CN113622019A - 一种太阳能电池用氢化纳米晶硅薄膜的制备方法 - Google Patents
一种太阳能电池用氢化纳米晶硅薄膜的制备方法 Download PDFInfo
- Publication number
- CN113622019A CN113622019A CN202010386090.8A CN202010386090A CN113622019A CN 113622019 A CN113622019 A CN 113622019A CN 202010386090 A CN202010386090 A CN 202010386090A CN 113622019 A CN113622019 A CN 113622019A
- Authority
- CN
- China
- Prior art keywords
- film
- silicon film
- temperature
- annealing
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910021423 nanocrystalline silicon Inorganic materials 0.000 title claims abstract description 55
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 238000002425 crystallisation Methods 0.000 claims abstract description 32
- 238000000137 annealing Methods 0.000 claims abstract description 27
- 230000008025 crystallization Effects 0.000 claims abstract description 26
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 25
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 24
- 239000001257 hydrogen Substances 0.000 claims abstract description 22
- 229910052751 metal Inorganic materials 0.000 claims abstract description 19
- 239000002184 metal Substances 0.000 claims abstract description 19
- 238000010790 dilution Methods 0.000 claims abstract description 18
- 239000012895 dilution Substances 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 15
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000007789 gas Substances 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- 238000004151 rapid thermal annealing Methods 0.000 claims abstract description 8
- 238000001953 recrystallisation Methods 0.000 claims abstract description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 7
- 239000010703 silicon Substances 0.000 claims abstract description 7
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 7
- 239000010937 tungsten Substances 0.000 claims abstract description 7
- 238000007740 vapor deposition Methods 0.000 claims abstract description 7
- 238000004857 zone melting Methods 0.000 claims abstract description 7
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 claims abstract description 4
- 230000001678 irradiating effect Effects 0.000 claims abstract description 4
- 230000008018 melting Effects 0.000 claims abstract description 4
- 238000002844 melting Methods 0.000 claims abstract description 4
- 230000007935 neutral effect Effects 0.000 claims abstract description 4
- 238000007747 plating Methods 0.000 claims abstract description 3
- 239000010408 film Substances 0.000 claims description 68
- 238000000034 method Methods 0.000 claims description 61
- 239000010409 thin film Substances 0.000 claims description 42
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 20
- 238000004050 hot filament vapor deposition Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims description 9
- 125000004429 atom Chemical group 0.000 claims description 7
- 230000008021 deposition Effects 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 239000012071 phase Substances 0.000 claims description 6
- 238000011160 research Methods 0.000 claims description 6
- 239000007790 solid phase Substances 0.000 claims description 6
- 229910018125 Al-Si Inorganic materials 0.000 claims description 5
- 229910018520 Al—Si Inorganic materials 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 238000005229 chemical vapour deposition Methods 0.000 claims description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 claims description 3
- 230000006698 induction Effects 0.000 claims description 3
- 238000005499 laser crystallization Methods 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000010587 phase diagram Methods 0.000 claims description 3
- 150000003376 silicon Chemical class 0.000 claims description 3
- 238000009776 industrial production Methods 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 11
- 210000002381 plasma Anatomy 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 2
- 239000002159 nanocrystal Substances 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B1/00—Single-crystal growth directly from the solid state
- C30B1/02—Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B13/00—Single-crystal growth by zone-melting; Refining by zone-melting
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1804—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
- H01L31/182—Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
- H01L31/1824—Special manufacturing methods for microcrystalline Si, uc-Si
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/545—Microcrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Thermal Sciences (AREA)
- Electromagnetism (AREA)
- General Chemical & Material Sciences (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Composite Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Recrystallisation Techniques (AREA)
Abstract
本发明涉及一种太阳能电池用氢化纳米晶硅薄膜的制备方法,包括以下步骤:S1:快速热退火;把非晶硅薄膜放入有气氛保护下的退火炉里进行退火处理,使其由非晶态薄膜转变为纳米晶态薄膜;S2:区域熔化再结晶;将一束高能量源照射硅基薄膜的表面,使薄膜材料在很短的时间内被加热到很高的温度,在高温下熔化后再结晶;S3:金属诱导晶化;在衬底是上镀一层金属薄膜,再在其上镶一层非晶硅薄膜,然后在较低的温度下退火;S4:高氢稀释气相沉积法;在真空反应室中安装加热丝,当高氢稀释的SiH4或其它源气体通过温度高达1800~2000度的钨丝时,源气体被分解形成各种中性基团,然后在衬底上沉积成纳米晶硅薄膜。
Description
技术领域
本发明涉及单晶生长的控制或调节方法领域,特别是一种太阳能电池用氢化纳米晶硅薄膜的制备方法。
背景技术
氢化纳米晶硅(nc-Si:H)薄膜材料是由硅纳米晶粒和晶粒间界构成的纳米结构材料。
nc-Si:H薄膜材料具有高的电导率、宽带隙、光致发光等特性,在光电子器件、薄膜晶体管、薄膜太阳能电池中有重要的应用。一方面,nc-Si:H薄膜材料具有量子限制效应心,故通过调节晶粒尺寸和晶化率来调节其带隙大小,应用于对不同波段的光的吸收;另一方面,nc-Si:H薄膜材料具有良好的光照稳定性,可有效地遏制光致衰退效应;此外,nc-Si:H薄膜材料由于其良好的工艺兼容能力,故在硅基纳米薄膜太阳能电池、大面积显示屏等中有较大应用。
1986年,德国首先报道了有关nc-Si:H薄膜的制备,引起了学术界的广泛关注和研究。何宇亮等对所制备的nc-Si:H薄膜的微结构进行了细致的研究和分析。他们将nc-Si:H薄膜的高分辨率透射电子显微镜进行观察,然后进行傅立叶变换处理后,可以知道纳米硅晶粒的大小和分布情况。宋捷等研究了不同激发频率对nc-Si:H薄膜生长特性的影响,表明在高激发频率下制备的nc-Si:H薄膜具有更高的晶化率和致密性。有人用热丝化学气相沉积(HWVCD)法制备了电导率高达4.22S/cm的优质nc-Si:H薄膜。他们还通过将nc-Si:H薄膜的高分辨率透射电子显微镜(进行观察,发现薄膜晶粒大小约为2~5nm,且优先沿面生长),采用HWVCD法制备了nc-Si:H薄膜,并讨论了nc-Si:H薄膜的生长动力学问题。
nc-Si:H薄膜在薄膜电池上的应用也取得了很大的进展。有人通过VHF-PEVCD在SS/Ag/ZnO衬底上制备了单结nc-Si:H薄膜电池,效率高达22%,优化了nc-Si:H薄膜材料工艺参数,制备出效率高达9.51%的单结nc-Si:H薄膜电池,其中短路电流密度高达27.23mA/cm2。此外,他们制备的a-Si:H/nc-Si:H/nc-Si:H结薄膜电池效率更是高达12.52%,这个效率也是经过美国国家能源部可再生能源实验室NREL验证的。
因此,需要对太阳能电池用氢化纳米晶硅薄膜的制备方法进行进一步的改进。
发明内容
本发明的目的在于提供一种太阳能电池用氢化纳米晶硅薄膜的制备方法,可制备出较大晶粒的纳米晶硅薄膜,甚至是多晶硅薄膜,效率高,成本低。
为达到上述发明的目的,提供了一种太阳能电池用氢化纳米晶硅薄膜的制备方法,包括以下步骤:
S1:快速热退火;
快速退火法是把非晶硅薄膜放入有气氛保护下的退火炉里进行退火处理,使其由非晶态薄膜转变为纳米晶态薄膜;非晶硅晶化的驱动力是晶相的Gibbs自由能要低于非晶相的Gibb s自由能;在固相晶化过程中,纳米晶硅薄膜的晶粒尺寸主要受温度的影响;此外,由于需要较高的温度下退火才能使薄膜完全晶化,这对衬底的耐温性提出较高的要求,因此极大地限制了其实用化和产业化;
S2:区域熔化再结晶;
将一束高能量源照射硅基薄膜的表面,使薄膜材料在很短的时间内被加热到很高的温度,在高温下熔化后再结晶的这样一种方法叫区域熔化再结晶;常用的是用激光作为能量源,所以也叫激光晶化法;由于熔化结晶的时间较短,因此衬底的温度不会很高,从而能够使用廉价的玻璃作为衬底;该方法的缺点是设备昂贵、成本过高,所以难实现大面积的纳米晶硅薄膜的制备要求;
S3:金属诱导晶化;
金属诱导晶化;就是在衬底是上镀一层金属薄膜,再在其上镶一层非晶硅薄膜,然后在较低的温度下退火即可实现非晶硅薄膜的晶化;这种方法的优点是可以有效的降低非晶薄膜晶化的溢度和晶化时间,近几年研究的非常多;可用于诱导的金属有很多,使用最多的是铝诱导晶化;当退火处理时,界面处的Al原子和Si原子的相互扩散,导致了Al-Si混合层的形成;根据Al-Si相图可以知道,Al在Si中的溶解度很低,几乎可以忽略,而Si在Al中的溶解度非常高;随着退火的进行,Si在Al的溶解度达到过饱和,这些超饱和硅就以核的形式在a-Si:H和Al的界面析出,然后逐渐长大,最后形成了晶体硅和铝的混合物;与快速热退火法相比,该技术能大大降低退火温度和缩短退火时间,可制备出较大晶粒的纳米晶硅薄膜,甚至是多晶硅薄膜,这在低成本高效率的薄膜太阳能电池、薄膜晶体管等有较大的应用前景;
S4:高氢稀释气相沉积法;
纳米晶硅薄膜的气相沉积方法主要有高氢稀释热丝化学气相沉积(HWCVD)法和高氢稀释等离子体化学气相沉积(PEVCD)法;高氢稀释HWCVD法是在真空反应室中安装加热丝,当高氢稀释的SiH4或其它源气体通过温度高达1800~2000度的钨丝时,源气体被分解形成各种中性基团,然后在衬底上沉积成纳米晶硅薄膜;沉积时衬底的温度可控制在较低范围;但是,由于钨丝的温度很高,对设备的耐高温性提出很高的要求,所以—定程度上限制了其应用范围。
进一步的,所述步骤S4中的加热丝为钨丝。
进一步的,所述步骤S4中沉积时衬底的温度为150~400度。
本发明一种太阳能电池用氢化纳米晶硅薄膜的制备方法跟现有技术相比具有以下优点:
高氢稀释PEVCD法是沉积纳米晶硅薄膜的最有效方法之一,由于射频信号可能从沉积系统中福射出来,从而干扰无线电通信系统,所以国际上统一规定工业用射频等离子体辉光放电射频频率为13.56MHZ。高氢稀释PEVCD法具有对生长工艺可控性,能制备出大面积均匀薄膜等优点,已被广泛应用于非晶、纳米晶及微晶硅薄膜的制备中。
具体实施方式
以下结合具体实施例,对本发明做进一步说明。
一种太阳能电池用氢化纳米晶硅薄膜的制备方法,包括以下步骤:制备nc-Si:H薄膜的方法可分为两大类,—类是固相晶化法,另一类是高氢稀释气相沉积法。
固相晶化法可用玻璃作衬底,以SiH4、H2等作为气源,用PEVCD或其他设备沉积a-Si:H薄膜,然后再热退火处理使其转化为nc-Si:H薄膜。此法具有可制备大面积的薄膜,成本低,工艺简单等优点。快速热退火、区域熔化再结晶、金属诱导晶化等都属于固相晶化法。
S1:快速热退火;快速退火法是把非晶硅薄膜放入有气氛保护下的退火炉里进行退火处理,使其由非晶态薄膜转变为纳米晶态薄膜。非晶硅晶化的驱动力是晶相的Gibbs自由能要低于非晶相的Gibbs自由能。在固相晶化过程中,纳米晶硅薄膜的晶粒尺寸主要受温度的影响。此外,由于需要较高的温度下退火才能使薄膜完全晶化,这对衬底的耐温性提出较高的要求,因此极大地限制了其实用化和产业化。
S2:区域熔化再结晶;
将一束高能量源照射硅基薄膜的表面,使薄膜材料在很短的时间内被加热到很高的温度,在高温下熔化后再结晶的这样一种方法叫区域熔化再结晶。常用的是用激光作为能量源,所以也叫激光晶化法。由于熔化结晶的时间较短,因此衬底的温度不会很高,从而能够使用廉价的玻璃作为衬底。该方法的缺点是设备昂贵、成本过高,所以难实现大面积的纳米晶硅薄膜的制备要求。
S3:金属诱导晶化;
金属诱导晶化(MIC)就是在衬底是上镀一层金属薄膜,再在其上镶一层非晶硅薄膜,然后在较低的温度下退火即可实现非晶硅薄膜的晶化。这种方法的优点是可以有效的降低非晶薄膜晶化的溢度和晶化时间,近几年研究的非常多。可用于诱导的金属有很多,使用最多的是铝诱导晶化(AIC)。当退火处理时,界面处的Al原子和Si原子的相互扩散,导致了A l-Si混合层的形成。根据Al-Si相图可以知道,Al在Si中的溶解度很低,几乎可以忽略,而Si在Al中的溶解度非常高。随着退火的进行,Si在Al的溶解度达到过饱和,这些超饱和硅就以核的形式在a-Si:H和Al的界面析出,然后逐渐长大,最后形成了晶体硅和铝的混合物。与快速热退火法相比,该技术能大大降低退火温度和缩短退火时间,可制备出较大晶粒的纳米晶硅薄膜,甚至是多晶硅薄膜,这在低成本高效率的薄膜太阳能电池、薄膜晶体管等有较大的应用前景。但是,该方法制备的nc-Si薄膜会引入大量的金属杂质原子,如何解决金属杂质的污染是一个函侍解诀的问题。
S4:高氢稀释气相沉积法
纳米晶硅薄膜的气相沉积方法主要有高氢稀释热丝化学气相沉积(HWCVD)法和高氢稀释等离子体化学气相沉积(PEVCD)法。高氢稀释HWCVD法是在真空反应室中安装加热丝(常用的加热丝是钨丝),当高氢稀释的SiH4或其它源气体通过温度高达1800~2000度的钨丝时,源气体被分解形成各种中性基团,然后在衬底上沉积成纳米晶硅薄膜。沉积时衬底的温度可控制在较低范围(150~400度)。但是,由于钨丝的温度很高,对设备的耐高温性提出很高的要求,所以—定程度上限制了其应用范围。此外,钨加热丝会对沉积的薄膜材料产生污染,通过二次粒子测量确实发现有残留钨存在薄膜中。
高氢稀释PEVCD法是沉积纳米晶硅薄膜的最有效方法之一。由于射频信号可能从沉积系统中福射出来,从而干扰无线电通信系统,所以国际上统一规定工业用射频等离子体辉光放电射频频率为13.56MHZ。和以上方法相比,高氢稀释PEVCD法具有对生长工艺可控性,能制备出大面积均匀薄膜等优点,已被广泛应用于非晶、纳米晶及微晶硅薄膜的制备中。近十几年来,随着研究工作的逐步深入,在纳米晶硅薄膜的制备与表征方面取得了很大的进展。但是,不同的工艺参数制备出的纳米晶硅薄膜的结构和光电特性就不一样,因此有必要探索工艺参数对纳米晶硅薄膜的结构和光电性能的影响。
在本说明书的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本专利的技术方案和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本专利申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本专利申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本说明书中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本说明书中的具体含义。
在本说明书中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (3)
1.一种太阳能电池用氢化纳米晶硅薄膜的制备方法,其特征在于,包括以下步骤:
S1:快速热退火;
快速退火法是把非晶硅薄膜放入有气氛保护下的退火炉里进行退火处理,使其由非晶态薄膜转变为纳米晶态薄膜;非晶硅晶化的驱动力是晶相的Gibbs自由能要低于非晶相的Gibbs自由能;在固相晶化过程中,纳米晶硅薄膜的晶粒尺寸主要受温度的影响;此外,由于需要较高的温度下退火才能使薄膜完全晶化,这对衬底的耐温性提出较高的要求,因此极大地限制了其实用化和产业化;
S2:区域熔化再结晶;
将一束高能量源照射硅基薄膜的表面,使薄膜材料在很短的时间内被加热到很高的温度,在高温下熔化后再结晶的这样一种方法叫区域熔化再结晶;常用的是用激光作为能量源,所以也叫激光晶化法;由于熔化结晶的时间较短,因此衬底的温度不会很高,从而能够使用廉价的玻璃作为衬底;该方法的缺点是设备昂贵、成本过高,所以难实现大面积的纳米晶硅薄膜的制备要求;
S3:金属诱导晶化;
金属诱导晶化;就是在衬底是上镀一层金属薄膜,再在其上镶一层非晶硅薄膜,然后在较低的温度下退火即可实现非晶硅薄膜的晶化;这种方法的优点是可以有效的降低非晶薄膜晶化的溢度和晶化时间,近几年研究的非常多;可用于诱导的金属有很多,使用最多的是铝诱导晶化;当退火处理时,界面处的Al原子和Si原子的相互扩散,导致了Al-Si混合层的形成;根据Al-Si相图可以知道,Al在Si中的溶解度很低,几乎可以忽略,而Si在Al中的溶解度非常高;随着退火的进行,Si在Al的溶解度达到过饱和,这些超饱和硅就以核的形式在a-Si:H和Al的界面析出,然后逐渐长大,最后形成了晶体硅和铝的混合物;与快速热退火法相比,该技术能大大降低退火温度和缩短退火时间,可制备出较大晶粒的纳米晶硅薄膜,甚至是多晶硅薄膜,这在低成本高效率的薄膜太阳能电池、薄膜晶体管等有较大的应用前景;
S4:高氢稀释气相沉积法;
纳米晶硅薄膜的气相沉积方法主要有高氢稀释热丝化学气相沉积(HWCVD)法和高氢稀释等离子体化学气相沉积(PEVCD)法;高氢稀释HWCVD法是在真空反应室中安装加热丝,当高氢稀释的SiH4或其它源气体通过温度高达1800~2000度的钨丝时,源气体被分解形成各种中性基团,然后在衬底上沉积成纳米晶硅薄膜;沉积时衬底的温度可控制在较低范围;但是,由于钨丝的温度很高,对设备的耐高温性提出很高的要求,所以一定程度上限制了其应用范围。
2.如权利要求1所述的一种太阳能电池用氢化纳米晶硅薄膜的制备方法,其特征在于,所述步骤S4中的加热丝为钨丝。
3.如权利要求1所述的一种太阳能电池用氢化纳米晶硅薄膜的制备方法,其特征在于,所述步骤S4中沉积时衬底的温度为150~400度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010386090.8A CN113622019A (zh) | 2020-05-09 | 2020-05-09 | 一种太阳能电池用氢化纳米晶硅薄膜的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010386090.8A CN113622019A (zh) | 2020-05-09 | 2020-05-09 | 一种太阳能电池用氢化纳米晶硅薄膜的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113622019A true CN113622019A (zh) | 2021-11-09 |
Family
ID=78376316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010386090.8A Pending CN113622019A (zh) | 2020-05-09 | 2020-05-09 | 一种太阳能电池用氢化纳米晶硅薄膜的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113622019A (zh) |
-
2020
- 2020-05-09 CN CN202010386090.8A patent/CN113622019A/zh active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007149945A2 (en) | Methods and apparatus for depositing a microcrystalline silicon film for photovoltaic device | |
US9105803B2 (en) | Polycrystalline-type solar cell panel and process for production thereof | |
CN102709404A (zh) | 一种用金属铜在低温下诱导非晶硅薄膜晶化为多晶硅薄膜的方法 | |
CN113622019A (zh) | 一种太阳能电池用氢化纳米晶硅薄膜的制备方法 | |
Dey et al. | Optimal H2-dilution playing key role in accomplishing significant nanocrystallinity with both Si and Ge moieties in SiGe nanocomposite thin film network | |
Juneja et al. | Study of infra-red spectroscopy on bonding environment and structural properties of nanocrystalline silicon thin films grown by VHF-PECVD process | |
US20150299897A1 (en) | Method for forming an epitaxial silicon layer | |
WO2012086242A1 (ja) | 微結晶半導体薄膜製造方法 | |
TW200824140A (en) | Methods and systems for manufacturing polycrystalline silicon and silicon-germanium solar cells | |
WO1992012542A1 (en) | Method for manufacturing solar cell by selective epitaxial growth | |
Ma et al. | The effect of negative bias on the preparation conditions and structural changes in boron-doped nanocrystalline silicon thin films prepared on PET | |
CN111710750A (zh) | 基于六方氮化硼厚膜的深紫外光电探测器及制备方法 | |
Van Gestel et al. | Thin-film polycrystalline silicon solar cells with low intragrain defect density made via laser crystallization and epitaxial growth | |
Wu et al. | Fabrication and its characteristics of low-temperature polycrystalline silicon thin films | |
RU2769751C1 (ru) | Устройство для нанесения сверхтолстых слоев поликристаллического кремния | |
Wei et al. | Effects of experimental conditions on the growth of g–C3N4 nanocones by plasma sputtering reaction deposition | |
Jia et al. | Fast deposition of highly crystallized microcrystalline Si films utilizing a high-density microwave plasma source for si thin film solar cells | |
CN118516761A (zh) | 一种基于多点成核的快速、无污染制备外延硅片的方法 | |
Horita et al. | Fabrication of Crystallized Si Film Deposited on a Polycrystalline YSZ Film/Glass Substrate at 500° C | |
Heemeier et al. | Thin film technology for electron beam crystallized silicon solar cells on low cost substrates | |
CN117410373A (zh) | 一种晶硅底电池及其制备方法和叠层电池 | |
Dogan | Low temperature epitaxy of silicon by electron-beam evaporation for polycrystalline silicon thin film solar cells | |
Zhao et al. | The effect of substrate temperature on cadmium telluride films in high temperature vapor deposition process | |
Adjallah et al. | Electronic transport in co-deposited hydrogenated amorphous/nanocrystalline thin films | |
Schmidt et al. | Polycrystalline silicon thin films on glass obtained by nickel‐induced crystallization of amorphous silicon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20211109 |