CN113651979A - 一种具有自粘附性、温度耐受性、导电性及储能性的水凝胶电极及其制备方法 - Google Patents

一种具有自粘附性、温度耐受性、导电性及储能性的水凝胶电极及其制备方法 Download PDF

Info

Publication number
CN113651979A
CN113651979A CN202111154911.6A CN202111154911A CN113651979A CN 113651979 A CN113651979 A CN 113651979A CN 202111154911 A CN202111154911 A CN 202111154911A CN 113651979 A CN113651979 A CN 113651979A
Authority
CN
China
Prior art keywords
preparation
solution
dopamine
hydrogel
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111154911.6A
Other languages
English (en)
Other versions
CN113651979B (zh
Inventor
姜丽丽
鲁雄
李友建
甘东林
谢超鸣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xihua University
Original Assignee
Xihua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xihua University filed Critical Xihua University
Priority to CN202111154911.6A priority Critical patent/CN113651979B/zh
Publication of CN113651979A publication Critical patent/CN113651979A/zh
Application granted granted Critical
Publication of CN113651979B publication Critical patent/CN113651979B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F122/00Homopolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F122/36Amides or imides
    • C08F122/38Amides
    • C08F122/385Monomers containing two or more (meth)acrylamide groups, e.g. N,N'-methylenebisacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2435/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2487/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种具有自粘附性、温度耐受性、导电性及储能性的水凝胶电极及其制备方法。其制备方法如下:(1)制备多巴胺修饰的石墨烯填料;(2)制备双金属氧化物及金属氮化物的复合物;(3)制备MOFs;(4)制备水凝胶电极。本发明制备得到的复合储能材料具有良好的自粘附性能、温度耐受性、导电性以及储能性,能够应用于电极制备、冷热刺激或电刺激医疗保健领域,可适应各种极端工作环境。

Description

一种具有自粘附性、温度耐受性、导电性及储能性的水凝胶电 极及其制备方法
技术领域
本发明属于电极材料技术领域,具体涉及一种具有自粘附性、温度耐受性、导电性及储能性的水凝胶电极及其制备方法。
背景技术
近年来,先进材料/电子与制造技术的发展加速了生物电子设备的发展,生物电子设备迅速扩展并被广泛用于医疗监测和临床治疗。研究人员证实,生物电子设备具有重要的临床应用,如神经元和心脏刺激,可有效缓解癫痫、阿尔茨海默病、帕金森病、抑郁症等多种与异常神经行为以及脑血管疾病有关的医学问题的症状和感染。电刺激在临床医学中的积极作用激发了生物电子储能/供应组合装置的发展,目前广泛应用于临床试验、辅助治疗技术和人体保健设备。
然而,由于不断出现的人机界面中生物组织和电子设备之间的内在差异,例如人造设备与人体生理学之间的机械性能和电荷载流子不匹配,开发下一代生物电子学仍然存在一些挑战。人体由各种柔软和高含水量的组织和器官组成,相比之下,目前使用的大多数生物电子设备都依赖于刚性和干燥的电子元件。具体而言,电子在传统的刚性和干电子元件中充当电荷传输的载体,而在生物系统中,相同的过程依赖于离子。此外,生物组织能够承受高动态和机械应力;例如,在传统姿势的锻炼过程中,皮肤、肌肉和周围神经可能会承受30%的拉伸应变和位移。心脏和血管在心血管活动过程中会经历持续的周期性机械变形。因此,为了有效适应人体生理和肌肉骨骼环境,下一代智能、灵活、可拉伸、可植入和便携式电子产品(如电子皮肤中的软触觉传感器、运动传感器、神经传感器、电生理传感器和反馈刺激器)需要进一步研究。
为了确保这种先进电子设备的稳定性能和耐用性,需要研究和开发新型储能设备。超级电容器越来越多地用于生物电子应用,几十年来一直作为先进的储能设备进行研究。为了满足上述外部和体内便携式电子设备的特定能量需求,可以拉伸、压缩、弯曲、扭曲和变形为任意形状的功能超级电容器提供了一种有前途的替代方案。因此,需要在超级电容器中用作电极和电解质的先进功能材料来加速功能化超级电容器的研究和制造。同时,为了适应便携式器件所处的不同外界环境,温度耐受性也对电极材料和器件提出了更多的要求。
发明内容
针对现有技术中的上述不足,本发明提供一种具有自粘附性、温度耐受性、导电性及储能性的水凝胶电极及其制备方法,制备得到的水凝胶电极具有良好的自粘附性能、温度耐受性、导电性以及储能性。
为实现上述目的,本发明解决其技术问题所采用的技术方案是:
一种具有自粘附性、温度耐受性、导电性及储能性的水凝胶电极的制备方法,包括以下步骤:
(1)制备多巴胺修饰的石墨烯填料;
(2)制备双金属氧化物及金属氮化物的复合物
a、将具有赝电容性能的硝酸盐、镍酸盐、NH4F以及尿素混合溶解,搅拌 0.5~2h;
b、将氧化石墨烯包裹的镍基底置于步骤a所得溶液中浸泡0.5~1h,然后于 120~150℃水热反应15~20h后,冷却至室温,清洗干燥后得到双金属氢氧化物;
c、于400~600℃热处理双金属氢氧化物2~5h,然后在氨气氛围中,于 400~500℃继续热处理2~3h,得到双金属氧化物及金属氮化物的复合物;
(3)制备MOFs
a、将至少一种具有赝电容性能的硝酸盐溶解后,磁力搅拌10~30min,制得溶液A;
b、将对苯二甲酸和聚乙烯吡咯烷酮混合后溶解,得溶液B,再加入溶液A,搅拌混合10~20min;
c、将步骤b所得溶液置于100~150℃水热反应20~25h后,冷却至室温,清洗真空干燥后,制得MOFs;
(4)制备水凝胶电极
采用多巴胺修饰的石墨烯、水凝胶单体,以及MOFs或双金属氧化物及金属氮化物的复合物为原料,以自由基聚合的方式制备得到该水凝胶电极。
进一步地,步骤(1)中多巴胺修饰石墨烯的具体过程为:
调节浓度为10mg/mL的石墨烯溶液呈碱性,再加入多巴胺,于25℃搅拌 3~5h,反应结束后用去离子水洗涤至中性即可;石墨烯溶液中多巴胺的终浓度为4mg/mL。
进一步地,步骤(2)中赝电容性能的硝酸盐、镍酸盐、NH4F以及尿素的摩尔比为1~2:1~2:1~3:3~5。
进一步地,镍酸盐为Ni(NO3)2·6H2O。
进一步地,步骤(2)和步骤(3)中具有赝电容性能的硝酸盐为Co(NO3)2·6H2O、 Fe(NO3)3、Mo(NO3)3·5H2O或Mn(NO3)2·4H2O。
进一步地,步骤(2)中步骤c中首次热处理的温度为400℃,第二次热处理的温度为430℃。
进一步地,溶液A和溶液B的体积比为1:1。
进一步地,溶液A中具有赝电容性能的硝酸盐的浓度为10~15mmol/mL;溶液B中苯二甲酸的浓度为4~6mg/mL;溶液B中聚乙烯吡咯烷酮的浓度为0.05~0.1g/mL。
进一步地,MOFs为单金属MOF或双金属MOFs。
进一步地,双金属MOFs的制备过程为:
a、将9.73mmol Ni(NO3)26H2O和4.86mmol Ni(NO3)26H2O加入到40mL的 DMF中,强力磁搅拌10min,制备得到溶液A;然后将0.24g对苯二甲酸和4gPVP 溶解于40mL DMF中,制得溶液B,最后将溶液A和溶液B混合搅拌10min;
b、水热反应:
将步骤a所得溶液转移到内衬聚四氟乙烯的不锈钢反应釜中进行水热反应, 100℃反应24h,反应结束后,冷却至室温,产物经过甲醇和DMF清洗并真空干燥24h,得到Co-Ni-MOF。
进一步地,多巴胺修饰的石墨烯的用量为水凝胶单体重量的0.1~1%;MOFs 或双金属氧化物及金属氮化物的复合物与多巴胺修饰的石墨烯的重量比为 1:1~1:5。
进一步地,步骤(4)中水凝胶单体包括但不限于PAM、PAA、PVA或HEA。
进一步地,步骤(4)中制备水凝胶电极的具体过程为:
将PAM、N-N亚甲基丙烯酰胺、多巴胺修饰的石墨烯、MOFs混合后加水以及油性溶剂,于常温搅拌10~20min,然后加入过硫酸铵,再继续搅拌,待高分子聚合后,即可制备得到的PAM多功能水凝胶电极。
进一步地,步骤(4)中制备水凝胶电极的具体过程为:
将PVA、多巴胺修饰的石墨烯、MOFs混合后加水以及油性溶剂,于80~100℃搅拌30~50min,然后常温静置10~12h,即可制备得到的PVA多功能水凝胶电极。
进一步地,油性溶剂为甘油、乙二醇、丙二醇或丙三醇。
进一步地,制备水凝胶电极时,还包括在步骤(4)中加入水和甘油,然后进行自由基聚合,并能通过调节水和甘油的用量比例来调节水凝胶电极的温度耐受性能。
一种多功能水凝胶电极,该电极由上述方法制备得到。
本发明的有益效果:
1、本申请基于自粘附酚醌基化学机理,利用金属化合物或MOFs中金属元素的变价保持多巴胺中酚羟基和醌基间氧化还原反应的平衡,实现水粘胶长期稳定的自粘附性,可粘附于人体组织或其他材料表面,并与其保持适度的粘合,不破坏人体组织或其他材料,保证其功能的稳定性。
2、本发明通过利用石墨烯实现水凝胶的导电性,并利用石墨烯的储能机理进一步实现水粘胶电极材料的储能性能,同时金属化合物及MOFs都具有较强的赝电容性能,可进一步增强水凝胶电极材料的储能性能,并进一步应用于储能器件。同时,双金属氧化物或MOFs结构通过与多巴胺修饰的石墨烯复合,实现其稳定均匀分散在水凝胶中,实现水凝胶电学性能的提升。
3、具有复杂结构的水凝胶包含聚合物链的交联网络,间隙空间充满溶剂溶液,是可穿戴和可植入设备中电极/电解质的最有希望的候选者。水凝胶同时可以通过填料实现其多功能化,例如导电性、长期粘附性等。因此,通过使用水凝胶作为组件,可以进一步提高电子设备的组织亲和力,弥合电子组件和生物系统之间的差距。
4、本发明通过选择不同的高分子单体、调节自由基聚合反应过程中水和油性溶剂的比例,除使其具有储冷及储热能力外,还实现该水凝胶电极材料的温度耐受性,可进一步应用于冷热刺激或电刺激医疗保健领域,也增加储能器件的温度耐受性,以适应各种极端工作环境。
附图说明
图1为本发明实施例1~4制备得到的水凝胶电极储能性能检测结果(其中, CHO1为对照组,CHO2,CHO3,CHO4,CHO5样品中,水与油性溶剂的体积比例分别为11:1,10:1,9:1,4:1);
图2为本发明实施例1制备得到的水凝胶电极粘附性能检测结果。
图3为本发明实例1、3、4制备得到的水凝胶电极的储能性测试曲线。
具体实施方式
下面对本发明的具体实施方式进行描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。
实施例1
一种具有自粘附性、温度耐受性、导电性及储能性的水凝胶电极的制备方法,其具体过程如下:
(1)多巴胺修饰石墨烯填料的制备
称取3.75g NaOH于250mL石墨烯(10mg/mL)中搅拌溶解,然后加入1g多巴胺恒温25℃搅拌3h,反应结束后用去离子水离心洗涤至中性得到PGO。
(2)制备单金属Co-MOF
a)将14.58mmol Co(NO3)26H2O加入到40mL的N,N-二甲基酰胺(DMF)中,强力磁搅拌10min制得溶液A;
将0.24g对苯二甲酸和4g聚乙烯吡咯烷酮(PVP)溶解于40mL DMF中,制得溶液B,最后将溶液A和溶液B混合搅拌10min为溶液C。
b)水热反应:
将溶液C转移到内衬聚四氟乙烯的不锈钢反应釜中进行水热反应,100℃反应24h,反应结束后,冷却至室温,产物经过甲醇和DMF清洗并真空干燥24h,得到Co-MOF。
(3)制备水凝胶电极
将2.6g聚丙烯酰胺、0.005g N-N亚甲基丙烯酰胺、10mg多巴胺修饰的石墨烯、30mg单金属Co-MOF混合,加入10mL去离子水以及1mL乙二醇,在常温下搅拌10min后加入过硫酸铵0.15g,再次搅拌,待高分子聚合后,得到PAM 多功能水凝胶复合储能电极材料。
实施例2
一种具有自粘附性、温度耐受性、导电性及储能性的水凝胶电极的制备方法,其具体过程如下:
(1)多巴胺修饰石墨烯填料的制备
称取3.75g NaOH于250mL石墨烯(10mg/mL)中搅拌溶解,然后加入1g多巴胺恒温25℃搅拌3h,反应结束后用去离子水离心洗涤至中性得到PGO。
(2)制备双金属氧化物及金属氮化物的复合物
a)将1mmol Co(NO3)2·6H2O(或Fe(NO3)3、Mo(NO3)3.5H2O、Mn(NO3)2·4H2O), 1mmolNi(NO3)2·6H2O、3mmol NH4F,5mmol尿素以及镍酸盐溶解于35mL 去离子水中,搅拌0.5h,随后将氧化石墨烯包裹的镍泡沫在溶液中浸泡0.5h。
b)水热反应
把上述溶液及氧化石墨烯包裹的镍泡沫放入内衬聚四氟乙烯的不锈钢反应釜中进行水热反应,120℃反应16h,反应结束后,冷却至室温,产物经过去离子水清洗并干燥,得到在氧化石墨烯包裹的镍泡沫上生长的镍钴双金属氢氧化物。
c)两步热处理过程
首先将上述样品在空气状态下400℃下热处理2h,得到双金属氧化物。随后,在NH3气气氛下,430℃下热处理2h,得到双金属氧化物及金属氮化物的复合物。
(3)制备水凝胶电极
将2.6g聚丙烯酰胺、0.005g N-N亚甲基丙烯酰胺、10mg多巴胺修饰的石墨烯、以及0.0125g双金属氧化物及金属氮化物的复合物混合,加入27mL去离子水和3mL丙二醇,在常温下搅拌10min后加入过硫酸铵0.15g,再次搅拌,待高分子聚合后,得到PAM多功能水凝胶复合储能电极材料。
实施例3
一种具有自粘附性、温度耐受性、导电性及储能性的水凝胶电极的制备方法,其具体过程如下:
(1)多巴胺修饰石墨烯填料的制备
称取3.75g NaOH于250mL石墨烯(10mg/mL)中搅拌溶解,然后加入1g多巴胺恒温25℃搅拌3h,反应结束后用去离子水离心洗涤至中性得到PGO。
(2)制备双金属Co-Ni-MOF
a)将4.86mmol Co(NO3)26H2O和9.73mmol Ni(NO3)26H2O加入到40mL的 N,N-二甲基酰胺(DMF)中,强力磁搅拌10min制得溶液A;
将0.24g对苯二甲酸和4g聚乙烯吡咯烷酮(PVP)溶解于40mL DMF中,制得溶液B,最后将溶液A和溶液B混合搅拌10min为溶液C。
b)水热反应:
将溶液C转移到内衬聚四氟乙烯的不锈钢反应釜中进行水热反应,100℃反应24h,反应结束后,冷却至室温,产物经过甲醇和DMF清洗并真空干燥24h,得到Co-Ni-MOF。
(3)制备水凝胶复合储能材料
将1.2g聚乙烯醇、10mg多巴胺修饰的石墨烯、12.5mg双金属Co-Ni-MOF 混合,加入8mL去离子水和2mL丙三醇,在80℃下搅拌溶解30min后,常温静置12h,得到PVA多功能水凝胶复合储能电极材料。
实施例4
一种具有自粘附性、温度耐受性、导电性及储能性的水凝胶电极的制备方法,其具体过程如下:
(1)多巴胺修饰石墨烯填料的制备
称取3.75g NaOH于250mL石墨烯(10mg/mL)中搅拌溶解,然后加入1g多巴胺恒温25℃搅拌3h,反应结束后用去离子水离心洗涤至中性得到PGO。
(2)制备单金属Ni-MOF
a)将4.86mmol Co(NO3)26H2O和9.73mmol Ni(NO3)26H2O加入到40mL的 N,N-二甲基酰胺(DMF)中,强力磁搅拌10min制得溶液A;
将0.24g对苯二甲酸和4g聚乙烯吡咯烷酮(PVP)溶解于40mL DMF中,制得溶液B,最后将溶液A和溶液B混合搅拌10min为溶液C。
b)水热反应:
将溶液C转移到内衬聚四氟乙烯的不锈钢反应釜中进行水热反应,100℃反应24h,反应结束后,冷却至室温,产物经过甲醇和DMF清洗并真空干燥24h,得到Ni-MOF。
(3)制备水凝胶复合储能材料
将1.2g聚乙烯醇、10mg多巴胺修饰的石墨烯、20mg单金属Ni-MOF混合,加入11mL去离子水和1mL丙三醇,在80℃下搅拌溶解30min后,常温静置 12h,得到PVA多功能水凝胶复合储能电极材料。

Claims (10)

1.一种具有自粘附性、温度耐受性、导电性及储能性的水凝胶电极的制备方法,其特征在于,包括以下步骤:
(1)制备多巴胺修饰的石墨烯填料;
(2)制备双金属氧化物及金属氮化物的复合物
a、将具有赝电容性能的硝酸盐、镍酸盐、NH4F以及尿素混合溶解,搅拌0.5~2h;
b、将氧化石墨烯包裹的镍基底置于步骤a所得溶液中浸泡0.5~1h,然后于120~150℃水热反应15~20h后,冷却至室温,清洗干燥后得到双金属氢氧化物;
c、于400~600℃热处理双金属氢氧化物2~5h,然后在氨气氛围中,于400~500℃继续热处理2~3h,得到双金属氧化物及金属氮化物的复合物;
(3)制备MOFs
a、将至少一种具有赝电容性能的硝酸盐溶解后,磁力搅拌10~30min,制得溶液A;
b、将对苯二甲酸和聚乙烯吡咯烷酮混合后溶解,得溶液B,再加入溶液A,搅拌混合10~20min;
c、将步骤b所得溶液置于100~150℃水热反应20~25h后,冷却至室温,清洗真空干燥后,制得MOFs;
(4)制备水凝胶电极
采用多巴胺修饰的石墨烯、水凝胶单体,以及MOFs或双金属氧化物及金属氮化物的复合物为原料,以自由基聚合的方式制备得到该水凝胶电极。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中多巴胺修饰石墨烯的具体过程为:
调节浓度为10mg/mL的石墨烯溶液呈碱性,再加入多巴胺,于25℃搅拌3~5h,反应结束后用去离子水洗涤至中性即可;所述石墨烯溶液中多巴胺的终浓度为4mg/mL。
3.根据权利要求1所述的制备方法,其特征在于,步骤(2)中所述赝电容性能的硝酸盐、镍酸盐、NH4F以及尿素的摩尔比为1~2:1~2:1~3:3~5。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)和步骤(3)中所述具有赝电容性能的硝酸盐为Co(NO3)2·6H2O、Fe(NO3)3、Mo(NO3)3·5H2O或Mn(NO3)2·4H2O。
5.根据权利要求1所述的制备方法,其特征在于,所述溶液A和溶液B的体积比为1:1;
所述溶液A中具有赝电容性能的硝酸盐的浓度为10~15mmol/mL;所述溶液B中苯二甲酸的浓度为4~6mg/mL;所述溶液B中聚乙烯吡咯烷酮的浓度为0.05~0.1g/mL。
6.根据权利要求1所述的制备方法,其特征在于,所述多巴胺修饰的石墨烯的用量为水凝胶单体重量的0.1~1%;所述MOFs或双金属氧化物及金属氮化物的复合物与多巴胺修饰的石墨烯的重量比为1:1~1:5。
7.根据权利要求1所述的制备方法,其特征在于,步骤(4)中制备水凝胶电极的具体过程为:
将PAM、N-N亚甲基丙烯酰胺、多巴胺修饰的石墨烯、MOFs混合后加水,于常温搅拌10~20min,然后加入过硫酸铵,再继续搅拌,待高分子聚合后,即可制备得到的PAM多功能水凝胶电极。
8.根据权利要求1所述的制备方法,其特征在于,步骤(4)中制备复合储能材料的具体过程为:
将PVA、多巴胺修饰的石墨烯、MOFs混合后加水,于80~100℃搅拌30~50min,然后常温静置10~12h,即可制备得到的PVA多功能水凝胶电极。
9.根据权利要求1~8任一项所述的制备方法,其特征在于,所述制备水凝胶电极时,还包括在步骤(4)中加入水和油性溶剂,然后进行自由基聚合,并能通过调节水和油性溶剂的用量比例来调节水凝胶电极的温度耐受性能。
10.一种多功能水凝胶电极,其特征在于,所述多功能水凝胶电极由权利要求1~9任一项所述的制备方法制备得到。
CN202111154911.6A 2021-09-29 2021-09-29 一种具有自粘附性、温度耐受性、导电性及储能性的水凝胶电极及其制备方法 Active CN113651979B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111154911.6A CN113651979B (zh) 2021-09-29 2021-09-29 一种具有自粘附性、温度耐受性、导电性及储能性的水凝胶电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111154911.6A CN113651979B (zh) 2021-09-29 2021-09-29 一种具有自粘附性、温度耐受性、导电性及储能性的水凝胶电极及其制备方法

Publications (2)

Publication Number Publication Date
CN113651979A true CN113651979A (zh) 2021-11-16
CN113651979B CN113651979B (zh) 2023-05-19

Family

ID=78494511

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111154911.6A Active CN113651979B (zh) 2021-09-29 2021-09-29 一种具有自粘附性、温度耐受性、导电性及储能性的水凝胶电极及其制备方法

Country Status (1)

Country Link
CN (1) CN113651979B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114469109A (zh) * 2022-02-28 2022-05-13 清华大学 基于有机金属多孔聚合物的微针脑电极及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105906821A (zh) * 2016-04-26 2016-08-31 西南交通大学 一种自粘附导电水凝胶的制备方法
CN106008799A (zh) * 2016-05-23 2016-10-12 西南交通大学 一种具有高力学性能及自愈合性的水凝胶电极的制备方法
WO2018065450A1 (en) * 2016-10-04 2018-04-12 Aarhus Universitet Flexible and multi-functional coacervates and hydrogel materials
WO2018123778A1 (ja) * 2016-12-27 2018-07-05 東レ株式会社 電極材料の製造方法、電極材料および二次電池用電極
CN109125813A (zh) * 2018-08-17 2019-01-04 西南交通大学 一种用于组织修复的导电粘附水凝胶制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105906821A (zh) * 2016-04-26 2016-08-31 西南交通大学 一种自粘附导电水凝胶的制备方法
CN106008799A (zh) * 2016-05-23 2016-10-12 西南交通大学 一种具有高力学性能及自愈合性的水凝胶电极的制备方法
WO2018065450A1 (en) * 2016-10-04 2018-04-12 Aarhus Universitet Flexible and multi-functional coacervates and hydrogel materials
WO2018123778A1 (ja) * 2016-12-27 2018-07-05 東レ株式会社 電極材料の製造方法、電極材料および二次電池用電極
CN109125813A (zh) * 2018-08-17 2019-01-04 西南交通大学 一种用于组织修复的导电粘附水凝胶制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANG, LL ,等: "Functional hydrogel-based supercapacitors for wearable bioelectronic devices" *
杨宇州,等: "MOF基水凝胶材料的制备及其应用" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114469109A (zh) * 2022-02-28 2022-05-13 清华大学 基于有机金属多孔聚合物的微针脑电极及其制造方法
CN114469109B (zh) * 2022-02-28 2024-06-11 清华大学 基于有机金属多孔聚合物的微针脑电极及其制造方法

Also Published As

Publication number Publication date
CN113651979B (zh) 2023-05-19

Similar Documents

Publication Publication Date Title
Jin et al. Flexible polydopamine bioelectronics
Wang et al. Modified Ti3C2TX (MXene) nanosheet-catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for wearable bioelectronics
Wang et al. Ultrafast gelling using sulfonated lignin-Fe3+ chelates to produce dynamic crosslinked hydrogel/coating with charming stretchable, conductive, self-healing, and ultraviolet-blocking properties
Zhang et al. Highly adhesive and self-healing γ-PGA/PEDOT: PSS conductive hydrogels enabled by multiple hydrogen bonding for wearable electronics
Wang et al. PVA/CMC/PEDOT: PSS mixture hydrogels with high response and low impedance electronic signals for ECG monitoring
Xia et al. Intrinsically electron conductive, antibacterial, and anti‐swelling hydrogels as implantable sensors for bioelectronics
Guo et al. Application of conductive polymer hydrogels in flexible electronics
CN108530676B (zh) 基于模板的三维网状碳材料/高分子功能复合材料及其制备方法
Wang et al. Zinc-ion engineered Plant-based multifunctional hydrogels for flexible wearable strain Sensors, Bio-electrodes and Zinc-ion hybrid capacitors
Pei et al. Self-healing and toughness cellulose nanocrystals nanocomposite hydrogels for strain-sensitive wearable flexible sensor
Wang et al. A highly elastic, Room-temperature repairable and recyclable conductive hydrogel for stretchable electronics
CN113651979B (zh) 一种具有自粘附性、温度耐受性、导电性及储能性的水凝胶电极及其制备方法
CN110808175A (zh) 一种电活性生物质/聚吡咯水凝胶及其制备方法和应用
CN110591122B (zh) 一种抗静电自恢复三重互穿网络硅水凝胶及其制备方法
Lu et al. Simple preparation of carboxymethyl cellulose-based ionic conductive hydrogels for highly sensitive, stable and durable sensors
Yin et al. Sodium carboxymethyl cellulose and MXene reinforced multifunctional conductive hydrogels for multimodal sensors and flexible supercapacitors
You et al. Self-healing and adhesive MXene-polypyrrole/silk fibroin/polyvinyl alcohol conductive hydrogels as wearable sensor
Cai et al. High performance flexible silk fabric electrodes with antibacterial, flame retardant and UV resistance for supercapacitors and sensors
Chen et al. Triple‐network‐based conductive polymer hydrogel for soft and elastic bioelectronic interfaces
Liu et al. Polydopamine interface-modulated MXene-based conductive antibacterial hydrogels for on-skin health monitoring and diabetic wound healing
CN114805673A (zh) 一种天然高分子导电水凝胶及其制备方法和应用
CN112430394B (zh) 一种导电增强型聚吡咯/石墨烯/明胶复合柔性电极材料及其制备方法
Zhu et al. Fabrication of multifunctional polypyrrole hydrogel enhanced by polyvinyl alcohol
CN117069896A (zh) 一种具有动态记忆行为智能水凝胶的制备方法及应用
CN115844411A (zh) 一种超疏水高导电柔性干电极及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant