CN113621922B - 电连接器接触件涂层及其制备方法 - Google Patents

电连接器接触件涂层及其制备方法 Download PDF

Info

Publication number
CN113621922B
CN113621922B CN202010371884.7A CN202010371884A CN113621922B CN 113621922 B CN113621922 B CN 113621922B CN 202010371884 A CN202010371884 A CN 202010371884A CN 113621922 B CN113621922 B CN 113621922B
Authority
CN
China
Prior art keywords
coating
substrate
noble metal
sputtering
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010371884.7A
Other languages
English (en)
Other versions
CN113621922A (zh
Inventor
吴护林
张伦武
解志文
陈强
高旭
陈永君
向林
宁海青
钟勇
胡素影
吴帅
冯博
苏虹
王晓辉
黄波
吴迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Liaoning USTL
Southwest Institute of Technology and Engineering of China South Industries Group
Original Assignee
University of Science and Technology Liaoning USTL
No 59 Research Institute of China Ordnance Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Liaoning USTL, No 59 Research Institute of China Ordnance Industry filed Critical University of Science and Technology Liaoning USTL
Priority to CN202010371884.7A priority Critical patent/CN113621922B/zh
Priority to US17/134,257 priority patent/US20210348262A1/en
Publication of CN113621922A publication Critical patent/CN113621922A/zh
Application granted granted Critical
Publication of CN113621922B publication Critical patent/CN113621922B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

本发明属于通过覆层形成材料的溅射进行镀覆技术领域,具体涉及一种电连接器接触件涂层。所述涂层,氮化铬上掺杂有贵金属元素。该涂层导电性能和防腐性能优异。

Description

电连接器接触件涂层及其制备方法
技术领域
本发明属于通过覆层形成材料的溅射进行镀覆技术领域,具体涉及一种电连接器接触件涂层及其制备方法。
背景技术
电连接器是一种用于实现电信号的传输和控制以及电子与电气设备之间电力连接的基础组件,在航天、电子、通信等行业中应用范围广且数量多(“电连接器参数化建模与仿真试验研究”,栾天辉,东北大学硕士学位论文,2012年,摘要第1段第1-3行,公开日2012年12月31日)。
电连接器主要担负着控制系统的电能传输和信号控制,其质量好坏、可靠与否,是各种设备及系统能否正常运行的关键。据统计,目前,电子及电气装备的失效(故障)中有70%是由于电子元件的失效引起的(“电连接器失效模式及可靠性保障建议研究”,常笑,电子产品可靠性与环境试验,2019年第3期,第47页摘要第1-2行,公开日2019年12月31日;“电连接器耦合失效机理及可靠性研究”,黄波,电子科技大学博士学位论文,2016年,摘要第1段第1-6行,公开日2017年8月1日)。
接触件是电连接器中的导电部分和核心零件,其将来自电连接器尾部所连电线和电缆的能量或信号传递到与其相配的电连接器的对应接触件上,通常要求插孔与插针一一对应(“高可靠性电连接器接触件材料的联合创新研讨”,杨奋为,机电元件,2014年第34卷第1期,第40页倒数第1段第1-4行,公开日2014年2月28日)。
然而,现有的电连接器接触件不能很好的起到相应的作用。
发明内容
有鉴于此,本发明的目的在于提供一种能够使电连接器接触件更好的起到相应作用的涂层。
为实现上述目的,本发明的技术方案为:
电连接器接触件防护涂层,氮化铬上掺杂有贵金属元素。
所述电连接器是一种用于实现电信号的传输和控制以及电子与电气设备之间电力连接的基础组件。
所述接触件是指原件中与对应的导电零件相配合以提供电气通路的导电零件。
进一步,所述贵金属元素为一元的Pt、Au或Ir元素或二元的PtAu、PtIr或AuIr元素或三元的PtAuIr元素。
进一步,所述涂层的厚度为800nm-1000nm。
进一步,贵金属元素的掺杂量为3mol%-10mol%,以占氮化铬的摩尔量为准。
本发明的目的之二在于保护所述涂层的制备方法,包括以下步骤:
A、在真空或惰性气体气氛下,对待沉积基体和靶材分别进行溅射清洗;
B、在惰性气体或真空气氛下,采用掺杂有贵金属的铬靶在经过步骤A处理的待沉积基体表面沉积涂层。
进一步,步骤A中,工作气氛为氩气,流量为100-150sccm,溅射时真空度为0.2-0.6GPa,基体预热至200-400℃,沉积偏压为-70~-120V,基体溅射清洗时间为30-120分钟,靶材溅射清洗时间为1-5分钟。
进一步,步骤B中,工作气氛为氩气和氮气的混合气体,流量为100-150sccm,溅射时真空度为0.2-0.6GPa,基体预热至200-400℃,沉积偏压为-80~-130V,沉积时间为30-120分钟,铬靶功率为3-8kW。
进一步,步骤B中,在基体表面沉积涂层的过程中,所述基体在磁控溅射系统中随转架台匀速转动。
进一步,所述磁控溅射系统包括真空室、设置于真空室四周的靶材和设置于真空室内可转动的转架台。
进一步,所述待沉积基体为金属材料。
进一步,所述铬靶的纯度≥99.9%。
本发明的目的还在于保护所述涂层在电连接器接触件中的应用。
本发明的有益效果在于:
本发明的涂层导电性和耐腐蚀性能优异,能够更好地使电连接器接触件起到相应作用。
本发明的涂层耐磨损性能优异。
本发明的涂层韧性好。
本发明的涂层的制备方法简单、效率高,成本低,有利于实现工业化生产,可广泛应用于易腐蚀环境下电连接器接触件涂装。
附图说明
图1为实施例1的涂层所使用的贵金属混合镶嵌的高纯Cr靶(纯度≥99.9%);
图2为实施例1制得的涂层的表面及断面形貌检测,其中,2a为表面形貌图,2b为断面形貌图;
图3为实施例1制得的涂层的硬度测试结果图(即纳米压痕加载卸载曲线);
图4为实施例1制得的涂层的表面元素分析结果图(即涂层表面元素分布图);
图5为实施例1制得的涂层的物相结构检测结果图;
图6为实施例1制得的涂层及经对比例1处理的基体的耐蚀性检测结果;
图7为实施例1及对比例2制得的涂层的电阻率检测结果图;
图8为实施例1制得的涂层耐磨损性能检测结果图。
具体实施方式
所举实施例是为了更好地对本发明的内容进行说明,但并不是本发明的内容仅限于所举实施例。所以熟悉本领域的技术人员根据上述发明内容对实施方案进行非本质的改进和调整,仍属于本发明的保护范围。
实施例1
电连接器接触件涂层,其以316L不锈钢为基体,采用等离子增强磁控溅射镀膜工艺沉积CrN-Pt涂层,具体制备步骤为:
S1:将待沉积基体进行机械抛光,基体表面抛光至镜面后依次在去离子水、丙酮(分析纯)、酒精(分析纯)中进行超声震荡清洗,各20分钟,清洗后将基体置于烘箱中于80℃下烘干20分钟;
S2:将经不住S1处理的待沉积基体置于真空室内的转架台上,开启真空泵将真空室抽真空,使真空室内的真空度达到5×10-3Pa,在此过程中对真空室进行加热,加热温度为300℃;
S3:向真空室内通入氩气,流量为100sccm,在氩气气氛下,对待沉积基体及靶材进行溅射清洗;溅射时,沉积偏压为-120V,基体溅射清洗时间为60分钟,清洗靶材时,设置靶功率为500W,并用遮罩遮挡靶材,靶材清洗时间为5分钟;
S4:在高纯Cr靶(纯度为99.9%)上镶嵌Pt金属块形成Cr-Pt混合靶,使用该靶在待沉积基体表面溅射沉积CrN-Pt涂层;向真空室内通入氮气和氩气的混合气体,其中,氮气及氩气流量均为100sccm,溅射时真空度为0.5GPa,待沉积基体预热温度为300℃,沉积偏压为-100V,Cr-Pt混合靶功率为5kW;
S5:在溅射沉积涂层的过程中,使所述基体在磁控溅射系统中随转架台匀速转动;所述磁控溅射系统包括真空室、设置于真空室内可转动的转台架和设置于转台架四周的靶材;
S6:待真空室温度降至室温,将样品从真空室内取出。
对比例1
对316L不锈钢为基体进行机械抛光,基体表面抛光至镜面后依次在去离子水、丙酮(分析纯)、酒精(分析纯)中进行超声震荡清洗,各20分钟,清洗后将基体置于烘箱中于80℃下烘干20分钟。
对比例2
电连接器接触件涂层,其以316L不锈钢为基体,采用等离子增强磁控溅射镀膜工艺沉积CrN涂层,具体制备步骤为:
S1:将待沉积基体进行机械抛光,基体表面抛光至镜面后依次在去离子水、丙酮(分析纯)、酒精(分析纯)中进行超声震荡清洗,各20分钟,清洗后将基体置于烘箱中80℃的气氛下烘干20分钟;
S2:将经步骤S1处理的待沉积基体置于真空室内的转架台上,开启真空泵将真空室抽真空,使真空室内的真空度达到5×10-3Pa,在此过程中对真空室进行加热,加热温度为300℃;
S3:向真空室内通入氩气,流量为100sccm,在氩气气氛下,对待沉积基体及靶材进行溅射清洗;溅射时,沉积偏压为-120V,基体溅射清洗时间为60分钟,清洗靶材时,设置靶功率为500W,并用遮罩遮挡靶材,靶材清洗时间为5分钟;
S4:采用高纯Cr靶(纯度为99.9%)在待沉积基体表面溅射沉积CrN涂层;向真空室内通入氮气和氩气的混合气体,其中,氮气及氩气流量均为100sccm,溅射时真空度为0.5GPa,待沉积基体预热温度为300℃,沉积偏压为-100V,高纯Cr靶功率为5kW;
S5:在溅射沉积涂层的过程中,使所述基体在磁控溅射系统中随转架台匀速转动;所述磁控溅射系统包括真空室、设置于真空室内可转动的转台架以及设置于转台架四周的靶材;
S6:待真空室温度降至室温,将样品从真空室内取出。
性能检测
采用场发射扫描电子显微镜(FESEM)观察实施例1制得的涂层进行涂层表面及断面形貌,结果如图2所示,其中,2a为表面形貌图,2b为断面形貌图。
由图2可知,实施例1制得的涂层表面由大小不一的晶粒组成,无明显孔洞、裂纹等缺陷,表面结构均匀,平整;涂层断面呈现柱状晶粒组织,柱状晶粒细腻,与基体结合良好,未出现明显剥落、开裂等情况。
用带有Berkovich金刚石压头的纳米压痕仪对实施例1制得的涂层进行硬度测试,测试模式为连续刚度法(CSM),为保证数据准确可靠,在样品上选择20个不同区域,去除偏差较大的数值后,以平均硬度值作为最终硬度;同时,为排除基体对测量结果的影响,以涂层深度为100nm左右的硬度值为计算标准,结果如图3所示。
由图3(载荷-位移曲线)通过Oliver-Pharr方法计算(“An improved techniquefor determining hardness and elastic modulus using load and displacementsensing indentation experiments”,Oliver W.C.,Pharr G.M.,Journal of MaterialsResearch,1992,7(06),1564-1583)可知,实施例1制得的CrN-Pt涂层的硬度为19.77GPa,弹性模量为254.6GPa。研究表明,H/E值可作为衡量涂层强韧性能的评价标准,且H/E值越大,涂层的强韧性能越好(“Microstructure and mechanical properties of TiZrAlNnanocomposite thin films by CFUBMS”,Y.J.Kim,H.Y.Lee,T.J.Byun,J.G.Han,ThinSolid Films,2008,516(11),3651-3655)。通过计算可知,实施例1的H/E值为0.078。由此证明,本发明的涂层具有较好的韧性。
用场发射扫描电子显微镜(FESEM)自带的X射线能谱仪(EDS)对实施例1制得的涂层进行元素分析,结果如图4所示。
由图4可知,实施例1制得的涂层表面元素分布均匀,无团聚现象出现。
用X射线衍射仪(XRD)对实施例1制得的涂层进行物相结构检测,为避免基体的干扰,采用小角测量的模式进行涂层晶体结构分析,掠入角为1°,扫描范围为20°~90°,结果如图5所示。
由图5可知,实施例1制得的涂层由CrN相及单质Pt相组成。由此证明,单质铂以游离态的形式存在于本发明的涂层中。
采用CS350电化学工作站对实施例1制得的涂层及经对比例1处理的316L不锈钢基体的耐蚀性进行检测,具体为:使用三电极体系,待测样品为工作电极(WE),饱和甘汞电极(SCE)为参比电极(RE),Pt电极为辅助电极(CE),电解液为3.5%NaCl溶液,结果如图6所示。
由图6可知,与对比例1相比,实施例1制得的涂层的腐蚀电位及腐蚀电流密度均有不同程度的提高。其中腐蚀电流密度由2.816×10-7A/cm2提高至1.001×10-7A/cm2,腐蚀电位由-245mV提高至-73mV。由此证明,本发明的涂层耐蚀性能优异。
通过霍尔效应测试仪对实施例1及对比例2制得的涂层电阻率进行检测(设置膜厚为1035μm),结果如图7所示。
由图7可知,与对比例2相比,实施例1制得的涂层的电阻率明显下降。由此证明,本发明的涂层的导电性优异。
采用球盘式摩擦磨损试验机对实施例1制得的涂层进行磨损性能测试,参设设置为:转速为300Rad,载荷为2N,对磨球为直接为6mm的Si3N4陶瓷球,测试半径为6mm,时间为30分钟。采用台阶仪对测试后样品表面磨损区域进行检测,得到磨痕轮廓,结果如图8所示;并采用Archard公式计算其体积磨损率,计算公式为:
其中,V为磨损体积,单位为mm3;k为体积磨损率,单位为mm3(N·m)-1;l为往复滑动距离,单位为m;W为载荷,单位为N。
由图8可知,实施例1制得的涂层的磨损深度最深为422.7nm;经计算,实施例1制得的涂层的体积磨损率约为2.07×10-6mm3/(N·m)。由此证明,本发明的涂层耐磨损性能优异。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (6)

1.电连接器接触件防护涂层,其特征在于,氮化铬上掺杂有贵金属;所述贵金属为一元的Pt、Au或Ir或二元的PtAu、PtIr或AuIr或三元的PtAuIr;贵金属的掺杂量为3mol%-10mol%,以占氮化铬的摩尔量为准。
2.根据权利要求1所述的涂层,其特征在于,所述涂层的厚度为800nm-1000nm。
3.权利要求1或2任一项所述涂层的制备方法,其特征在于,包括以下步骤:A、在真空或惰性气体气氛下,对待沉积基体和靶材分别进行溅射清洗;
B、在惰性气体或真空气氛下,采用掺杂有贵金属的铬靶在经过步骤A处理的待沉积基体表面沉积涂层;工作气氛为氩气和氮气的混合气体,流量为100-150sccm,溅射时真空度为0.2-0.6GPa,基体预热至200-400℃,沉积偏压为-80~-130V,沉积时间为30-120分钟,掺杂有贵金属的铬靶功率为3-8kW;所述铬靶上掺杂的贵金属为一元的Pt、Au或Ir或二元的PtAu、PtIr或AuIr或三元的PtAuIr,贵金属的掺杂量为3mol%-10mol%,以占氮化铬的摩尔量为准。
4.根据权利要求3所述的制备方法,其特征在于,步骤A中,工作气氛为氩气,流量为100-150sccm,溅射时真空度为0.2-0.6GPa,基体预热至200-400℃,沉积偏压为-70~-120V,基体溅射清洗时间为30-120分钟,靶材溅射清洗时间为1-5分钟。
5.根据权利要求3或4任一项所述的制备方法,其特征在于,步骤B中,在基体表面沉积涂层的过程中,所述基体在磁控溅射系统中随转架台匀速转动。
6.权利要求1-2任一项所述涂层在电连接器接触件中的应用。
CN202010371884.7A 2020-05-06 2020-05-06 电连接器接触件涂层及其制备方法 Active CN113621922B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010371884.7A CN113621922B (zh) 2020-05-06 2020-05-06 电连接器接触件涂层及其制备方法
US17/134,257 US20210348262A1 (en) 2020-05-06 2021-03-10 Contact coating of electrical connector and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010371884.7A CN113621922B (zh) 2020-05-06 2020-05-06 电连接器接触件涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN113621922A CN113621922A (zh) 2021-11-09
CN113621922B true CN113621922B (zh) 2024-03-05

Family

ID=78376501

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010371884.7A Active CN113621922B (zh) 2020-05-06 2020-05-06 电连接器接触件涂层及其制备方法

Country Status (2)

Country Link
US (1) US20210348262A1 (zh)
CN (1) CN113621922B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4925394A (en) * 1987-04-23 1990-05-15 Sumitomo Electric Industries, Ltd. Ceramic-coated terminal for electrical connection
US20040131894A1 (en) * 2003-01-06 2004-07-08 The University Of Chicago Hard and low friction nitride coatings and methods for forming the same
CN102912292A (zh) * 2012-10-18 2013-02-06 东南大学 用于镍基合金紧固件表面的抗高温粘结涂层及其制备方法
CN108642446A (zh) * 2018-06-01 2018-10-12 广东工业大学 一种多孔CrN涂层及其制备方法和一种超级电容器
CN109182990A (zh) * 2018-11-01 2019-01-11 中国科学院宁波材料技术与工程研究所 一种防生物污损CrN-Ag复合涂层及其制备方法
CN109346743A (zh) * 2018-08-31 2019-02-15 上海交通大学 一种燃料电池金属双极板用导电耐蚀涂层
CN110482852A (zh) * 2019-08-29 2019-11-22 中国兵器工业第五九研究所 玻璃模压涂层及其制备方法、应用、模具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4925394A (en) * 1987-04-23 1990-05-15 Sumitomo Electric Industries, Ltd. Ceramic-coated terminal for electrical connection
US20040131894A1 (en) * 2003-01-06 2004-07-08 The University Of Chicago Hard and low friction nitride coatings and methods for forming the same
CN102912292A (zh) * 2012-10-18 2013-02-06 东南大学 用于镍基合金紧固件表面的抗高温粘结涂层及其制备方法
CN108642446A (zh) * 2018-06-01 2018-10-12 广东工业大学 一种多孔CrN涂层及其制备方法和一种超级电容器
CN109346743A (zh) * 2018-08-31 2019-02-15 上海交通大学 一种燃料电池金属双极板用导电耐蚀涂层
CN109182990A (zh) * 2018-11-01 2019-01-11 中国科学院宁波材料技术与工程研究所 一种防生物污损CrN-Ag复合涂层及其制备方法
CN110482852A (zh) * 2019-08-29 2019-11-22 中国兵器工业第五九研究所 玻璃模压涂层及其制备方法、应用、模具

Also Published As

Publication number Publication date
CN113621922A (zh) 2021-11-09
US20210348262A1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
Zhang et al. Residual stress characterization of diamond-like carbon coatings by an X-ray diffraction method
Huang et al. Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin films on AISI D2 steel
Wo et al. Factors governing the mechanical behaviour of CrSiN coatings: Combined nanoindentation testing and transmission electron microscopy
jin Ma et al. Effects of pH value and temperature on the corrosion behavior of a Ta2N nanoceramic coating in simulated polymer electrolyte membrane fuel cell environment
Escobar et al. Corrosion resistant surface for vanadium nitride and hafnium nitride layers as function of grain size
Soleimani et al. A comparison of tribological and corrosion behavior of PVD-deposited CrN/CrAlN and CrCN/CrAlCN nanostructured coatings
Adesina et al. Electrochemical evaluation of the corrosion protectiveness and porosity of vacuum annealed CrAlN and TiAlN cathodic arc physical vapor deposited coatings
Escobar et al. Novel performance in physical and corrosion resistance HfN/VN coating system
Maeng et al. Corrosion behaviour of magnetron sputtered α-and β-Ta coatings on AISI 4340 steel as a function of coating thickness
Murariu et al. Investigations on corrosion behaviour of WC–CrC–Ni coatings deposited by HVOF thermal spraying process
Zhang et al. Magnetron sputtered hard and yet tough nanocomposite coatings with case studies: nanocrystalline TiN embedded in amorphous SiNx
Sheu et al. Effects of complexing agents and current density on carbon content of trivalent chromium carbon coating and its properties
CN113621922B (zh) 电连接器接触件涂层及其制备方法
Escobar et al. Improve on corrosion resistant surface for AISI 4140 steel coated with VN and HfN single layer films
Shi et al. Influence of gradient interlayer thickness on corrosion and tribological behavior of Ti-containing multilayer graphite-like carbon films
Lewin et al. Industrialisation Study of Nanocomposite nc‐TiC/a‐C Coatings for Electrical Contact Applications
Marulanda et al. Unbalanced magnetron sputtering system for producing corrosion resistance multilayer coatings
Pogrebnyak et al. Adhesive strength and physical, mechanical, and triboengineering properties of nano-and microstructural Al 2 O 3 coatings
Lou et al. Fabrication of (TiZrNbSiMo) 1-xNx high entropy alloy coatings using a high power impulse magnetron sputtering technique: Effects of nitrogen addition
JP5049358B2 (ja) 半導体検査装置用コンタクトプローブピンの基材上にタングステン含有ダイヤモンドライクカーボン皮膜を製造する方法
Raghav et al. Corrosion analysis of copper-TiO2 nanocomposite coatings on steel using sputtering
Staišiūnas et al. Microgravimetric study of early-stage aluminum corrosion in neutral media
Aperador et al. Analysis of corrosion degradation of TiCrN coatings subjected to high temperatures
Suresh et al. Structural, nanomechanical and electrochemical properties of TiC and TiN films prepared by pulsed DC magnetron sputtering technique
Kumar et al. Development of Zn-SiC composite coatings: Electrochemical corrosion studies

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240402

Address after: 400039 Chongqing Jiulongpo Yuzhou Road No. 33

Patentee after: Southwest Institute of technology and engineering of China Ordnance Equipment Group

Country or region after: China

Patentee after: University of Science and Technology Liaoning

Address before: 400039 Chongqing Jiulongpo Shiqiaopu Yuzhou Road No. 33

Patentee before: NO 59 Research Institute OF CHINA ORDNACE INDUSTRY

Country or region before: China

Patentee before: University of Science and Technology Liaoning

TR01 Transfer of patent right