2A CN202110871765A CN113652635A CN 113652635 A CN113652635 A CN 113652635A CN 202110871765 A CN202110871765 A CN 202110871765A CN 113652635 A CN113652635 A CN 113652635A
Authority
CN
China
Prior art keywords
crn
coating
substrate
sputtering
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110871765.2A
Other languages
English (en)
Inventor
卢松涛
李召峰
李杨
洪杨
吴晓宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Chongqing Research Institute of Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202110871765.2A priority Critical patent/CN113652635A/zh
Publication of CN113652635A publication Critical patent/CN113652635A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0073Reactive sputtering by exposing the substrates to reactive gases intermittently
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0094Reactive sputtering in transition mode
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种Zr‑4包壳表面CrN‑Cr‑CrN复合防护涂层的制备方法,属于功能材料制备技术领域。本发明解决了现有种Zr‑4包壳涂层与基底的结合力和高温抗氧化性能无法达到理想状态的技术问题。本发明利用梯度反应磁控溅射技术,在Zr‑4基底上依次制备CrN‑Cr‑CrN复合防护涂层,使得涂层与基底有更好的结合力的同时,保证较好的高温抗氧化性能,达到涂层包壳的应用要求。

Description

一种Zr-4包壳表面CrN-Cr-CrN复合防护涂层的制备方法
技术领域
本发明涉及一种Zr-4包壳表面CrN-Cr-CrN复合防护涂层的制备方法,属于功能材料制备技术领域。
背景技术
核能是一种高效、清洁且可持续的能源,在世界能源结构上占有重要地位。核力发电作为高效清洁的能源发电方式被研究探讨。锆合金由于其低的中子吸收截面、良好的耐腐蚀性、良好的综合力学性能、易于加工、好的导热性及的线膨胀系数被作为核反应堆的包壳材料。但是在事故工况下,锆合金会和高温水蒸气反应生成氢气发生爆炸(Zr+2H2O=ZrO2+2H2↑)。为了提高核反应堆在的安全性,开发一种新型耐高温、抗氧化的包壳材料。
目前作为包壳涂层材料进行研究较多的有三类,分别是陶瓷涂层,金属涂层和复合涂层,其中金属Cr的熔点较高,热膨胀系数与Zr接近,并且在高温时能够生成一层致密的Cr2O3保护膜,使得其抗氧化性能也很好。因此金属Cr作为锆包壳防护涂层时在正常工况和模拟事故工况下表现良好,但耐磨性较差,因此抗微动磨损能力需要进一步提高。
硬质氮化物涂层因其硬度大、耐磨性好、熔点高、化学稳定性好、成本低等优点,被广泛应用于刀具、发动机零部件等机械部件的保护。其中,优异的力学性能和抗氧化性能是CrN涂层广泛应用于Zr合金包壳涂层材料的重要依据。但现有CrN陶瓷涂层存在与锆合金基底结合力差,且自身较脆、发生微小形变就会产生裂纹导致包壳失效的问题。
因此,提供一种具有较强的抗氧化能力、耐磨性的涂层应用于Zr合金包壳是十分必要的。
发明内容
本发明为了解决现有上述技术问题,提供一种Zr-4包壳表面CrN-Cr-CrN复合防护涂层的制备方法,在保证涂层具有较好的高温抗氧化能力、耐磨性能的前提下,提高复合涂层与锆包壳的结合力。
本发明的技术方案:
一种Zr-4包壳表面CrN-Cr-CrN复合防护涂层的制备方法,该方法包括以下步骤:
该方法包括以下步骤:
步骤1,基底前处理:对基底表面和侧面的氧化层进行打磨,然后进行超声清洗和等离子体表面处理;
步骤2,制备涂层:将经过前处理后的基底进行磁控溅射处理,在基底的两个表面分别重复交替镀上Cr和CrN涂层,并保证最外层和最内层均为CrN涂层。
进一步限定,步骤1中打磨的操作过程为:将线切割后的样品依次使用100目、400目、1200目和2000目的砂纸进行打磨。
进一步限定,步骤1中超声清洗的操作过程为:依次使用丙酮、无水乙醇和去离子水反复超声清洗3次,最后在70℃条件下干燥1h。
进一步限定,步骤1中等离子体表面处理的操作过程为:将经过超声清洗后的样品放入等离子体机的腔体内,抽真空15min后,通入氩气并维持气压为1.0-1.5pa,开启电源,利用通入氩气所产生的等离子体对样品的两侧表面分别进行刻蚀清洗。
更进一步限定,刻蚀清洗条件为偏压-200V,气氛为氩气,腔体内气压1Pa,时间15min。
进一步限定,步骤2制备涂层的具体操作过程为:
(1)制备CrN涂层:
磁控溅射处理条件为:基底与Cr靶的间距为10cm~30cm,基底温度为100℃-200℃,工作气压为5×10-4Pa~1×10-3Pa,磁控溅射功率为100W~250W,溅射气体为Ar和N2的混合气,气体流速为10sccm~30sccm,溅射气压为1.0Pa~3Pa,样品台转速为10r/min~50r/min,沉积时间为1h~5h,磁控溅射过程中Ar在混合气中占比依次为100%、90%、80%和70%;
(2)制备Cr涂层:
磁控溅射处理条件为:基底与Cr靶的间距为10cm~30cm,基底温度为100℃-200℃,工作气压为5×10-4Pa~1×10-3Pa,磁控溅射功率为100W~300W,溅射气体为Ar,气体流速为10sccm~30sccm,溅射气压为1.0Pa~3Pa,样品台转速为10r/min~50r/min,沉积时间为1h~5h;
(3)依次交替重复步骤(1)和步骤(2)直至所需涂层厚度,并且保证最外层为CrN涂层。
更进一步限定,步骤2制备涂层的具体操作过程为:
(1)制备CrN涂层:
磁控溅射处理条件为:基底与Cr靶的间距为10cm,基底温度为200℃,工作气压为5×10-4Pa,磁控溅射功率为250W,溅射气体为Ar和N2的混合气,气体流速为20sccm,溅射气压为1.0Pa,样品台转速为20r/min,沉积时间为2h;
从磁控溅射开始,0min~30min,Ar在混合气中占比为100%;30min~60min,Ar在混合气中占比为90%;60min~90min,Ar在混合气中占比为80%;90min~120min,Ar在混合气中占比为70%;
(2)制备Cr涂层:
磁控溅射处理条件为:基底与Cr靶的间距为10cm,基底温度为200℃,工作气压为5×10-4Pa,磁控溅射功率为250W,溅射气体为Ar,气体流速为20sccm,溅射气压为1.0Pa,样品台转速为20r/min,沉积时间为2h;
(3)重复步骤(1),保证最外层为CrN涂层,获得CrN-Cr-CrN复合防护涂层。
更进一步限定,Cr靶纯度为99.95%,尺寸为
Figure BDA0003189074110000031
进一步限定,溅射气Ar纯度为99.99%,溅射气N2纯度为99.99%。
进一步限定,基底为Zr-4合金板材。
本发明具有以下有益效果:本发明利用磁控溅射技术,首先在Zr-4基底上,通过逐渐增加溅射舱内的N2含量,先沉积亚化学计量比的CrxNy,此时涂层内既存在金属键又存在离子键,有效的增强了结合力,最后在溅射舱内N2的含量达到一定程度时,溅射出的Cr靶材粒子会全部生成CrN,实现CrN涂层的沉积,且其中溅射开始初期生成的Cr作为中间过渡层可以在CrN和基底之间产生良好的桥接作用,能够有效提高Zr-4表面沉积的复合膜层与基底间结合强度;然后在最内层和最外层CrN涂层中间设置Cr沉积工艺可使Cr过渡层表面形成密集尖锐的突起,不仅能够提供更大的与CrN物理粘附的面积,也有利于两者的法向锁扣。此外,由于在CrN膜沉积中易产生内应力,势必导致在沉积界面处产生应力集中,而Cr的弹性模量较小且Cr过渡层较薄,可以通过应变使界面应力得到一定的驰豫,因此Cr过渡层可以提高整个膜层的结合强度。此外,本发明采用Cr靶材和溅射气N2制备CrN涂层,使得在溅射两种涂层(Cr和CrN)过程中无需更换靶材,制备方式简单,适合商业化应用。
附图说明
图1为实施例1获得涂层的结合力测试图;
图2为Zr-4基底合金片和实施例1获得涂层高温氧化实验后增重对比柱状图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
下述实施例中所使用的实验方法如无特殊说明均为常规方法。所用材料、试剂、方法和仪器,未经特殊说明,均为本领域常规材料、试剂、方法和仪器,本领域技术人员均可通过商业渠道获得。
实施例1:
一、基底前处理
(1)板状Zr-4合金经线切割加工成尺寸为20×20×2mm片状基体试样,依次使用100目、400目、1200目和2000目的砂纸进行打磨,并将边和角磨成圆角。然后依次使用用丙酮、无水乙醇和去离子水反复超声清洗3次。最后将清洗完的样片放在温度为70℃的鼓风干燥箱中干燥1h。
(2)将超声清洗后的样片放入等离子体机中,通过机械泵抽真空15min后,通入氩气并维持气压至1.0pa,开启电源,利用通入氩气所产生的等离子体为样片刻蚀清洗,清洗后翻面,同样的工艺为另一面刻蚀清洗。刻蚀清洗条件为偏压-200V,气氛为氩气,腔体内气压1Pa,时间15min。
二、复合涂层的制备
(1)制备内层CrN涂层
打开机械泵、分子泵,使炉腔内真空度达到5×10-4Pa;将前处理后的样片放入磁控溅射的沉积室中,准备溅射。
溅射的参数如下:磁控溅射的靶材为Cr靶,溅射气为由Ar和N2组成的混合气,基底温度为200℃,基底与铬靶的间距为10cm,磁控溅射功率为250W,气体总流速为20sccm,溅射气压为1.0Pa,样品台转速为20r/min,沉积时间为2h。
在溅射开始,0min~30min,Ar在混合气中占比为100%;30min~60min,Ar在混合气中占比为90%;60min~90min,Ar在混合气中占比为80%;90min~120min,Ar在混合气中占比为70%。
(2)制备过度Cr涂层
溅射的参数如下:磁控溅射的靶材为Cr靶,溅射气为Ar,基底温度为200℃,基底与铬靶的间距为10cm,磁控溅射功率为250W,气体总流速为20sccm,溅射气压为1.0Pa,样品台转速为20r/min,沉积时间为2h。
(3)制备外层CrN涂层
溅射的参数如下:磁控溅射的靶材为Cr靶,溅射气为由Ar和N2组成的混合气,基底温度为200℃,基底与铬靶的间距为10cm,磁控溅射功率为250W,气体总流速为20sccm,溅射气压为1.0Pa,样品台转速为20r/min,沉积时间为2h。
在溅射开始,0min~30min,Ar在混合气中占比为100%;30min~60min,Ar在混合气中占比为90%;60min~90min,Ar在混合气中占比为80%;90min~120min,Ar在混合气中占比为70%。
效果例:
(1)涂层结合力测试:
采用划格法来测定,将样片表面用刀具水平和垂直方向划出格子,然后用3M胶带粘附后撕开,看涂层剥落情况,实施例1中涂层结合力测试照片如图1所示,由图1可知,涂层结合力很好,能达到ASTM的分级方法的5B标准。
(2)高温氧化性测试:
高温氧化测试利用管式炉模拟事故工况的环境。将待测试样片称量质量后放入室温的管式炉中,管式炉参数设置为:60min内升温至1000℃,在1000℃下保温30min,最后自然降温。将降温后的样片进行第二次称量,两次称量的质量差为氧化后增加的质量,用来评价涂层的抗氧化能力,测试结果如图2所示,由图2可知,无涂层的样品增重最多,有涂层的样品保护性能最佳,对比样品也说明边缘渗氧的情况也得到了改善。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种Zr-4包壳表面CrN-Cr-CrN复合防护涂层的制备方法,其特征在于,该方法包括以下步骤:
步骤1,基底前处理:对基底表面和侧面的氧化层进行打磨,然后进行超声清洗和等离子体表面处理;
步骤2,制备涂层:将经过前处理后的基底进行磁控溅射处理,在基底的两个表面分别重复交替镀上Cr和CrN涂层,并保证最外层和最内层均为CrN涂层。
2.根据权利要求1所述的一种Zr-4包壳表面CrN-Cr-CrN复合防护涂层的制备方法,其特征在于,所述的步骤1中打磨的操作过程为:将线切割后的样品依次使用100目、400目、1200目和2000目的砂纸进行打磨。
3.根据权利要求1所述的一种Zr-4包壳表面CrN-Cr-CrN复合防护涂层的制备方法,其特征在于,所述的步骤1中超声清洗的操作过程为:依次使用丙酮、无水乙醇和去离子水反复超声清洗3次,最后在70℃条件下干燥1h。
4.根据权利要求1所述的一种Zr-4包壳表面CrN-Cr-CrN复合防护涂层的制备方法,其特征在于,所述的步骤1中等离子体表面处理的操作过程为:将经过超声清洗后的样品放入等离子体机的腔体内,抽真空15min后,通入氩气并维持气压为1.0-1.5pa,开启电源,利用通入氩气所产生的等离子体对样品的两侧表面分别进行刻蚀清洗。
5.根据权利要求4所述的一种Zr-4包壳表面CrN-Cr-CrN复合防护涂层的制备方法,其特征在于,所述的刻蚀清洗条件为偏压-200V,气氛为氩气,腔体内气压1Pa,时间15min。
6.根据权利要求1所述的一种Zr-4包壳表面CrN-Cr-CrN复合防护涂层的制备方法,其特征在于,所述的步骤2制备涂层的具体操作过程为:
(1)制备CrN涂层:
磁控溅射处理条件为:基底与Cr靶的间距为10cm~30cm,基底温度为100℃-200℃,工作气压为5×10-4Pa~1×10-3Pa,磁控溅射功率为100W~250W,溅射气体为Ar和N2的混合气,气体流速为10sccm~30sccm,溅射气压为1.0Pa~3Pa,样品台转速为10r/min~50r/min,沉积时间为1h~5h,磁控溅射过程中Ar在混合气中占比依次为100%、90%、80%和70%;
(2)制备Cr涂层:
磁控溅射处理条件为:基底与Cr靶的间距为10cm~30cm,基底温度为100℃-200℃,工作气压为5×10-4Pa~1×10-3Pa,磁控溅射功率为100W~300W,溅射气体为Ar,气体流速为10sccm~30sccm,溅射气压为1.0Pa~3Pa,样品台转速为10r/min~50r/min,沉积时间为1h~5h;
(3)依次交替重复步骤(1)和步骤(2)直至所需涂层厚度,并且保证最外层为CrN涂层。
7.根据权利要求6所述的一种Zr-4包壳表面CrN-Cr-CrN复合防护涂层的制备方法,其特征在于,所述的步骤2制备涂层的具体操作过程为:
(1)制备CrN涂层:
磁控溅射处理条件为:基底与Cr靶的间距为10cm,基底温度为200℃,工作气压为5×10-4Pa,磁控溅射功率为250W,溅射气体为Ar和N2的混合气,气体流速为20sccm,溅射气压为1.0Pa,样品台转速为20r/min,沉积时间为2h;
从磁控溅射开始,0min~30min,Ar在混合气中占比为100%;30min~60min,Ar在混合气中占比为90%;60min~90min,Ar在混合气中占比为80%;90min~120min,Ar在混合气中占比为70%;
(2)制备Cr涂层:
磁控溅射处理条件为:基底与Cr靶的间距为10cm,基底温度为200℃,工作气压为5×10-4Pa,磁控溅射功率为250W,溅射气体为Ar,气体流速为20sccm,溅射气压为1.0Pa,样品台转速为20r/min,沉积时间为2h;
(3)重复步骤(1),保证最外层为CrN涂层,获得CrN-Cr-CrN复合防护涂层。
8.根据权利要求8所述的一种Zr-4包壳表面CrN-Cr-CrN复合防护涂层的制备方法,其特征在于,所述的Cr靶纯度为99.95%,尺寸为
Figure FDA0003189074100000021
9.根据权利要求8所述的一种Zr-4包壳表面CrN-Cr-CrN复合防护涂层的制备方法,其特征在于,所述的溅射气Ar纯度为99.99%,溅射气N2纯度为99.99%。
10.根据权利要求1所述的一种Zr-4包壳表面CrN-Cr-CrN复合防护涂层的制备方法,其特征在于,所述的基底为Zr-4合金板材。
CN202110871765.2A 2021-07-30 2021-07-30 一种Zr-4包壳表面CrN-Cr-CrN复合防护涂层的制备方法 Pending CN113652635A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110871765.2A CN113652635A (zh) 2021-07-30 2021-07-30 一种Zr-4包壳表面CrN-Cr-CrN复合防护涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110871765.2A CN113652635A (zh) 2021-07-30 2021-07-30 一种Zr-4包壳表面CrN-Cr-CrN复合防护涂层的制备方法

Publications (1)

Publication Number Publication Date
CN113652635A true CN113652635A (zh) 2021-11-16

Family

ID=78490209

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110871765.2A Pending CN113652635A (zh) 2021-07-30 2021-07-30 一种Zr-4包壳表面CrN-Cr-CrN复合防护涂层的制备方法

Country Status (1)

Country Link
CN (1) CN113652635A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114293162A (zh) * 2021-12-15 2022-04-08 先导薄膜材料(广东)有限公司 一种有效去除tec用薄膜氧化层的方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829208B2 (en) * 2007-11-29 2010-11-09 Seagate Technology Llc Chromium nitride layer for magnetic recording medium
CN109972098A (zh) * 2019-05-05 2019-07-05 大连理工大学 一种包壳材料表面CrN厚涂层的制备方法
CN113088884A (zh) * 2021-03-09 2021-07-09 哈尔滨工业大学 一种在锆包壳上制备具有高温抗氧化性能的铬涂层的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829208B2 (en) * 2007-11-29 2010-11-09 Seagate Technology Llc Chromium nitride layer for magnetic recording medium
CN109972098A (zh) * 2019-05-05 2019-07-05 大连理工大学 一种包壳材料表面CrN厚涂层的制备方法
CN113088884A (zh) * 2021-03-09 2021-07-09 哈尔滨工业大学 一种在锆包壳上制备具有高温抗氧化性能的铬涂层的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114293162A (zh) * 2021-12-15 2022-04-08 先导薄膜材料(广东)有限公司 一种有效去除tec用薄膜氧化层的方法和应用

Similar Documents

Publication Publication Date Title
CN107620033B (zh) 一种高纯强致密max相涂层的制备方法
CN102400099B (zh) 核裂变堆燃料包壳表面CrAlSiN梯度涂层制备工艺
CN113088884A (zh) 一种在锆包壳上制备具有高温抗氧化性能的铬涂层的方法
CN104766980B (zh) 一种酸性介质燃料电池双极板防护涂层及其制备方法
CN108796454A (zh) 一种核反应堆用锆包壳表面金属涂层pvd制备工艺
CN104561891B (zh) 双成分梯度阻氢渗透涂层及其制备方法
CN111334794B (zh) 一种在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜及方法
CN109207953A (zh) 抗高温氧化ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层制备工艺
CN113652635A (zh) 一种Zr-4包壳表面CrN-Cr-CrN复合防护涂层的制备方法
CN113684460A (zh) 一种耐事故包壳Cr/CrN复合涂层的制备方法
CN108624882B (zh) 锆合金表面氧化锆/氮化铬复合膜及其制备方法与应用
CN110499494A (zh) 一种以Zr为基底的Cr/Al单层膜及其制备方法
CN107012424B (zh) 一种TiZrB2硬质涂层及其制备方法和应用
US8367162B2 (en) Pretreatment method for improving antioxidation of steel T91/P91 in high temperature water vapor
CN110699642B (zh) 一种高熵合金基高温太阳能吸收涂层及其制备方法
CN115305443B (zh) 一种锆基非晶多组元氧化物涂层的制备方法及应用
CN107881469B (zh) 类金刚石复合涂层及其制备方法与用途以及涂层工具
CN114855123A (zh) 一种在锆包壳表面制备铬涂层的方法及包含铬涂层的锆包壳
CN113106394B (zh) 一种耐高温液态铅铋合金腐蚀的复合涂层及其制备方法
CN109913823B (zh) 一种轻水堆锆管涂层
CN111029606B (zh) 用于燃料电池双极板的金属硼化物基复合涂层及其制备方法
CN114774857A (zh) 一种TiAlCrN微纳米涂层及其制备方法
Heuer et al. SEM and EBSD Characterization of Cold-Sprayed Chromium Coatings on Zircaloy-4
CN113430488B (zh) 一种核反应堆燃料包壳纳米复合涂层及其制备方法
KR101693771B1 (ko) 핵융합 구조재료의 수소동위원소 투과방지막 제조방법 및 그 제조방법에 따라 제조된 수소동위원소 투과방지막

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220111

Address after: 150001 No. 92 West straight street, Nangang District, Heilongjiang, Harbin

Applicant after: HARBIN INSTITUTE OF TECHNOLOGY

Applicant after: Chongqing Research Institute of Harbin Institute of Technology

Address before: 150001 No. 92 West straight street, Harbin, Heilongjiang

Applicant before: HARBIN INSTITUTE OF TECHNOLOGY

TA01 Transfer of patent application right