CN113629891B - 一种电动汽车动态无线供电系统效率优化方法 - Google Patents

一种电动汽车动态无线供电系统效率优化方法 Download PDF

Info

Publication number
CN113629891B
CN113629891B CN202110941340.4A CN202110941340A CN113629891B CN 113629891 B CN113629891 B CN 113629891B CN 202110941340 A CN202110941340 A CN 202110941340A CN 113629891 B CN113629891 B CN 113629891B
Authority
CN
China
Prior art keywords
converter
energy storage
bidirectional
output
efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110941340.4A
Other languages
English (en)
Other versions
CN113629891A (zh
Inventor
李勇
孙文俊
刘宇航
陈俊文
何正友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202110941340.4A priority Critical patent/CN113629891B/zh
Publication of CN113629891A publication Critical patent/CN113629891A/zh
Application granted granted Critical
Publication of CN113629891B publication Critical patent/CN113629891B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种电动汽车动态无线供电系统效率优化方法,属于无线充电技术领域,解决了现有技术中的感应式DWPT系统中采用DC/DC变换器进行系统输出动态调节控制难度大的问题,本发明包括如下步骤:步骤1.建立基于冲击负荷和储能设备的DWPT系统基波等效模型;步骤2.基于阻抗匹配分析动态无线供电系统高效率运行条件;步骤3.设计储能设备充放电优化控制策略;步骤4.设计实现恒压输出和系统高效率运行控制策略。本发明实现了DWPT系统在宽负荷范围的恒定直流电压输出,并有效抑制了DWPT系统的输出功率波动和效率下降问题,使得DWPT系统始终维持在高效率运行。

Description

一种电动汽车动态无线供电系统效率优化方法
技术领域
本发明属于无线充电技术领域,具体涉及一种电动汽车动态无线供电系统效率优化方法。
背景技术
无线电能传输技术借助空间中的能量载体(如电场、磁场、微波、电磁波等),将电能由电源侧传递到负载侧。其中,感应式WPT技术作为一种安全、可靠的非接触式供电技术,可解决传统有线电能传输设备的诸多缺陷,避免了传统拔插系统存在的接触火花,漏电等安全问题,并使人类应用电能的方式更加灵活。目前,该技术已被广泛应用于人体植入医疗设备,感应式加热器,电动车以及手机等移动设备的无线充电平台。
动态无线供电系统(DynamicWireless Power Transfer,DWPT)作为静态无线充电系统的未来发展趋势,将从根本上解决电动汽车续航里程短的问题。
感应式DWPT系统包括能量发射端和能量接收端两部分:发射端包括高频逆变器、发射端谐振补偿网络和长导轨型发射线圈,高频逆变器将直流电变为高频交流电,高频交流电流经过谐振补偿网络,在发射线圈中产生高频交流磁场;接收端包括接收线圈、接收端谐振补偿网络和高频整流器,接收线圈感应到发射线圈产生的高频磁场后,经过接收端谐振补偿网络,向高频整流器输出高频交流电,高频整流器则将交流电变为直流电,向电机负荷和储能设备提供电能,实现电能从发射端到接收端的无线传输。
在目前的感应式DWPT系统中,由于储能设备采用的是固定功率充放电,而电机由于需要频繁在不同工况下切换,导致电机负荷波动较大,使得DWPT系统的等效负载处于不断波动中,严重影响系统输出功率和效率。
传统的方法主要依赖于直流侧DC/DC变换器,在不同的负载条件下对系统输出进行动态调节。然而,频繁且冲击性的负荷变化使得对DC/DC变换器控制难度加大,对变换器硬件要求以及控制要求较高,限制DWPT系统的适用性。
发明内容
本发明的目的在于:
为解决现有技术中的感应式DWPT系统中采用DC/DC变换器进行系统输出动态调节控制难度大的问题,提供一种电动汽车动态无线供电系统效率优化方法。
本发明采用的技术方案如下:
一种电动汽车动态无线供电系统效率优化方法,包括如下步骤:
步骤1.建立基于冲击负荷和储能设备的DWPT系统基波等效模型;
步骤2.基于阻抗匹配分析动态无线供电系统高效率运行条件;
步骤3.设计储能设备充放电优化控制策略;
步骤4.设计实现恒压输出和系统高效率运行控制策略。
进一步地,所述DWPT系统包括发射端和接收端,所述发射端包括直流输入电源,其直流输入电压为Vdc,所述直流输入电源连接有全桥逆变器,全桥逆变器包含四个MOS管S1、S2、S3和S4,vgs1-vgs4分别对应其门极信号,所述全桥逆变器连接有发射线圈LP,所述发射线圈与谐振电感Lr以及谐振电容Cr和谐振电容CP构成的LCC结构相接,发射线圈LP与接收端的接收线圈LS磁耦合,其互感为M,发射线圈与接收线圈的寄生电阻分别为RP和RS,谐振电感Lr的寄生电阻为Rr;所述接收端的接收线圈串联谐振电容CS,接收线圈连接有整流器,所述整流器分别连接有由牵引变流器和电机组成的牵引负荷和由两个双向DC/DC变换器、蓄电池和超级电容构成的混合储能系统,所述牵引变流器包括六个MOS管G1、G2、G3、G4、G5和G6;混合储能系统包括蓄电池充放电系统和超级电容充放电系统,所述蓄电池充放电系统由双向DC/DC变换器1和蓄电池构成,所述双向DC/DC变换器1由MOS管T1和T2、电感L1和电容C1构成;所述超级电容充放电系统由双向DC/DC变换器2和超级电容构成,所述双向DC/DC变换器2由MOS管T3和T4、电感L2和电容C2构成。
进一步地,步骤1-2建模分析和设计计算的步骤如下:
为了补偿发射线圈和接收线圈的自感,Cr、CP和CS应该满足下式:
Figure GDA0004089967940000021
其中,LP,LS分别为发射线圈和接收线圈自感,Cr为补偿网络中的并联电容,CP为发射线圈的串联电容,CS为接收线圈的串联电容。ω为系统的角频率。
逆变器由移相调制控制,门级驱动信号的占空比为50%,vgs1和vgs4(vgs2和vgs3)之间的相位差产生方波电压vP和导通角α,VP、VS分别为逆变器输出电压vP和整流器输入电压vS的基波分量有效值,iP和iS分别是逆变器输出电流和接收线圈的输出电流。
根据基本谐波近似方法分析,逆变器的输出电压有效值VP和整流器的输入电压有效值Vs可以表示为:
Figure GDA0004089967940000022
其中,α是逆变器的导通角,Vdc是逆变器输入侧直流电压,Vout是整流器输出电压。由上式(2)可知,可以调整α使vP的基波分量在负载变化时满足输出电压的要求。
根据整流器的工作特性可得整流器的等效输入电阻Req与整流器输出端等效负载RL的关系:
Figure GDA0004089967940000031
根据二端口网络的分析方法,LCC-S二端口电路拓扑是一个恒压源输入,ZF是接收侧线圈的反射阻抗。由此可得二端口模型的基本表达式为:
Figure GDA0004089967940000032
其中vF为二端口网络输出电压,iF为二端口网络输出电流,Z11,Z12,Z21,Z22为二端口网络等效阻抗,其表达式如下:
Figure GDA0004089967940000033
式中Rr为谐振电感Lr的寄生电阻,LP为发射线圈自感,RP为LP的寄生电阻。
当线圈谐振时,满足(1)式。根据二端口网络原理,可得电压增益表达式为:
Figure GDA0004089967940000034
同理,可计算耦合线圈输出电压与反射阻抗两端电压的增益为:
Figure GDA0004089967940000035
故系统输出电压为:
Figure GDA0004089967940000036
上式中RS即为接收线圈LS的寄生电阻。
将(2)式代入(8)式,可得输出电压为:
Figure GDA0004089967940000037
在此条件下,为实现系统输出电压Vout恒定,导通角α应满足:
Figure GDA0004089967940000041
为了求解系统最大效率条件,计算二端口网络的电流增益为:
Figure GDA0004089967940000042
由此可以得到系统效率的表达式为:
Figure GDA0004089967940000043
其中GV,GI分别为二端口网络的电压增益和电流增益。
将式(7)(11)代入(12),可得系统效率为:
Figure GDA0004089967940000044
为保证系统工作在最大效率点,对系统效率公式进行分析,找出最大效率对应的负载条件为:
Figure GDA0004089967940000045
其中,Ropt为系统最大效率下对应的负载值,记为最优负载值;
根据输出电压的关系式(9),可以求得系统在最优负载下的输出功率:
Figure GDA0004089967940000046
由式(14)(15)可知,存在一最优负载使得系统效率最大,在满足恒压条件下,该最优负载下的系统功率可视为系统最优功率。因此,在电机负荷功率发生波动时,就会偏离这一最优功率,使得系统效率下降。
进一步地,所述步骤3中的设计方法步骤如下:
步骤3.1.将DWPT系统最优功率Popt与牵引变流器的输入功率P电机做差,得到储能设备需要进行充放电的功率;
P储能=Popt-P电机
步骤3.2.在电动汽车动态充电过程中,将储能设备需要充放电的功率P储能进行低通滤波得到低频功率值;再将总功率P储能减去低频功率得到高频功率值;通过控制双向DC/DC变换器,电池储能设备根据低频功率值进行充放电,超级电容储能设备根据高频功率值进行充放电。
进一步地,所述步骤4中实现恒压输出和系统高效率运行控制策略步骤如下:
考虑到系统成本,发射线圈采用长导轨线圈。接收线圈在发射线圈中间时,互感波动很小,在靠近发射线圈两端时,互感下降很大,但是由于采用长导轨线圈,汽车运行速度快,在发射线圈两端停留时间极短,互感波动剧烈的时间少,可以忽略不计。因此,此动态系统不考虑互感剧烈变化的情况,视为互感不变的系统。基于此,步骤4中实现恒压输出和系统高效率运行控制策略步骤如下:
步骤4.1.采集系统整流输出电压Vout,通过射频通讯发送至发射端的PI控制器,用于调节逆变器的导通角α;
步骤4.2.根据系统参数得到系统最大效率对应的最优功率Popt,采集牵引变流器输入电流IM,得到牵引变流器的输入功率P电机,经过比较做差得到储能设备需要进行补偿的总功率值P储能;采用低通滤波得到总功率值P储能中的低频功率,再通过做差得到高频功率;
步骤4.3.根据步骤4.2中得到的高频功率值除以直流输出电压Vout得到超级电容的双向DC/DC变换器输出电流参考值Isc*,Isc*减去超级电容的双向DC/DC变换器实际输出电流值Isc通过PI控制器输出占空比为Dsc的PWM波PWMsc,并控制超级电容的双向DC/DC变换器根据高频功率值进行充放电;
根据步骤4.2中得到的低频功率值除以直流输出电压Vout得到蓄电池的双向DC/DC变换器输出电流参考值Ibat*,Ibat*,减去蓄电池的双向DC/DC变换器实际输出电流值Ibat,通过PI控制器输出占空比为Dbat的PWM波PWMbat,进而控制蓄电池的双向DC/DC变换器根据低频功率值进行充放电;
控制超级电容和蓄电池的双向DC/DC变换器输出高频低频功率值,补偿系统最优功率Popt与牵引变流器的输入功率P电机的差值,则实现系统最大效率点的追踪。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1、本发明在发射端逆变器采用移相控制技术,并且在接收端通过对电动汽车固有装置储能设备进行充放电优化控制,实现了DWPT系统在宽负荷范围的恒定直流电压输出,并有效抑制了DWPT系统的输出功率波动和效率下降问题,使得DWPT系统始终维持在高效率运行。
2、本发明通过对逆变器移相角控制和储能设备充放电优化控制,实现了负载变化条件下系统的稳定输出,控制系统简单,动态性能优良。
附图说明
图1为基于长导轨型发射线圈的电动汽车动态WPT系统示意图;
图2为包含电机负荷以及储能装置的动态无线供电系统拓扑图;
图3为系统的控制图;
图4为逆变器的控制信号与输出电压电流波形图;
图5为LCC-S拓扑的二端口等效电路图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
一种电动汽车动态无线供电系统效率优化方法,包括如下步骤:
a.建立基于冲击负荷和储能设备的DWPT系统基波等效模型,如图1所示的电动汽车动态WPT系统;
b.基于阻抗匹配分析动态无线供电系统高效率运行条件;
c.设计储能设备充放电优化控制策略;
d.设计实现恒压输出和系统高效率运行控制策略。
进一步地,一种利用储能设备充放电优化控制实现电动汽车动态无线供电系统效率提升的方法,如图2所示,所述动态无线供电系统包括发射端和接收端,所述发射端包括直流输入电源,其直流输入电压为Vdc,所述直流输入电源连接有全桥逆变器,全桥逆变器包含四个MOS管S1、S2、S3和S4,vgs1-vgs4分别对应其门极信号,所述全桥逆变器连接有发射线圈LP,所述发射线圈与谐振电感Lr以及谐振电容Cr和谐振电容CP构成的LCC结构相接,发射线圈LP与接收端的接收线圈LS磁耦合,其互感为M,发射线圈与接收线圈的寄生电阻分别为RP和RS,谐振电感Lr的寄生电阻为Rr;所述接收端的接收线圈串联谐振电容CS,还包括与接收线圈连接的整流器,所述整流器与两部分连接,一部分是由牵引变流器和电机构成的牵引负荷,所述牵引变流器包括六个MOS管G1、G2、G3、G4、G5和G6;另一部分是由两个双向DC/DC变换器和蓄电池以及超级电容构成的混合储能系统;所述混合储能系统包括蓄电池充放电系统和超级电容充放电系统,所述蓄电池充放电系统由双向DC/DC变换器1和蓄电池构成,所述双向DC/DC变换器1由MOS管T1和T2、电感L1和电容C1构成;所述超级电容充放电系统由双向DC/DC变换器2和超级电容构成,所述双向DC/DC变换器2由MOS管T3和T4、电感L2和电容C2构成。
控制图如图3所示,采集系统直流输出电压,即整流输出电压Vout,通过射频通讯发送至发射端的PI控制器,用于调节逆变器的导通角α。根据系统参数得到系统最大效率对应的最优功率Popt,采集牵引变流器输入电流IM,得到牵引变流器的输入功率(即牵引负荷)P电机,经过比较做差得到储能设备需要进行补偿的总功率值P储能。采用低通滤波得到总功率值P储能中的低频功率,再通过做差得到高频功率。高频功率值除以直流输出电压Vout得到超级电容的双向DC/DC变换器输出电流参考值Isc*,Isc*减去超级电容的双向DC/DC变换器实际输出电流值Isc通过PI控制器输出占空比为Dsc的PWM波PWMsc,从而控制超级电容的双向DC/DC变换器根据高频功率值进行充放电;低频功率值除以直流输出电压Vout得到蓄电池的双向DC/DC变换器输出电流参考值Ibat*,Ibat*减去蓄电池的双向DC/DC变换器实际输出电流值Ibat,通过PI控制器输出占空比为Dbat的PWM波PWMbat,进而控制蓄电池的双向DC/DC变换器根据低频功率值进行充放电。控制超级电容和蓄电池的双向DC/DC变换器输出高频低频功率值,即可补偿系统最优功率Popt与牵引变流器的输入功率P电机的差值,从而实现系统最大效率点的追踪。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种电动汽车动态无线供电系统效率优化方法,其特征在于,包括如下步骤:
步骤1.建立基于冲击负荷和储能设备的动态无线供电系统,即DWPT系统的基波等效模型;
步骤2.基于阻抗匹配分析动态无线供电系统高效率运行条件;
步骤3.设计储能设备充放电优化控制策略;
步骤4.设计实现恒压输出和系统高效率运行控制策略;
所述步骤1中等效模型建立的步骤如下:
步骤1.1.将DWPT系统的实际负载牵引变流器和电机以及储能设备等效为负载RL,根据系统负载RL,计算整流器交流输入侧等效负载Req
Figure QLYQS_1
步骤1.2.计算系统的输出电压Vout和系统效率η:
Figure QLYQS_2
其中Vdc为逆变器的输入电压;Lr为补偿网络的谐振电感,Rr为其对应的寄生电阻,ω为系统的角频率;M为耦合机构的互感值;α为逆变器输出电压的导通角;RP,RS分别为发射线圈和接收线圈的寄生电阻;
所述步骤2中的分析条件如下:
为保证系统工作在最大效率点,对系统效率公式进行分析,找出最大效率对应的负载条件为:
Figure QLYQS_3
Ropt为系统最大效率下对应的最优负载值;
在满足系统恒压条件时,系统在最大效率点对应的输出功率即为最优功率点,为:
Figure QLYQS_4
Vout为系统需要满足恒压条件时的输出电压;
所述步骤3中的设计方法步骤如下:
步骤3.1.将DWPT系统最优功率Popt与牵引变流器的输入功率P电机做差,得到储能设备需要进行充放电的功率;
P储能=Popt-P电机
步骤3.2.在电动汽车动态充电过程中,将储能设备需要充放电的功率P储能进行低通滤波得到低频功率值;再将总功率P储能减去低频功率得到高频功率值;通过控制双向DC/DC变换器,电池储能设备根据低频功率值进行充放电,超级电容储能设备根据高频功率值进行充放电;
所述步骤4中实现恒压输出和系统高效率运行控制策略步骤如下:
由于采用长导轨线圈,汽车运行速度快,在发射线圈两端停留时间极短,互感波动忽略不计,此动态系统视为互感不变的系统:
步骤4.1.采集系统整流输出电压Vout,通过射频通讯发送至发射端的PI控制器,用于调节逆变器的导通角α;
步骤4.2.根据系统参数得到系统最大效率对应的最优功率Popt,采集牵引变流器输入电流IM,得到牵引变流器的输入功率P电机,经过比较做差得到储能设备需要进行补偿的总功率值P储能;采用低通滤波得到总功率值P储能中的低频功率,再通过做差得到高频功率;
步骤4.3.根据步骤4.2中得到的高频功率值除以直流输出电压Vout得到超级电容的双向DC/DC变换器输出电流参考值Isc*,Isc*减去超级电容的双向DC/DC变换器实际输出电流值Isc,通过PI控制器输出占空比为Dsc的PWM波,并控制超级电容的双向DC/DC变换器根据高频功率值进行充放电;
根据步骤4.2中得到的低频功率值除以直流输出电压Vout得到蓄电池的双向DC/DC变换器输出电流参考值Ibat*,Ibat*减去蓄电池的双向DC/DC变换器实际输出电流值Ibat,通过PI控制器输出占空比为Dbat的PWM波,进而控制蓄电池的双向DC/DC变换器根据低频功率值进行充放电;
控制超级电容和蓄电池的双向DC/DC变换器输出高频低频功率值,补偿系统最优功率Popt与牵引变流器的输入功率P电机的差值,则实现系统最大效率点的追踪。
2.根据权利要求1所述的一种电动汽车动态无线供电系统效率优化方法,其特征在于,所述DWPT系统包括发射端和接收端,所述发射端包括直流输入电源,其直流输入电压为Vdc,所述直流输入电源连接有全桥逆变器,全桥逆变器包含四个MOS管S1、S2、S3和S4,vgs1-vgs4分别对应其门极信号,所述全桥逆变器连接有发射线圈LP,所述发射线圈与谐振电感Lr以及谐振电容Cr和谐振电容CP构成的LCC结构相接,发射线圈LP与接收端的接收线圈LS磁耦合,其互感为M,发射线圈与接收线圈的寄生电阻分别为RP和RS,谐振电感Lr的寄生电阻为Rr;所述接收端的接收线圈串联谐振电容CS,接收线圈连接有整流器,所述整流器分别连接有由牵引变流器和电机组成的牵引负荷和由两个双向DC/DC变换器、蓄电池和超级电容构成的混合储能系统,所述牵引变流器包括六个MOS管G1、G2、G3、G4、G5和G6;混合储能系统包括蓄电池充放电系统和超级电容充放电系统,所述蓄电池充放电系统由双向DC/DC变换器1和蓄电池构成,所述双向DC/DC变换器1由MOS管T1和T2、电感L1和电容C1构成;所述超级电容充放电系统由双向DC/DC变换器2和超级电容构成,所述双向DC/DC变换器2由MOS管T3和T4、电感L2和电容C2构成。
CN202110941340.4A 2021-08-17 2021-08-17 一种电动汽车动态无线供电系统效率优化方法 Active CN113629891B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110941340.4A CN113629891B (zh) 2021-08-17 2021-08-17 一种电动汽车动态无线供电系统效率优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110941340.4A CN113629891B (zh) 2021-08-17 2021-08-17 一种电动汽车动态无线供电系统效率优化方法

Publications (2)

Publication Number Publication Date
CN113629891A CN113629891A (zh) 2021-11-09
CN113629891B true CN113629891B (zh) 2023-04-28

Family

ID=78385928

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110941340.4A Active CN113629891B (zh) 2021-08-17 2021-08-17 一种电动汽车动态无线供电系统效率优化方法

Country Status (1)

Country Link
CN (1) CN113629891B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114069882B (zh) * 2021-11-16 2024-01-30 华东交通大学 一种高压电力线缆的自供电低压电源系统及其控制方法
CN114759686A (zh) * 2022-05-23 2022-07-15 广西电网有限责任公司电力科学研究院 一种高压输电线路在线监测设备可持续无线供电系统
CN117937786B (zh) * 2024-01-26 2024-07-30 中国人民解放军陆军装甲兵学院 一种无人地面车辆无线电能传输系统多模式控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105262189A (zh) * 2015-11-24 2016-01-20 江南大学 一种物流电动车agv无线电能充电系统
CN206086430U (zh) * 2016-10-21 2017-04-12 成都经纬智联科技有限公司 一种基于分布式能源的车辆无线充电系统
CA3089620A1 (en) * 2018-01-26 2019-08-01 Indigo Technologies, Inc. Wireless power transfer systems with integrated impedance matching and methods for using the same
CN111342668A (zh) * 2020-03-09 2020-06-26 西南交通大学 一种利用可变电感拓展ss结构wpt系统的软开关范围的方法
CN111917195A (zh) * 2020-06-15 2020-11-10 东南大学 一种对锂电池充电的无线充电系统及其效率优化方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9717917B2 (en) * 2016-01-06 2017-08-01 Syntilla Medical LLC Charging system incorporating independent charging and communication with multiple implanted devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105262189A (zh) * 2015-11-24 2016-01-20 江南大学 一种物流电动车agv无线电能充电系统
CN206086430U (zh) * 2016-10-21 2017-04-12 成都经纬智联科技有限公司 一种基于分布式能源的车辆无线充电系统
CA3089620A1 (en) * 2018-01-26 2019-08-01 Indigo Technologies, Inc. Wireless power transfer systems with integrated impedance matching and methods for using the same
CN111342668A (zh) * 2020-03-09 2020-06-26 西南交通大学 一种利用可变电感拓展ss结构wpt系统的软开关范围的方法
CN111917195A (zh) * 2020-06-15 2020-11-10 东南大学 一种对锂电池充电的无线充电系统及其效率优化方法

Also Published As

Publication number Publication date
CN113629891A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
CN113629891B (zh) 一种电动汽车动态无线供电系统效率优化方法
CN108683229B (zh) 一种电动汽车无线充电副边输出控制系统及其控制方法
CN109895640B (zh) 一种电动汽车无线充电两级控制系统及控制方法
CN109130903B (zh) 一种双侧lccl-t拓扑的低压大功率无线充电系统
CN111835092B (zh) 一种无线充电系统的双边lcc补偿网络调节方法及系统
CN108656994B (zh) 一种可变电容的电动汽车ipt系统
CN102969776B (zh) 一种电动汽车无线充电装置
CN109391044A (zh) 一种感应电能传输系统高效稳压综合控制系统及方法
CN105634093A (zh) 一种多手机可移动三维无线充电装置
CN110936827B (zh) 无线充电系统、无线充电控制方法及汽车无线充电装置
CN112701806B (zh) 适用于无线供电系统的双边lcc补偿网络参数设计方法
CN110557027B (zh) 一种应用于感应电能传输系统最大效率跟踪dc-dc变换器及其控制方法
CN111555420A (zh) 恒流-恒压输出模式可切换的感应式充电系统及方法
CN110912280A (zh) 基于双向倍压电路的无线电能传输系统
CN109774520A (zh) 提升电动汽车无线充电线圈互操作性的发射端位置自适应调节方法
CN111532151A (zh) 一种电动汽车无线充电的系统及方法
CN107579659A (zh) 适应变压器高寄生参数的恒流谐振型直流变换电路及方法
CN113595256B (zh) 一种基于混合调制技术提升ss结构wpt系统轻载效率的方法
Jiang et al. A cascaded topology and control method for two-phase receivers of dynamic wireless power transfer systems
CN116780788A (zh) 基于lcc-s补偿拓扑结的无线充电系统及其控制方法
CN113726029B (zh) 一种基于可变电感的wpt系统高效恒流/恒压充电方法
CN112467891B (zh) 一种基于全桥半桥切换的ipt系统效率优化方法
CN113691028A (zh) 一种基于线圈位置优化排布的wpt效率提升系统
CN219018546U (zh) 一种用于无线充电系统的收发电路
CN116317204A (zh) 基于重构整流器的抗偏移失谐lcl-s型补偿无线电能传输系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant