CN113627977A - 一种基于异构图的房屋价值预测方法 - Google Patents

一种基于异构图的房屋价值预测方法 Download PDF

Info

Publication number
CN113627977A
CN113627977A CN202110868775.0A CN202110868775A CN113627977A CN 113627977 A CN113627977 A CN 113627977A CN 202110868775 A CN202110868775 A CN 202110868775A CN 113627977 A CN113627977 A CN 113627977A
Authority
CN
China
Prior art keywords
house
graph
network
information
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110868775.0A
Other languages
English (en)
Inventor
彭浩
刘琳
刘明生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202110868775.0A priority Critical patent/CN113627977A/zh
Publication of CN113627977A publication Critical patent/CN113627977A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0206Price or cost determination based on market factors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • G06Q30/0623Item investigation
    • G06Q30/0625Directed, with specific intent or strategy
    • G06Q30/0629Directed, with specific intent or strategy for generating comparisons
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/16Real estate

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Finance (AREA)
  • Accounting & Taxation (AREA)
  • Data Mining & Analysis (AREA)
  • Development Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Molecular Biology (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • Game Theory and Decision Science (AREA)
  • Human Resources & Organizations (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开基于异构图的房屋价值预测方法,利用房屋信息获取元路径和元图,构建异构信息网络;计算两个房屋之间的估价相似度,利用相似度来表明任何两个房屋实例之间的连通性,构造加权邻接矩阵来存储房屋之间的语义相似度;通过主成分分析求出房屋的属性矩阵;加权邻接矩阵和房屋属性矩阵作为输入,将整体图拆分为多个重叠的子图,并对每个子图并行进行特征学习;使用图形卷积网络从异构信息网络中提取房屋相关数据的空间信息,使用长短期记忆网络对房屋交易数据的时间依赖性进行建模;在长短期记忆网络提供的嵌入和价格标签之间添加一个多层感知器来解码,预测房价。本发明能够准确反映目标房屋的市场价值,克服房屋交易的不连续性和稀缺性。

Description

一种基于异构图的房屋价值预测方法
技术领域
本发明属于机器学习和数据挖掘技术领域,特别是涉及一种基于异构图的房屋价值预测方法。
背景技术
随着经济的高速发展,人民生活质量得到了极大提高,对住房质量、住房环境、小区配套服务等的要求也随之不断提高。在过去的几年时间里,房地产的价格快速地上涨,房价成了各种社会矛盾的焦点。住房问题本生就是关系国计民生的大问题,准确和最新的房屋估价对各种房地产利益相关者至关重要。传统上,房价评估是通过基于目标房产、周边地区和历史数据的专家知识的房地产评估来进行的,主要通过主要检查房价和一系列量化特征之间的关系,如房产大小、室内装修、卧室和设施的数量、到学校集水区的距离等,来自动化房屋估价。
现有的房地产估价方法不足以解决现实生活中房地产市场表现出的两个基本问题:数据新鲜度和稀疏性问题。这里的关键问题是两笔房产交易之间会有几年的间隔,在任何给定的时间内,市场上都只有少量的房子。新交易的数量不仅少,而且新交易的房屋分布在数以千计的家庭中的一个大的人口区域,使得很难对交易房屋之间的关系进行有效的建模和推理。此外,2000年以前的交易数据往往不是数字形式,这进一步降低了房屋交易数据的可用性。当前房屋交易数据的缺乏意味着先前方法所依赖的许多定价信息不能准确反映目标房屋的市场价值,鉴于复杂而动态的房地产市场,房屋交易的不连续性和稀缺性使得建立一个准确的房屋估价预测器变得极其复杂。
发明内容
为了解决上述问题,本发明提出了一种基于异构图的房屋价值预测方法,在异构信息网络(HIN)中组织房屋数据,其中图形节点是房屋实体和属性;使用图形卷积网络(GCN)从HIN中提取房屋相关数据的空间信息,然后使用长短期记忆网络(LSTM)对房屋交易数据的时间依赖性进行建模;能够准确反映目标房屋的市场价值,克服房屋交易的不连续性和稀缺性。
为达到上述目的,本发明采用的技术方案是:一种基于异构图的房屋价值预测方法,包括步骤:
S10,利用房屋信息获取元路径和元图,构建异构信息网络;
S20,计算两个房屋之间的估价相似度,利用相似度来表明任何两个房屋实例之间的连通性,构造加权邻接矩阵来存储房屋之间的语义相似度;
S30,通过主成分分析求出房屋的属性矩阵;
S40,加权邻接矩阵和房屋属性矩阵作为输入,将整体图拆分为多个重叠的子图,并对每个子图并行进行特征学习;
S50,使用图形卷积网络从异构信息网络中提取房屋相关数据的空间信息,然后使用长短期记忆网络对房屋交易数据的时间依赖性进行建模;
S60,在长短期记忆网络提供的嵌入和价格标签之间添加一个多层感知器来解码,从而预测房价。
进一步的是,所述房屋信息包括地理信息、财务信息、设施信息和平面图信息;在所述步骤S10中利用房屋信息获取元路径和元图,构建异构信息网络,包括步骤:
S11,元路径是通过节点之间语义上有意义的关系连接一对网络节点的路径,枚举每两个房屋实体之间的所有现有关系,作为预定义的元路径,两个房屋之间具有任意数量的元路径;
S12,元图以有向无环图的形式,用作模板来捕获一对节点之间现有元关系的任意但有意义的组合。
进一步的是,在所述步骤S20中,计算两个房屋之间的估价相似度,利用相似度来表明任何两个房屋实例之间的连通性,构造加权邻接矩阵来存储房屋之间的语义相似度,包括步骤:
S21,元图数量由子串元路径计数的矩阵之间的哈达玛乘积来计数;相似性函数S(hi,hi)的核心是通过对不同的结构关系应用不同的权重来标准化房屋hi和房屋hj之间的元路径和元图的重要性;
S22,使用计算出的相似度来,通过N×N加权邻接矩阵来存储N个房屋之间的语义相似度。
进一步的是,在步骤S30中,通过主成分分析求出房屋的属性矩阵,包括步骤:
S31,使用独热编码来表示房屋数据中的每一个属性,将它们连接成一个数值向量,构成属性向量,使得属性向量与HIN中的房屋实体相关联;
S32,通过主成分分析将属性向量的维数减少到D,我们最终形成房屋属性矩阵X,房屋属性矩阵X形状为N×D。
进一步的是,在所述步骤S40中,加权邻接矩阵和房屋属性矩阵作为输入,将整体图拆分为多个重叠的子图,并对每个子图并行进行特征学习;
S41,加权邻接矩阵A和房屋属性矩阵X作为输入;
S42,房屋在本质上被划分为相邻的地理区域,将整体图拆分为多个重叠的子图,并对每个子图并行进行特征学习。
进一步的是,在所述步骤S50中,使用图形卷积网络从异构信息网络中提取房屋相关数据的空间信息,然后使用长短期记忆网络对房屋交易数据的时间依赖性进行建模,包括步骤:
S51,对于第i个子图Ai,使用图卷积神经网络来学习每月数值特征嵌入,并利用逐层传播规则获取房屋相关数据的空间信息;
S52,由于忽视价格标签中的时间差,从图卷积神经网络获得的房屋嵌入不能保证最新的价格信息。因此,利用长短期记忆网络来学习和更新每栋房子的估价,将图卷积神经网络的输出作为长短期记忆网络单位的输入;
S53,长短期记忆网络的输出将作为初始房屋属性传递给下一个图卷积神经网络单位;房屋的特征嵌入根据交易时间转化为时间序列,显著缓解了短期内房屋交易的不连续性;并在进行细粒度校准之前,将所有单个嵌入
Figure BDA0003188296360000032
连接成
Figure BDA0003188296360000031
进一步的是,在所述步骤S60中,在长短期记忆网络提供的嵌入和价格标签之间添加一个多层感知器来解码,从而预测房价,包括步骤:
S61,在长短期记忆网络提供的嵌入和价格标签之间添加一个多层感知器来解码,从而预测房价;
S62,为每个子图实例化一个独立的图卷积神经网络,以并行获得它自己的特征嵌入;为了协调这些嵌入结果并形成一个整体画面,我们使用距离调节来校准嵌入。
进一步的是,还包括步骤S70,在图形卷积网络与长短期记忆网络单元在管道中展开多次任务,将预测结果用于训练后续的图形卷积网络与长短期记忆网络单元。
采用本技术方案的有益效果:
本发明为了为了解决房屋交易数据的空间和时间稀疏,提取有用的信息,在异构信息网络(HIN)中存储与房屋相关的数据,采用HIN来建模房屋实体之间的关系,如位置、设施或平面图,其中HIN节点是房屋的不同类型的实体及其特征,而边表示一对实体之间的不同关系,充分利用特征学习中的房屋相似性和时间依赖性,精心考虑了数据的稀疏性,然后将一个大的HIN划分成更小的子图,以便可以在更小的图上并行执行房屋数据表示的学习。根据构造的HIN,计算出邻接矩阵和属性矩阵,邻接矩阵A与属性矩阵一起输入GCN和LSTM中作为输入。
本发明为了同时捕捉房价的时间和空间特征,设计一个房价的终身预测模型,核心是建立在GCN和LSTM基础上的深度神经网络。使用图形卷积网络(GCN) 从HIN中提取房屋相关数据的空间信息,然后使用长短期记忆网络(LSTM)网络对房屋交易数据对时间依赖性进行建模。为了避免内存不足,我们可以自然地将房屋图分成子图,由重叠区域内的房屋共同连接。相应地,我们将基本的GCN-LSTM 训练单元分解成独立且并行的GCN-LSTM实例,每个实例都被用于每个子图中的特征嵌入。这样的并行性最终会形成一个GCN-LSTM阵列,从而大大加快特征学习的过程。
附图说明
图1为本发明的一种基于异构图的房屋价值预测方法流程示意图;
图2为本发明的一种基于异构图的房屋价值预测方法的原理框架示意图;
图3为本发明的元模式,元路径,元图示意图;
图4为本发明的特征学习的基本单元示意图;
图5为本发明优化实施例中的模型预测的结构原理示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明作进一步阐述。
在本实施例中,参见图1和图2所示,本发明提出了一种基于异构图的房屋价值预测方法,包括步骤:
S10,利用房屋信息获取元路径和元图,构建异构信息网络;
S20,计算两个房屋之间的估价相似度,利用相似度来表明任何两个房屋实例之间的连通性,构造加权邻接矩阵来存储房屋之间的语义相似度;
S30,通过主成分分析求出房屋的属性矩阵;
S40,加权邻接矩阵和房屋属性矩阵作为输入,将整体图拆分为多个重叠的子图,并对每个子图并行进行特征学习;
S50,使用图形卷积网络从异构信息网络中提取房屋相关数据的空间信息,然后使用长短期记忆网络对房屋交易数据的时间依赖性进行建模;
S60,在长短期记忆网络提供的嵌入和价格标签之间添加一个多层感知器来解码,从而预测房价。
作为上述实施例的优化方案,如图3所示,所述房屋信息包括地理信息、财务信息、设施信息和平面图信息;在所述步骤S10中利用房屋信息获取元路径和元图,构建异构信息网络,包括步骤:
S11,元路径是通过节点之间语义上有意义的关系连接一对网络节点的路径,枚举每两个房屋实体之间的所有现有关系,作为预定义的元路径,两个房屋之间具有任意数量的元路径;
S12,元图以有向无环图的形式,用作模板来捕获一对节点之间现有元关系的任意但有意义的组合。
作为上述实施例的优化方案,在所述步骤S20中,计算两个房屋之间的估价相似度,利用相似度来表明任何两个房屋实例之间的连通性,构造加权邻接矩阵来存储房屋之间的语义相似度,包括步骤:
S21,元图数量由子串元路径计数的矩阵之间的哈达玛乘积来计数;相似性函数S(hi,hi)的核心是通过对不同的结构关系应用不同的权重来标准化房屋hi和房屋hj之间的元路径和元图的重要性;
S22,使用计算出的相似度来,通过N×N加权邻接矩阵来存储N个房屋之间的语义相似度。
作为上述实施例的优化方案,在步骤S30中,通过主成分分析求出房屋的属性矩阵,包括步骤:
S31,使用独热编码来表示房屋数据中的每一个属性,将它们连接成一个数值向量,构成属性向量,使得属性向量与HIN中的房屋实体相关联;
S32,通过主成分分析将属性向量的维数减少到D,我们最终形成房屋属性矩阵X,房屋属性矩阵X形状为N×D。
进一步的是,在所述步骤S40中,如图4所示,加权邻接矩阵和房屋属性矩阵作为输入,将整体图拆分为多个重叠的子图,并对每个子图并行进行特征学习;
S41,加权邻接矩阵A和房屋属性矩阵X作为输入;
S42,房屋在本质上被划分为相邻的地理区域,将整体图拆分为多个重叠的子图,并对每个子图并行进行特征学习。
具体来说,将加权邻接矩阵A分成几个重叠的子图,它可以形式化为:
A=A1∪A2…∪Aj
其中,j是划分的子图的总数。
作为上述实施例的优化方案,在所述步骤S50中,使用图形卷积网络从异构信息网络中提取房屋相关数据的空间信息,然后使用长短期记忆网络对房屋交易数据的时间依赖性进行建模,包括步骤:
S51,对于第i个子图Ai,使用图卷积神经网络来学习每月数值特征嵌入,并利用逐层传播规则获取房屋相关数据的空间信息,具体公式为:
Figure BDA0003188296360000061
其中
Figure BDA0003188296360000064
是第i个子图的输入特征矩阵,
Figure BDA0003188296360000065
是第l层第i个子图的参数矩阵;
S52,由于忽视价格标签中的时间差,从图卷积神经网络获得的房屋嵌入不能保证最新的价格信息。因此,利用长短期记忆网络来学习和更新每栋房子的估价,将图卷积神经网络的输出作为长短期记忆网络单位的输入;长短期记忆网络的产出形式化公式为:
Figure BDA0003188296360000062
其中,θ(i,t)表示LSTM单元的参数,
Figure BDA0003188296360000063
是经过GCN训练后在第t 个月的第l层的第i个子图的输出结果;
S53,长短期记忆网络的输出将作为初始房屋属性传递给下一个图卷积神经网络单位;房屋的特征嵌入根据交易时间转化为时间序列,显著缓解了短期内房屋交易的不连续性;并在进行细粒度校准之前,将所有单个嵌入
Figure BDA0003188296360000078
连接成
Figure BDA0003188296360000071
进一步的是,在所述步骤S60中,如图5所示,在长短期记忆网络提供的嵌入和价格标签之间添加一个多层感知器来解码,从而预测房价,包括步骤:
S61,在长短期记忆网络提供的嵌入和价格标签之间添加一个多层感知器来解码,从而预测房价
Figure BDA0003188296360000079
MLP是多层感知器计算函数;
S62,为每个子图实例化一个独立的图卷积神经网络,以并行获得它自己的特征嵌入;为了协调这些嵌入结果并形成一个整体画面,我们使用距离调节来校准嵌入,确保不同子图之间的房屋在不同的GCN中具有紧密的嵌入方案:
Figure BDA0003188296360000072
其中,
Figure BDA00031882963600000710
表示那些重叠房屋的集合,即
Figure BDA0003188296360000073
g(pα) 表示包含pα房屋的子图的数量,
Figure BDA00031882963600000711
表示pα房屋第t个月第β层GCN的嵌入。
S63,使用以下损失函数来优化模型参数:
Figure BDA0003188296360000074
其中,
Figure BDA00031882963600000712
为均方根误差(RMSE);RMSE可以形式化为:
Figure BDA0003188296360000075
其中,
Figure BDA00031882963600000713
分别指第j栋房屋的预测价格和销售价格。
在终身学习网络中,为了减小不同任务对特征学习有效性的影响。采用强化学习对损失函数进行校准:
Figure BDA0003188296360000076
其中:λi表示惩罚系数,表示先前任务对当前任务的影响,
Figure 1
表示个体传播损失。
作为上述实施例的优化方案,还包括步骤S70,在图形卷积网络与长短期记忆网络单元在管道中展开多次任务,将预测结果用于训练后续的图形卷积网络与长短期记忆网络单元。为了建立一个能够对房价的终身预测框架,设计了一个多任务学习方案,其中图形卷积网络与长短期记忆网络单元在管道中展开多次。可以继承在t月获得的网络来预测未来t+1月的房价。同时,预测还将更新房屋 Ht+1在时间t+1的嵌入,用于训练后续的图形卷积网络与长短期记忆网络单元。重复这个过程,直到目标是某个月t+n所有房屋的估价。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (8)

1.一种基于异构图的房屋价值预测方法,其特征在于,包括步骤:
S10,利用房屋信息获取元路径和元图,构建异构信息网络;
S20,计算两个房屋之间的估价相似度,利用相似度来表明任何两个房屋实例之间的连通性,构造加权邻接矩阵来存储房屋之间的语义相似度;
S30,通过主成分分析求出房屋的属性矩阵;
S40,加权邻接矩阵和房屋属性矩阵作为输入,将整体图拆分为多个重叠的子图,并对每个子图并行进行特征学习;
S50,使用图形卷积网络从异构信息网络中提取房屋相关数据的空间信息,然后使用长短期记忆网络对房屋交易数据的时间依赖性进行建模;
S60,在长短期记忆网络提供的嵌入和价格标签之间添加一个多层感知器来解码,从而预测房价。
2.根据权利要求1所述的一种基于异构图的房屋价值预测方法,其特征在于,所述房屋信息包括地理信息、财务信息、设施信息和平面图信息;在所述步骤S10中利用房屋信息获取元路径和元图,构建异构信息网络,包括步骤:
S11,元路径是通过节点之间语义上有意义的关系连接一对网络节点的路径,枚举每两个房屋实体之间的所有现有关系,作为预定义的元路径,两个房屋之间具有任意数量的元路径;
S12,元图以有向无环图的形式,用作模板来捕获一对节点之间现有元关系的任意但有意义的组合。
3.根据权利要求2所述的一种基于异构图的房屋价值预测方法,其特征在于,在所述步骤S20中,计算两个房屋之间的估价相似度,利用相似度来表明任何两个房屋实例之间的连通性,构造加权邻接矩阵来存储房屋之间的语义相似度,包括步骤:
S21,元图数量由子串元路径计数的矩阵之间的哈达玛乘积来计数;相似性函数S(hi,hi)的核心是通过对不同的结构关系应用不同的权重来标准化房屋hi和房屋hj之间的元路径和元图的重要性;
S22,使用计算出的相似度来,通过N×N加权邻接矩阵来存储N个房屋之间的语义相似度。
4.根据权利要求3所述的一种基于异构图的房屋价值预测方法,其特征在于,在步骤S30中,通过主成分分析求出房屋的属性矩阵,包括步骤:
S31,使用独热编码来表示房屋数据中的每一个属性,将它们连接成一个数值向量,构成属性向量;
S32,通过主成分分析将属性向量的维数减少到D,我们最终形成房屋属性矩阵X,房屋属性矩阵X形状为N×D。
5.根据权利要求4所述的一种基于异构图的房屋价值预测方法,其特征在于,在所述步骤S40中,加权邻接矩阵和房屋属性矩阵作为输入,将整体图拆分为多个重叠的子图,并对每个子图并行进行特征学习;
S41,加权邻接矩阵A和房屋属性矩阵X作为输入;
S42,房屋在本质上被划分为相邻的地理区域,将整体图拆分为多个重叠的子图,并对每个子图并行进行特征学习。
6.根据权利要求5所述的一种基于异构图的房屋价值预测方法,其特征在于,在所述步骤S50中,使用图形卷积网络从异构信息网络中提取房屋相关数据的空间信息,然后使用长短期记忆网络对房屋交易数据的时间依赖性进行建模,包括步骤:
S51,对于第i个子图Ai,使用图卷积神经网络来学习每月数值特征嵌入,并利用逐层传播规则获取房屋相关数据的空间信息;
S52,利用长短期记忆网络来学习和更新每栋房子的估价,将图卷积神经网络的输出作为长短期记忆网络单位的输入;
S53,长短期记忆网络的输出将作为初始房屋属性传递给下一个图卷积神经网络单位。
7.根据权利要求6所述的一种基于异构图的房屋价值预测方法,其特征在于,在所述步骤S60中,在长短期记忆网络提供的嵌入和价格标签之间添加一个多层感知器来解码,从而预测房价,包括步骤:
S61,在长短期记忆网络提供的嵌入和价格标签之间添加一个多层感知器来解码,从而预测房价;
S62,为每个子图实例化一个独立的图卷积神经网络,以并行获得它自己的特征嵌入,并使用距离调节来校准嵌入;
S63,使用损失函数来优化模型参数。
8.根据权利要求1所述的一种基于异构图的房屋价值预测方法,其特征在于,还包括步骤S70,在图形卷积网络与长短期记忆网络单元在管道中展开多次任务,将预测结果用于训练后续的图形卷积网络与长短期记忆网络单元。
CN202110868775.0A 2021-07-30 2021-07-30 一种基于异构图的房屋价值预测方法 Pending CN113627977A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110868775.0A CN113627977A (zh) 2021-07-30 2021-07-30 一种基于异构图的房屋价值预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110868775.0A CN113627977A (zh) 2021-07-30 2021-07-30 一种基于异构图的房屋价值预测方法

Publications (1)

Publication Number Publication Date
CN113627977A true CN113627977A (zh) 2021-11-09

Family

ID=78381938

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110868775.0A Pending CN113627977A (zh) 2021-07-30 2021-07-30 一种基于异构图的房屋价值预测方法

Country Status (1)

Country Link
CN (1) CN113627977A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114757395A (zh) * 2022-03-22 2022-07-15 欧亚高科数字技术有限公司 一种基于智能物联网的危房监测方法
CN117539920A (zh) * 2024-01-04 2024-02-09 上海途里信息科技有限公司 基于房产交易多维度数据的数据查询方法及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101692521B1 (ko) * 2016-02-29 2017-01-17 권형달 부동산 정보 제공 및 공유 장치
CN109992784A (zh) * 2019-04-08 2019-07-09 北京航空航天大学 一种融合多模态信息的异构网络构建和距离度量方法
CN111080356A (zh) * 2019-12-11 2020-04-28 西南科技大学 一种利用机器学习回归模型计算住宅价格影响因素的方法
JP2020068000A (ja) * 2018-10-19 2020-04-30 株式会社Preferred Networks 訓練装置、訓練方法、予測装置、予測方法及びプログラム
US20200135017A1 (en) * 2018-10-29 2020-04-30 Beihang University Transportation network speed foreeasting method using deep capsule networks with nested lstm models
US20200160215A1 (en) * 2018-11-16 2020-05-21 NEC Laboratories Europe GmbH Method and system for learning numerical attributes on knowledge graphs
CN111897939A (zh) * 2020-08-12 2020-11-06 腾讯科技(深圳)有限公司 视觉对话方法、视觉对话模型的训练方法、装置及设备
AU2020102465A4 (en) * 2020-09-28 2020-11-12 Chen, Rundong Mr A method of predicting housing price using the method of combining multiple source data with mathematical model
CN112418939A (zh) * 2020-11-24 2021-02-26 中国科学技术大学先进技术研究院 基于神经网络挖掘房价时空关联性以预测房价的方法
CN112418547A (zh) * 2020-12-03 2021-02-26 北京工业大学 一种基于gcn-lstm组合模型的公交车站点客流量预测方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101692521B1 (ko) * 2016-02-29 2017-01-17 권형달 부동산 정보 제공 및 공유 장치
JP2020068000A (ja) * 2018-10-19 2020-04-30 株式会社Preferred Networks 訓練装置、訓練方法、予測装置、予測方法及びプログラム
US20200135017A1 (en) * 2018-10-29 2020-04-30 Beihang University Transportation network speed foreeasting method using deep capsule networks with nested lstm models
US20200160215A1 (en) * 2018-11-16 2020-05-21 NEC Laboratories Europe GmbH Method and system for learning numerical attributes on knowledge graphs
CN109992784A (zh) * 2019-04-08 2019-07-09 北京航空航天大学 一种融合多模态信息的异构网络构建和距离度量方法
CN111080356A (zh) * 2019-12-11 2020-04-28 西南科技大学 一种利用机器学习回归模型计算住宅价格影响因素的方法
CN111897939A (zh) * 2020-08-12 2020-11-06 腾讯科技(深圳)有限公司 视觉对话方法、视觉对话模型的训练方法、装置及设备
AU2020102465A4 (en) * 2020-09-28 2020-11-12 Chen, Rundong Mr A method of predicting housing price using the method of combining multiple source data with mathematical model
CN112418939A (zh) * 2020-11-24 2021-02-26 中国科学技术大学先进技术研究院 基于神经网络挖掘房价时空关联性以预测房价的方法
CN112418547A (zh) * 2020-12-03 2021-02-26 北京工业大学 一种基于gcn-lstm组合模型的公交车站点客流量预测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孔德江 等: "时空嵌入式生成对抗网络的地点预测方法", 模式识别与人工智能, vol. 31, no. 1, pages 49 - 60 *
彭浩: "Lifelong Property Price Prediction: A Case Study for the Toronto Real Estate Market", IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, vol. 35, no. 3, pages 2765 - 2780 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114757395A (zh) * 2022-03-22 2022-07-15 欧亚高科数字技术有限公司 一种基于智能物联网的危房监测方法
CN117539920A (zh) * 2024-01-04 2024-02-09 上海途里信息科技有限公司 基于房产交易多维度数据的数据查询方法及系统
CN117539920B (zh) * 2024-01-04 2024-04-05 上海途里信息科技有限公司 基于房产交易多维度数据的数据查询方法及系统

Similar Documents

Publication Publication Date Title
Antuchevičiene et al. Multiple criteria construction management decisions considering relations between criteria
Mimis et al. Property valuation with artificial neural network: The case of Athens
Alfaro-Navarro et al. A fully automated adjustment of ensemble methods in machine learning for modeling complex real estate systems
Porteiro et al. Electricity demand forecasting in industrial and residential facilities using ensemble machine learning
CN101853290A (zh) 基于地理信息系统的气象服务效益评估方法
Li et al. A rough set approach for estimating correlation measures in quality function deployment
Dai et al. Modeling change-pattern-value dynamics on land use: an integrated GIS and artificial neural networks approach
US11087344B2 (en) Method and system for predicting and indexing real estate demand and pricing
Zhang et al. A two-stage subgroup decision-making method for processing large-scale information
CN113627977A (zh) 一种基于异构图的房屋价值预测方法
Lei et al. A deep reinforcement learning framework for life-cycle maintenance planning of regional deteriorating bridges using inspection data
Lam et al. An artificial neural network and entropy model for residential property price forecasting in Hong Kong
Renigier-Biłozor et al. Genetic algorithm application for real estate market analysis in the uncertainty conditions
Pham et al. Efficient estimation and optimization of building costs using machine learning
JP7304698B2 (ja) 水需要予測方法およびシステム
Song et al. Dynamic hesitant fuzzy Bayesian network and its application in the optimal investment port decision making problem of “twenty-first century maritime silk road”
Mehdipoor et al. Developing a workflow to identify inconsistencies in volunteered geographic information: a phenological case study
Fan et al. Evaluating the performance of inclusive growth based on the BP neural network and machine learning approach
Bajat et al. Spatial hedonic modeling of housing prices using auxiliary maps
Wu et al. A BP Neural Network‐Based GIS‐Data‐Driven Automated Valuation Framework for Benchmark Land Price
Bijak et al. Modelling migration: Decisions, processes and outcomes
CN115796585A (zh) 一种企业经营风险评估方法及系统
Sun Intelligent data mining based on market circulation of production factors
CN114282657A (zh) 一种市场数据长期预测模型训练方法、装置、设备及存储介质
Kozera-Kowalska et al. A framework to measure the taxonomic of economic anchor: A case study of the Three Seas Initiative countries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination