CN113633647A - 羟氯扎胺在抗猪链球菌溶血素中的应用 - Google Patents

羟氯扎胺在抗猪链球菌溶血素中的应用 Download PDF

Info

Publication number
CN113633647A
CN113633647A CN202110708619.8A CN202110708619A CN113633647A CN 113633647 A CN113633647 A CN 113633647A CN 202110708619 A CN202110708619 A CN 202110708619A CN 113633647 A CN113633647 A CN 113633647A
Authority
CN
China
Prior art keywords
hemolysin
streptococcus suis
infection
pharmaceutically acceptable
acceptable salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110708619.8A
Other languages
English (en)
Inventor
谭臣
鲁浩
王晨晨
鲁文嘉
王高岩
李晓丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN202110708619.8A priority Critical patent/CN113633647A/zh
Publication of CN113633647A publication Critical patent/CN113633647A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/60Salicylic acid; Derivatives thereof
    • A61K31/609Amides, e.g. salicylamide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/429Thiazoles condensed with heterocyclic ring systems
    • A61K31/43Compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula, e.g. penicillins, penems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了羟氯扎胺在抗猪链球菌溶血素中的应用,属于微生物传染病及医药领域。本发明发现了羟氯扎胺能够中和猪链球菌和其他细菌溶血素的毒性,并对猪链球菌溶血素感染的小鼠有保护效果,将羟氯扎胺与氨苄西林联合用药对猪链球菌重症感染小鼠有很好的治疗效果。羟氯扎胺或其药学上可接受的盐具有抗溶血素的应用,羟氯扎胺或其药学上可接受的盐可用于制备抗溶血素的试剂和治疗细菌重症感染的药物,羟氯扎胺或其药学上可接受的盐与其他治疗细菌感染的药物联用可用于制备治疗细菌重症感染的药物。本发明发现了羟氯扎胺新的应用,为治疗包括猪链球菌的细菌重症感染提供了新的药物。

Description

羟氯扎胺在抗猪链球菌溶血素中的应用
技术领域
本发明涉及微生物传染病及医药领域,具体涉及羟氯扎胺在抗猪链球菌溶血素中的应用。
背景技术
猪链球菌是一种新兴的人畜共患病原体,可感染人和猪,可引起人类脑膜炎,心内膜炎和链球菌中毒性休克样综合征(STSLS)。根据不完整的统计数据,自1968年发现第一例病例以来,已报告超过1600例人类感染猪链球菌。猪链球菌可通过皮肤,口腔粘膜或鼻粘膜伤口感染。健康的人可通过与病猪接触或接触生猪肉引起猪链球菌感染。在已知的猪链球菌血清型中,血清型2(SS2)是猪和人中最常见的血清型,并在全世界广泛报道。同时猪链球菌也是越南,泰国和中国脑膜炎的重要病原体。猪链球菌感染造成了严重的生产和公共卫生问题。迫切需要更好地了解与猪链球菌感染相关的病理因素,并采取有效策略,尽量减少猪链球菌感染引起的社会负担。现有的研究表明溶血素(SLY)作为重要的毒力因子之一,在SS2感染的发病机制和诱导炎症反应中发挥重要作用。具有高水平SLY的猪链球菌在感染模型中比非毒力菌株更可能导致更高的死亡率。先前的文献证明感染产生高水平SLY的猪链球菌菌株的小鼠的死亡率可在10天内达到90%。而SLY缺失的菌株感染的小鼠几乎不出现死亡。【Takeuchi et al.,2014,Yanyan Zhang et al.,2018】。因此,能够有效抑制溶血素溶血活性的新型抗毒力化合物可能是治疗猪链球菌感染的新型治疗药物。
发明内容
本发明的目的在于提供羟氯扎胺抗细菌(猪链球菌、金黄色葡萄球菌等)溶血素的应用。本发明的目的还在于提供羟氯扎胺的在制备治疗细菌(猪链球菌等)重症感染的药物中的应用。
本发明的目的通过下述技术方案实现:
本发明发现羟氯扎胺能够中和猪链球菌和其他细菌溶血素的毒性,并对猪链球菌溶血素感染的小鼠有保护效果,将羟氯扎胺与氨苄西林联合用药对猪链球菌重症感染小鼠有很好的治疗效果。基于此,本发明提供如下应用:
羟氯扎胺或其药学上可接受的盐具有抗溶血素中的应用,该应用为非疾病治疗的目的。羟氯扎胺或其药学上可接受的盐在制备抗溶血素的试剂中的应用。所述的溶血素包含猪链球菌溶血素,以及其他与猪链球菌溶血素蛋白结构相似的细菌溶血素。
羟氯扎胺或其药学上可接受的盐在制备治疗细菌重症感染的药物中的应用。进一步地,羟氯扎胺或其药学上可接受的盐与其他治疗细菌感染的药物联用在制备治疗细菌重症感染的药物中的应用。
一种治疗细菌重症感染的药物,包含羟氯扎胺或其药学上可接受的盐,以及其他治疗细菌感染的药物。
所述的细菌包括猪链球菌,以及其他能产生与猪链球菌溶血素蛋白结构相似的溶血素的细菌。所述的细菌为猪链球菌时,治疗猪链球菌感染的药物可以为氨苄西林等。
本发明具有如下优点和有益效果:
(1)本发明发现了羟氯扎胺新的应用,其具有抗猪链球菌及其他细菌溶血素的作用。
(2)羟氯扎胺与其他治疗细菌感染的药物联用可用于治疗包括猪链球菌的细菌重症感染的药物,为细菌重症感染的治疗提供了新的方向。
附图说明
图1是羟氯扎胺对红细胞的溶血毒性结果统计图。
图2是猪链球菌SC19培养上清对红细胞的裂解结果统计图。
图3是羟氯扎胺对猪链球菌SC19培养上清溶血活性抑制的结果统计图。
图4是羟氯扎胺对金黄色葡萄球菌α-溶血素蛋白抑制的结果统计图。
图5是溶血素蛋白与羟氯扎胺的分子对接模式图,A:溶血素蛋白的活性口袋分析;B羟氯扎胺通过两个氢键(虚线)结合在溶血素蛋白的活性域中。
图6是羟氯扎胺与溶血素蛋白的热量摩尔比曲线图。
图7是羟氯扎胺与溶血素蛋白的亲和力反应曲线图。
图8是猪链球菌溶血素蛋白攻毒小鼠的存活曲线图。
图9是小鼠血清中IL-6和TNF-α检测结果图。
图10是猪链球菌攻毒小鼠的存活曲线图。
具体实施方式
以下实施例用于进一步说明本发明,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。
下述实施例中所用到的猪链球菌SC19菌株为2005年中国四川省疫情爆发时从死猪脑中分离的毒力株;实施例结果统计分析采用双尾非配对t检验,*:P<0.05,**:P<0.01,***:P<0.001,****:P<0.0001。
实施例1
(1)在96孔板中,将50μL悬浮在PBS中的2%绵羊红细胞添加到50μL在PBS中连续稀释的羟氯扎胺(OX)中,于37℃下孵育1小时,其中,OX浓度分别为1、2、4、8、16、32、64、128μg/mL,2.5%TritonX-100作为阳性对照。然后将板以500g离心5分钟,并将来自测定板每个孔的50μL上清液转移至新鲜的96孔板中。通过目视观察和测量543nm处的吸光度来确认溶血。
结果见图1,羟氯扎胺自身并不能引起红细胞溶血。
(2)将猪链球菌SC19菌株在胰蛋白胨大豆肉汤(TSB)培养基中于37℃培养12h,4℃、10000rpm离心10min,收集上清。将不同体积的培养上清加到含2%脱纤维绵羊血磷酸盐缓冲溶液(PBS,pH 7.4)中(总体积1mL),37℃孵育30分钟。最后,在4℃条件下1000rpm离心5min。随后,收集上清200μL样本,在543nm处用生物pectrometer(Eppendorf)测定其光密度。同时将含2%脱纤维绵羊血磷酸盐缓冲(PBS,pH 7.4)溶液用2.5%TritonX-100处理设置为100%阳性对照。SC19培养上清溶血活性通过各样品的OD543数值与阳性对照的比值来评估。结果见图2,SC19培养上清为125μL时可以裂解95%以上的红细胞。
(3)将猪链球菌SC19菌株在TSB培养基中于37℃培养12h,4℃、10000rpm离心10min,收集上清。将125μL含不同浓度OX(0、2、4、8、16、32μg/mL)的上清在37℃下孵育30min。然后加入875μL含2%脱纤维绵阳羊磷酸盐缓冲(PBS,pH 7.4)溶液,37℃孵育30分钟。最后,在4℃条件下,1000rpm离心5min,收集上清200μL样本,在543nm处用生物pectrometer(Eppendorf)测定其光密度。同时将含2%脱纤维绵羊血磷酸盐缓冲(PBS,pH7.4)溶液用2.5%TritonX-100处理设置为100%阳性对照。OX对SC19培养上清溶血活性的影响通过各样品的OD543数值与阳性对照的比值来评估。
结果见图3,羟氯扎胺明显抑制SC19培养上清的溶血活性,并呈现浓度依赖性。
(4)将100ng/mL纯化的金黄色葡萄球菌α溶血素蛋白(sigma公司)与不同浓度(0、2、4、8、16和32μg/mL)的OX共孵育,并按照(3)中的方法评估OX的抗溶血素蛋白作用效果。
结果见图4,表明羟氯扎胺同样能抑制金黄色葡萄球菌溶血素蛋白的溶血活性。
实施例2
(1)在SLY与OX对接过程中,SLY的晶体结构来源于蛋白质数据库(PDB)http://www.rcsb.org/structure/3HVN。OX的2D和3D结构分别由ChemBioDraw Ultra 14.0和ChemBio3D Ultra 14.0绘制。使用软件Discovery Studio2016模块CDOCKER(是基于CHARMm的对接程序,采用soft-core potentials以及optional grid representation将配体分子与受体活性位点进行对接。首先采用高温动力学的方法随机搜索小分子构象,随后采用模拟退火的方法将各个构象在受体活性位点区域进行优化,从而使对接结果更加准确。)通过计算模拟方法,预测了蛋白质与小分子结合口袋如图5所示,氨基酸G107、K190、N8、I372、F193、G194、N112、T195、E51、S376、T191、D111、N50、S374、T195、L110、I87等氨基酸组成很好的疏水口袋空腔,疏水性口袋与小分子平面疏水性质形成很好的疏水作用模式,而且氨基酸T191、N50与小分子之间形成较好的氢键作用。
(2)采用微量热涌动(MST)在体外测定SLY蛋白与OX的相互作用。使用MonolithNT.115Pico(Nanotemper Technologies GmbH,Munich,Germany)测量Sly与OX结合的Kd值。根据制造商的说明,用RED-NHS第二代染料标记蛋白质(Monolith Protein Lobeling KitRED-NHS第二代,Nanotemper Technologies GmbH)在室温下于黑暗中放置1分钟。OX在反应缓冲液中连续稀释(50 mM HEPES buffer[pH =7.4]含有0.05%Tween-20)。然后,将100nM标记的蛋白质以1:1的体积比添加到化合物的系列稀释液中。孵育30分钟后,用MonolithNT.115在中等功率和5%LED/激发功率的条件下进行样品测试。测得kd值为93.36±3.26μM(图6)。表明羟氯扎胺与溶血素有较强的结合力。
(3)通过表面等离子共振(LSPR)技术确定SLY和OX的平衡解离常数,进一步证明SLY蛋白与OX的相互作用。SLY蛋白固定在COOH传感器芯片(Nicoya,Canada)上。PBS(pH7.4)冲洗芯片,获得稳定的检测基线。将浓度升高(1.25μM、6.25μM、12.5μM、25μM)的OX注射到芯片中。设置PBS作为阴性对照。设定每个周期的速度为20μL/min。使用Trace Drawer软件对测定所得数据进行分析。利用结合反应动力学参数评价SLY与OX的相互作用。如图7所示,通过Trace Drawer软件计算出SLY和OX的平衡解离常数(Kd)为1.86×10-6M,进一步表明羟氯扎胺与溶血素有良好的结合力。
通过该实施例可以得知,羟氯扎胺同样能和与猪链球菌溶血素蛋白结构相似的其他细菌溶血素结合,抑制其溶血活性。
实施例3
下述实验所用小鼠为七周龄雌性BALB/c小鼠,购自中国三峡大学。动物实验符合动物伦理,所有实验均在华中农业大学动物实验保护监督控制委员会(HZAUMO-2020-0013)指导下进行。
(1)存活率实验
小鼠随机分成OX治疗组、氨苄治疗组、未治疗组三组,每组10只。在存活率实验中,每只小鼠鼻吸感染2μg纯化后的猪链球菌SC19溶血素蛋白。感染1小时后,小鼠通过鼻吸分别给药OX和临床常用治疗猪链球菌感染的药物氨苄西林。给药剂量均为10mg/kg,间隔12小时给药一次,连续治疗三天。未治疗组吸入同体积的PBS(pH 7.4)。根据实验结果构建的小鼠生存曲线如图8所示,与对照组相比,OX治疗组的小鼠存活率达到60%左右,而吸入等量氨苄西林的小鼠保护率仅为10%。
(2)炎症因子检测
小鼠随机分成OX治疗组、氨苄治疗组、未治疗组三组、空白对照组,每组5只小鼠。OX治疗组、氨苄治疗组、未治疗组经鼻吸感染1μg纯化后的猪链球菌溶血素蛋白,空白对照组吸入同样体积的PBS。感染1小时后,小鼠通过鼻吸分别给药OX和临床常用治疗猪链球菌感染的药物氨苄西林。给药剂量均为10mg/kg。在治疗12小时后,处死小鼠并收集血液。使用敏感的电化学发光平台(Quickplex,Meso-ScaleDiscovery
Figure BDA0003132355870000051
MSD)检测炎症细胞因子。结果如图9所示,相对于临床常用药物氨苄西林,OX可以明显抑制感染小鼠IL-6和TNF-α的产生,进而提高小鼠存活率。
(3)重症感染联合用药保护率
7周龄Babl/c小鼠随机分成OX1h治疗组、OX6h治疗组、氨苄西林1h治疗组、氨苄西林6h治疗组、未治疗组五组。每组各十只小鼠。小鼠均腹腔感染SC19细胞2.5×108CFU,在1或6小时时,给小鼠腹腔注射羟氯扎胺+氨苄西林(5+5mg/kg/天)或氨苄西林(10mg/kg/天)3天,未处理组中的小鼠(每组10只小鼠)施用相同量的PBS。治疗后7天观察小鼠的死亡率。结果如图10所示,相对于临床常用药物氨苄西林,联合用药组在6h重症感染模型中表现出更好的保护率。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.羟氯扎氨或其药学上可接受的盐在抗溶血素中的应用,其特征在于:所述的应用为非疾病治疗的目的。
2.羟氯扎氨或其药学上可接受的盐在制备抗溶血素的试剂中的应用。
3.根据权利要求1或2所述的应用,其特征在于:所述的溶血素包含猪链球菌溶血素,以及其他与猪链球菌溶血素蛋白结构相似的细菌溶血素。
4.羟氯扎氨或其药学上可接受的盐在制备治疗细菌重症感染的药物中的应用。
5.羟氯扎氨或其药学上可接受的盐与其他治疗细菌感染的药物在制备治疗细菌重症感染的药物中的应用。
6.一种治疗细菌重症感染的药物,其特征在于:包含羟氯扎氨或其药学上可接受的盐,以及其他治疗细菌感染的药物。
7.根据权利要求4或5所述的应用或权利要求6所述的药物,其特征在于:所述的细菌包括猪链球菌,以及其他能产生与猪链球菌溶血素蛋白结构相似的溶血素的细菌。
8.根据权利要求5所述的应用或权利要求6所述的药物,其特征在于:所述的细菌为猪链球菌时,治疗猪链球菌感染的药物为氨苄西林。
CN202110708619.8A 2021-06-25 2021-06-25 羟氯扎胺在抗猪链球菌溶血素中的应用 Pending CN113633647A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110708619.8A CN113633647A (zh) 2021-06-25 2021-06-25 羟氯扎胺在抗猪链球菌溶血素中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110708619.8A CN113633647A (zh) 2021-06-25 2021-06-25 羟氯扎胺在抗猪链球菌溶血素中的应用

Publications (1)

Publication Number Publication Date
CN113633647A true CN113633647A (zh) 2021-11-12

Family

ID=78416149

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110708619.8A Pending CN113633647A (zh) 2021-06-25 2021-06-25 羟氯扎胺在抗猪链球菌溶血素中的应用

Country Status (1)

Country Link
CN (1) CN113633647A (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109331025A (zh) * 2018-11-22 2019-02-15 华中农业大学 羟氯扎胺在制备抗猪链球菌的药物中的应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109331025A (zh) * 2018-11-22 2019-02-15 华中农业大学 羟氯扎胺在制备抗猪链球菌的药物中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RAFAEL AYERBE-ALGABA等: "The anthelmintic oxyclozanide restores the activity of colistin against colistin-resistant Gram-negative bacilli", 《INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS》, vol. 54, pages 507 - 512, XP085831916, DOI: 10.1016/j.ijantimicag.2019.07.006 *

Similar Documents

Publication Publication Date Title
Mishra et al. A systemic review on staphylococcal scalded skin syndrome (SSSS): a rare and critical disease of neonates
Wells et al. Clostridia: sporeforming anaerobic bacilli
Zhang et al. Inhibition of α-toxin production by subinhibitory concentrations of naringenin controls Staphylococcus aureus pneumonia
Pozzi et al. Opsonic and protective properties of antibodies raised to conjugate vaccines targeting six Staphylococcus aureus antigens
DiPersio et al. Spread of serious disease—producing M3 clones of group A streptococcus among family members and health care workers
Manning et al. Investigation of Streptococcus salivarius-mediated inhibition of pneumococcal adherence to pharyngeal epithelial cells
CA2597263A1 (en) Polypeptides from staphylococcus aureus and methods of use
Lu et al. Lactoferrin: a critical mediator of both host immune response and antimicrobial activity in response to streptococcal infections
Honda-Ogawa et al. Streptococcus pyogenes endopeptidase O contributes to evasion from complement-mediated bacteriolysis via binding to human complement factor C1q
Dong et al. Morin protects channel catfish from Aeromonas hydrophila infection by blocking aerolysin activity
Reglinski et al. Streptococcus pyogenes
CN108164586B (zh) 合成多肽及其应用
Xu et al. Therapeutic potential of kaempferol on Streptococcus pneumoniae infection
CN113633647A (zh) 羟氯扎胺在抗猪链球菌溶血素中的应用
Mahdi et al. Two novel roles of buffalo milk lactoperoxidase, antibiofilm agent and immunomodulator against multidrug resistant Salmonella enterica serovar typhi and Listeria monocytogenes
Takahashi et al. Indolo [3, 2-b] quinoline derivatives suppressed the hemolytic activity of beta-pore forming toxins, aerolysin-like hemolysin produced by Aeromonas sobria and alpha-hemolysin produced by Staphylococcus aureus
Hsieh et al. Recombinant outer membrane protein A fragments protect against Escherichia coli meningitis
CN112274515B (zh) 玫瑰树碱盐酸盐在制备抗猪链球菌溶血素的药物中的应用
Kwak et al. Exploring the pathogenesis of necrotizing fasciitis due to Streptococcus pneumoniae
WO2015081407A1 (pt) Uso de compostos químicos capazes de inibir a ação tóxica das esfingomie-linase d do veneno de aranhas loxosceles e composição farmacêutica compreendendo os referidos compostos
Nagao Streptococcus agalactiae (group B streptococci)
Verbrugh Colonization with Staphylococcus aureus and the role of colonization in causing infection
US20090162379A1 (en) Inhibitors of S. aureus SdrD protein attachment to cells and uses therefor
Li et al. Characterization of a novel LTA/LPS-binding antimicrobial and anti-inflammatory temporin peptide from the skin of Fejervary limnocharis (Anura: Ranidae)
Planet et al. Revisiting Bacterial Interference in the Age of MRSA: Insights into Staphylococcus aureus Carriage, Pathogenicity, and Potential Control

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20211112