CN113632354B - 谐振转换器的软启动 - Google Patents

谐振转换器的软启动 Download PDF

Info

Publication number
CN113632354B
CN113632354B CN202080021522.3A CN202080021522A CN113632354B CN 113632354 B CN113632354 B CN 113632354B CN 202080021522 A CN202080021522 A CN 202080021522A CN 113632354 B CN113632354 B CN 113632354B
Authority
CN
China
Prior art keywords
resonant
reference voltage
current
stage
llc converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080021522.3A
Other languages
English (en)
Other versions
CN113632354A (zh
Inventor
鲁宾尼奇·姚克绍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN113632354A publication Critical patent/CN113632354A/zh
Application granted granted Critical
Publication of CN113632354B publication Critical patent/CN113632354B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

LLC转换器包括:开关级,包括初级晶体管;谐振级,连接到开关级;变压器,包括连接到谐振级的初级绕组和与初级绕组耦接的次级绕组;整流级,连接到变压器的次级绕组并提供LLC转换器的输出电压;以及控制器,被配置为和/或被编程为在启动期间通过基于第一参考电压和第二参考电压对初级晶体管进行开关来控制输出电压,其中第一参考电压在启动期间呈指数增大,第二参考电压基于谐振级的谐振电流。

Description

谐振转换器的软启动
技术领域
本发明涉及谐振转换器的软启动。更具体地,本发明涉及使用第一参考电压和第二参考电压对谐振转换器的软启动,其中第一参考电压在启动期间呈指数增大,第二参考电压基于谐振级的谐振电流。
背景技术
图1至图3示出了可以与已知软启动方案或本发明的优选实施例的软启动方案一起使用的谐振转换器。
已知对转换器进行软启动以防止大浪涌电流和大输出电压过冲。谐振转换器的一些已知软启动方案使用线性或指数型的参考电压Vref,其中指数型是指数曲线或与指数曲线近似。这种已知的软启动方案可能无法在软启动期间维持实现零电压开关(ZVS)所需的最小谐振电流。由于LLC回路增益的特性,输出电压Vout和参考电压Vref之间存在差异,这会导致电压控制环路无效,并且无法维持所需的最小谐振电流。已知的软启动算法可能存在以下一个或多个问题:
1.线性或指数型的参考电压Vref可能太慢或太快,这取决于软启动期间的负载。
2.输出电压Vout曲线包括在谐振回路增益不显著增大的频率范围内输出电压不显著升高的区域。
3.开关频率因为参考电压Vref的类型、因为电压控制器的饱和或因为环路的窄带宽而变化缓慢。
4.谐振电流可能会非常低,这会导致主电源开关(例如图1和图2中的开关Q1、Q2以及图3中的开关Q1、Q2、Q3、Q4)进行硬开关,即以非零电压进行开关。
转换器的回路增益在开关频率范围内是非线性的。因为低频时的回路增益可能低于高频时的回路增益,因此谐振电流在软启动期间可能会下降到非常低的水平,这会导致失去ZVS。
Sun等人(美国专利号8,081,740)教导了在LLC谐振转换器启动期间以固定频率和可变脉冲占空比操作模式操作LLC谐振转换器。Sun等人的软启动方案可以有效限制浪涌电流,但高侧开关和低侧开关两者均以可变脉冲占空比操作。Sun等人的软启动方案的一个缺点是使用商用LLC控制集成电路(IC)难以实现该方案。大多数商用LLC控制IC不提供可变脉冲占空比功能。为实现此功能,需要增加复杂的外部控制电路,同时考虑高侧开关的隔离要求。Sun等人的软启动方案的另一个重要缺点是启动期间软开关的失去,这需要对栅极驱动设计进行特殊考虑。
Feng等人,电力电子系统中心,“Optimal Trajectory Control of Resonant LLCConverter for Soft Start-Up(用于软启动的谐振LLC转换器的最优轨迹控制)”公开了另一种软启动方案。这种软启动方案使用非对称电流限制带来建立初始电压和电流水平。因为Feng等人的启动电流被控制在非对称电流限制带内,所以在启动期间不存在浪涌电流。因此,Feng等人的控制方案的一个缺点是需要谐振电流和谐振电容器电压测量电路来实现非对称电流限制带,这增大了包括Feng等人的控制方案的系统的整体成本。Feng等人的控制方案的另一个缺点是,使用定点微控制器来实现该控制方案可能很困难(如果不是不可能的话)。
发明内容
为了克服上述问题,本发明的优选实施例提供了一种用于谐振转换器的软启动方案,在该软启动方案中,在输出电压Vout曲线的以下区域中的参考电压Vref被修改,在该区域中谐振转换器的谐振电流低于谐振转换器中的开关的正常ZVS操作所需的电流。该软启动方案适用于任何类型的LLC谐振转换器,例如具有单个谐振电容器、分离式电容器的半桥转换器、以及全桥转换器,分别如图1至图3所示。
根据本发明的优选实施例,LLC转换器包括:开关级,包括初级晶体管;谐振级,连接到开关级;变压器,包括连接到谐振级的初级绕组和与初级绕组耦接的次级绕组;整流级,连接到变压器的次级绕组并提供LLC转换器的输出电压;以及控制器,在启动期间通过基于第一参考电压和第二参考电压对初级晶体管进行开关来控制输出电压,其中第一参考电压在启动期间呈指数增大,第二参考电压基于谐振级的谐振电流。
初级晶体管优选地以零电压开关来进行开关。控制器优选地将第一参考电压和第二参考电压相加。除非平均谐振电流低于阈值电流,否则第二参考电压优选为零。第二参考电压优选地被限制在零和最大参考电压的三分之一之间。
初级开关优选地被布置为半桥或全桥结构。谐振级优选地包括分离式谐振电容器。
谐振级优选地包括谐振电容器和谐振电感器。整流级优选地包括连接到次级绕组的同步整流器。
根据以下参考附图对本发明的优选实施例的详细描述,本发明的上述和其它特征、元件、特性、步骤和优点将变得更显而易见。
附图说明
图1是具有单个谐振电容器的半桥LLC转换器的电路图。
图2是具有分离式谐振电容器的半桥LLC转换器的电路图。
图3是全桥LLC转换器的电路图。
图4是具有闭环控制的全桥LLC转换器的控制框图。
图5示出了转换器在10%负载下的软启动波形。
图6示出了转换器在60%负载下的软启动波形。
具体实施方式
图1示出了具有单个谐振电容器C的半桥LLC转换器。该转换器包括初级侧和次级侧。初级侧是转换器位于端子PFC V+、PFC V-和变压器T之间的一侧。次级侧是转换器位于变压器T和输出端子+、-之间的一侧。PFC级(未示出)在端子PFC V+、PFC V-处向转换器提供直流输入。
初级电路包括初级开关Q1、Q2、谐振电感器Lr、谐振电容器C和电感器Lm。初级开关Q1、Q2定义了开关级,并被串联连接在端子PFC V+、PFC V-之间。谐振电感器Lr、谐振电容器C和电感器Lm定义了谐振级。谐振电感器Lr和谐振电容器C彼此串联连接,并连接在变压器T的初级绕组与初级开关Q1、Q2之间的节点之间。电感器Lm并联连接在变压器T的初级绕组上。次级电路包括同步整流器SR1、SR2、输出电容器Co和输出端子+、-。变压器T包括两个次级绕组。同步整流器SR1、SR2定义了整流级,并连接到变压器T的次级绕组。输出电容器Co连接到两个次级绕组和输出端子+之间的节点。控制器100可以被用于同步和控制开关Q1、Q2和同步整流器SR1、SR2的相应的栅极g1、g2、gr1和gr2的开关。上述组件是包括图2和图3中所示的LLC转换器在内的LLC转换器的典型组件。
图2示出了具有分离式谐振电容器C1、C2的半桥LLC转换器。图2所示的转换器与图1所示的转换器类似,除了谐振电容器C被分为谐振电容器C1、C2。谐振电容器彼此串联连接,并与端子PFC V+、PFC V_并联连接。电容器C1、C2之间的节点连接到变压器T的初级绕组。如在图1的LLC电路中那样,控制器200可以被用于同步和控制开关Q1、Q2和同步整流器SR1、SR2的相应的栅极g1、g2、gr1和gr2的开关。
图3示出了全桥LLC转换器。图3中所示的转换器与图1和图2中所示的转换器类似,但包括全桥而不是半桥。初级电路包括初级开关Q1、Q2、Q3、Q4,谐振电感器Lr1、Lr2,谐振电容器C1、C2和电感器Lm。初级开关Q1、Q2、Q3、Q4定义开关级,以全桥连接并且连接到端子PFC V+、PFC V-。谐振电感器Lr1和谐振电容器C1彼此串联连接,并连接在变压器T的初级绕组与初级开关Q2、Q4之间的节点之间。谐振电感器Lr2和谐振电容器C2彼此串联连接,并连接在变压器T的初级绕组与初级开关Q1、Q3之间的节点之间。电感器Lm并联连接在变压器T的初级绕组的两端之间。控制器300可以被用于同步和控制开关Q1、Q2和同步整流器SR1、SR2的相应的栅极g1、g2、g3、g4、gr1和gr2的开关。
图1至图3中的初级开关Q1、Q2、Q3、Q4和同步整流器SR1、SR2可以是金属氧化物半导体场效应晶体管(MOSFET),但也可以使用其他合适的晶体管。初级开关Q1、Q2、Q3、Q4和同步整流器SR1、SR2可以由控制器100、200、300打开和关闭。控制器100、200、300可以基于输出电压打开和关闭初级开关Q1、Q2、Q3、Q4和同步整流器SR1、SR2。控制器100、200、300可以使用一个或多个数字微控制器来实现,该数字微控制器可以被编程和/或被配置为实现下面讨论的瞬态控制方法。控制器100、200、300可以是任何类型的数字处理器(无论其架构如何),包括但不限于数字信号处理器(DSP)、可编程智能计算机(PIC)、现场可编程门阵列(FPGA)、AVR微控制器等。瞬态控制方法可以在任意速度下以自定义采样率被执行,具体取决于转换器的开关频率。控制器100、200、300的增益和参考可以以任何方式进行调整,以适应设计并提供稳定的控制环路。控制器100、200、300可以放置在初级侧或次级侧。可以通过使用隔离器跨越隔离边界发送信号来维持初级侧和次级侧之间的隔离,该隔离器包括例如数字隔离器或诸如光耦合器的光隔离器。
图4的软启动方案可以提供类似于指数上升并平滑接近设定点的输出电压Vout曲线。为了确保这种软启动方案补偿谐振回路的显著非线性,软-软方案使用电流控制环路形式的控制校正来帮助维持ZVS的最小谐振电流水平,其工作原理是在需要时增加参考电压vref
图4中所示的软启动方案使用电流控制来修改输出电压Vout曲线的谐振电流低于正常ZVS操作所需的电流的区域中的参考电压Vref。软启动方案可以被用于任何类型的LLC谐振转换器,例如具有单个谐振电容器、分离式电容器的半桥转换器、以及全桥转换器,例如分别如图1至图3所示。
图4所示的软启动方案可以在数字微处理器400中实现,包括虚线框内的功能。图4中微控制器400内的功能块应该被理解为数字表示,而不是微控制器400内的实际物理结构。代替微控制器400或作为微控制器400的补充,可以使用分立元件来实现软启动方案。为了解决在软启动期间谐振电流不足以维持ZVS操作的问题,在电压控制环路中添加了电流控制环路。电流控制环路与电压控制环路并行工作,并可以增大参考电压vref_v。电压控制环路和电流控制环路都可以实现为比例/积分控制器或任何其他合适的控制器。
电流传感器1测量转换器9的谐振电流。电流传感器1可以是输出表示谐振电流ir的平均值的信号ir_avg的模拟电流传感器。信号ir_avg由微控制器400进行采样,然后在求和块2中从电流参考iref中被减去。电流参考iref是电流环路的电流参考,并且是固定的数字。电流参考iref是在转换器9软启动期间在轻负载条件下维持ZVS操作所需的谐振电流的最小平均值。求和块2提供馈送到电流控制器3的电流误差信号ei。电流控制器3输出参考电压vref_i,其表示电流控制环路的输出。限制器4的低饱和点为零,而其高饱和点为参考电压vref_v的最大值的三分之一。将电流控制器2的输出限制为仅正数的目的是防止电流控制器3降低参考电压vref_v并随后降低谐振电流。
参考电压vref_v可以是微控制器内部以数字方式产生的电压参考,并定义转换器9的软启动操作的输出电压波形。求和块5将参考电压vref_i与参考电压vref_v相加以产生参考电压vref。两个参考电压vref_i和vref_v始终为正。因此,参考电压vref只能为正。
电压传感器10感测转换器9的输出电压Vout。电压传感器10可以是模拟电压传感器。电压传感器10的输出由微控制器400讲行采样和数字化以确定信号vout的数字值。求和块6从参考电压vref中减去信号vout以提供误差信号ev。误差信号ev被输入到电压控制器7,该电压控制器7可以是数字电压控制器。电压控制器7向PWM8输出控制信号u以形成用于转换器9的开关晶体管的栅极脉冲。
如图4所示,电流环路不控制负载电流。电流控制环路仅在检测到极低的谐振电流水平时才启用。在轻负载软启动操作期间以及当电流控制器被启用时,由电流控制环路产生的额外谐振回路能量导致更小的输出电压上升时间,并最终导致转换器9更快地达到设定点。然而,在重负载软启动操作期间,谐振电流远高于电流参考iref阈值。因为限制器4不允许负输出值,所以电流控制器3的输出保持为零,因此软启动操作不受电流控制环路的影响。
在软启动操作已经结束并且输出电压Vout达到其标称电压之后,电流控制器3断开连接并且不影响电压控制环路。因此,这种软启动方案不会产生干扰或导致任何突然的输出电压或谐振电流变化。此外,微控制器400上的计算负载仅在软启动期间略微增大。
图5和图6示出了轻负载和重负载软启动期间的各种波形。例如,轻负载可以是最大负载的10%,重负载可以是最大负载的60%。
在图5中,在时间T1,转换器开始软启动操作。开关的初始开关频率比谐振频率高3.5倍,以确保流入谐振回路的浪涌电流在合理水平内。在时间T2,足够的有功功率传输到转换器的次级侧以使输出电压Vout从零缓慢上升。从时间T2到时间T3,电压控制器7降低开关频率,这使谐振回路以增大的增益工作,这导致输出电压Vout进一步上升。从时间T1到时间T5,谐振电流ir从时间T1时的较大的初始值下降到时间T5时当软启动完成时满足负载要求的值。由于该谐振电流减小,在时间T3时,谐振电流ir_avg的平均值达到极低的水平。因为此时转换器仍以比谐振频率高2.2倍的开关频率操作,所以如果谐振电流进一步降低,转换器将失去初级开关的ZVS操作。为了防止失去ZVS操作,电流控制环路增大了参考电压vref_i,该参考电压vref_i与参考电压vref_v相加,如图4所示。电压控制环路通过以更快的速率降低开关频率来响应增大的参考电压vref。该开关频率的降低增大了谐振电流。输出电压Vout斜率的轻微变化也很明显。较高的谐振电流值和较低的开关频率都有助于维持ZVS操作。在时间T4,开关频率仅比谐振频率高1.5倍,这对于ZVS操作来说是安全的,而不管谐振电流ir的值如何。因此,在时间T4,电流控制器断开连接,并且参考电压vref_i降至零。从时间T4到时间T5,输出电压Vout慢慢接近设定点。在时间T5,输出电压Vout等于参考电压vref_v;软启动操作完成;并且转换器进入稳态操作。
在具有重负载软启动的图6中,谐振电流的值在整个软启动期间均高于电流参考iref阈值。这保证了ZVS操作。因此,重负载软启动期间电流控制输出为零。
应当理解,上述描述仅仅用于说明本发明。在不脱离本发明的情况下,本领域技术人员可以设计出各种替代和修改。因此,本发明旨在包含落在所附权利要求范围内的所有这些替代、修改和变化。

Claims (9)

1.一种LLC转换器,包括:
开关级,包括初级晶体管;
谐振级,连接到所述开关级;
变压器,包括:
初级绕组,连接到所述谐振级;以及
次级绕组,与所述初级绕组耦接;
整流级,连接到所述变压器的所述次级绕组,并提供所述LLC转换器的输出电压;以及
控制器,在启动期间通过基于第一参考电压和第二参考电压对所述初级晶体管进行开关来控制所述输出电压,其中所述第一参考电压在启动期间呈指数增大,所述第二参考电压基于所述谐振级的谐振电流。
2.根据权利要求1所述的LLC转换器,其中,所述初级晶体管以零电压开关进行开关。
3.根据权利要求1所述的LLC转换器,其中,所述控制器将所述第一参考电压和所述第二参考电压相加。
4.根据权利要求1所述的LLC转换器,其中,除非平均谐振电流低于阈值电流,否则所述第二参考电压为零。
5.根据权利要求1所述的LLC转换器,其中,所述第二参考电压被限制在零和最大参考电压的三分之一之间。
6.根据权利要求1所述的LLC转换器,其中,初级开关被布置为半桥或全桥结构。
7.根据权利要求6所述的LLC转换器,其中,所述谐振级包括分离式谐振电容器。
8.根据权利要求1所述的LLC转换器,其中,所述谐振级包括谐振电容器和谐振电感器。
9.根据权利要求1所述的LLC转换器,其中,所述整流级包括连接到所述次级绕组的同步整流器。
CN202080021522.3A 2019-03-15 2020-03-13 谐振转换器的软启动 Active CN113632354B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962704060P 2019-03-15 2019-03-15
US62/704,060 2019-03-15
PCT/US2020/022525 WO2020190673A1 (en) 2019-03-15 2020-03-13 Soft-start for resonant converters

Publications (2)

Publication Number Publication Date
CN113632354A CN113632354A (zh) 2021-11-09
CN113632354B true CN113632354B (zh) 2023-08-22

Family

ID=72520415

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080021522.3A Active CN113632354B (zh) 2019-03-15 2020-03-13 谐振转换器的软启动

Country Status (4)

Country Link
US (1) US20220158536A1 (zh)
EP (1) EP3921929A4 (zh)
CN (1) CN113632354B (zh)
WO (1) WO2020190673A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11757365B2 (en) * 2018-09-12 2023-09-12 Murata Manufacturing Co., Ltd. Dynamic transient control in resonant converters
TWI755736B (zh) * 2020-05-22 2022-02-21 亞源科技股份有限公司 具有超載控制的轉換裝置及其超載控制方法
CN115118174A (zh) * 2021-03-09 2022-09-27 华为数字能源技术有限公司 一种非对称半桥反激变换器和电源系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047374A2 (en) * 2006-10-20 2008-04-24 Itamar Levin Switched resonant-tank, cell based power converter
CN104782033A (zh) * 2012-11-09 2015-07-15 株式会社村田制作所 谐振转换器的软启动

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6996211B2 (en) 2002-12-23 2006-02-07 Sbc Properties, L.P. Voice over IP method of determining caller identification
US7561450B2 (en) * 2006-07-24 2009-07-14 Stmicroelectronics S.R.L. Protection device for a converter and related method
WO2010115976A1 (en) * 2009-04-09 2010-10-14 Stmicroelectronics S.R.L. Method and circuit for avoiding hard switching in resonant converters
JP5684987B2 (ja) * 2010-01-25 2015-03-18 セイコーインスツル株式会社 スイッチングレギュレータ
US20140091718A1 (en) * 2012-09-28 2014-04-03 Power Systems Technologies, Ltd. Power Converter with an Inductor-Inductor-Capacitor Stage and Method of Operating the Same
WO2014116641A1 (en) * 2013-01-24 2014-07-31 Murata Manufacturing Co., Ltd. Inrush current control during starting of resonant converters
US9318946B2 (en) * 2013-04-23 2016-04-19 Virginia Tech Intellectual Properties, Inc. Optimal trajectory control for LLC resonant converter for soft start-up
US9350260B2 (en) * 2013-11-07 2016-05-24 Futurewei Technologies, Inc. Startup method and system for resonant converters
CN105207487B (zh) * 2015-09-24 2017-11-21 成都芯源系统有限公司 一种谐振变换器的控制方法、电路及谐振变换器
US10819240B2 (en) * 2018-01-25 2020-10-27 Nxp B.V. Apparatus and method for adaptively setting the proper range for the VCM control variable based upon clipping of the main regulation loop

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047374A2 (en) * 2006-10-20 2008-04-24 Itamar Levin Switched resonant-tank, cell based power converter
CN104782033A (zh) * 2012-11-09 2015-07-15 株式会社村田制作所 谐振转换器的软启动

Also Published As

Publication number Publication date
US20220158536A1 (en) 2022-05-19
WO2020190673A1 (en) 2020-09-24
EP3921929A4 (en) 2022-11-02
EP3921929A1 (en) 2021-12-15
CN113632354A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
CN112511007B (zh) 适用于宽输出电压范围的隔离式dc/dc转换器及其控制方法
CN113632354B (zh) 谐振转换器的软启动
US10770979B2 (en) LLC resonant converter
US8891255B2 (en) Switching power supply apparatus including simultanous control of multiple outputs
US8456868B2 (en) Controller for a resonant switched-mode power converter
US6310785B1 (en) Zero voltage switching DC-DC converter
US8693217B2 (en) Power supply controller with minimum-sum multi-cycle modulation
EP3282571B1 (en) Power converter with extended hold-up time
CN111327201B (zh) 具有限制控制装置以控制开关周期或开关频率的变化速率的功率转换器
EP0993105A1 (en) Control of power transfer in a flyback converter by modulating the off-phase in function of the load
US20190222124A1 (en) Flyback converter, control circuit and control method therefor
US8737099B2 (en) Controllers for power converters
CN115211018A (zh) 自动调谐的同步整流器控制器
US11757365B2 (en) Dynamic transient control in resonant converters
EP0683936A1 (en) Control circuit for a switching dc-dc power converter including a controlled magnetic core flux resetting technique for output regulation
US20230268839A1 (en) Digital nonlinear transformation for voltage-mode control of a power converter
JP2002315331A (ja) Dc/dcコンバータを具えた電源装置
US20230223855A1 (en) Control circuit for a resonant circuit and the method thereof
US8593839B2 (en) Accuracy of a volt-second clamp in an isolated DC-DC converter
CN112400273A (zh) 开关电源
CN113014101A (zh) Llc谐振电路的控制装置和方法及直流-直流转换器
Nair et al. Implementation aspects of a single phase boost PFC converter
JPH05344722A (ja) 共振形dc−dcコンバータ
CN211670785U (zh) Llc谐振电路的控制装置及直流-直流转换器
TWI796013B (zh) 電源轉換器的電源控制器與控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant