CN113610638A - 基于smaa-ds的信用等级与违约损失率相匹配的评级系统及方法 - Google Patents

基于smaa-ds的信用等级与违约损失率相匹配的评级系统及方法 Download PDF

Info

Publication number
CN113610638A
CN113610638A CN202110962078.1A CN202110962078A CN113610638A CN 113610638 A CN113610638 A CN 113610638A CN 202110962078 A CN202110962078 A CN 202110962078A CN 113610638 A CN113610638 A CN 113610638A
Authority
CN
China
Prior art keywords
credit
index
borrower
default
loss rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110962078.1A
Other languages
English (en)
Other versions
CN113610638B (zh
Inventor
李刚
马洪栋
刘荣月
张可心
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University Qinhuangdao Branch
Original Assignee
Northeastern University Qinhuangdao Branch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University Qinhuangdao Branch filed Critical Northeastern University Qinhuangdao Branch
Priority to CN202110962078.1A priority Critical patent/CN113610638B/zh
Publication of CN113610638A publication Critical patent/CN113610638A/zh
Application granted granted Critical
Publication of CN113610638B publication Critical patent/CN113610638B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/03Credit; Loans; Processing thereof

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Engineering & Computer Science (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • Technology Law (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Abstract

本发明提供一种基于SMAA‑DS的信用等级与违约损失率相匹配的评级系统及方法,涉及信用评估技术领域。本发明包括用户登录注册模块,用户数据管理模块,用户信用评级模块,通过采集金融机构积累的信用贷款业务的所有借款人历史数据,构建单个定性指标与违约状态间的二元Logistic回归模型,按照指标性质区分成离散型指标和连续型指标;使用Lasso‑Logistic模型对离散型指标和连续型指标进行多重共线性检验,构建两种指标类型下具有最优整体违约判别能力的信用评分指标体系,计算借款人在两种指标类型下的信用评分;建立信用等级划分优化模型,对两种指标类型进行不同比例组合,确定借款人的信用等级信息,得到用户的信用评级。

Description

基于SMAA-DS的信用等级与违约损失率相匹配的评级系统及 方法
技术领域
本发明涉及信用评估技术领域,尤其涉及一种基于SMAA-DS的信用等级与违约损失率相匹配的评级系统及方法。
背景技术
信用评分是评估借款人信用状况的主要工具,金融机构或贷款人根据信用评分和信用等级做出相应的信贷决策,有效分配信贷资源,包括是否贷款、贷款利率和贷款金额等。具体做法是分析历史上违约和不违约客户的若干样本,从已知的数据中挖掘影响借款人是否违约的关键特征,建立数学模型并测量借款人的违约风险。
当前关于信用评分的研究中,一般是直接综合使用所有指标信息计算借款人的信用评分。近年来,一些学者根据信息能否被准确量化和可信地传递,将指标分为硬信息和软信息。软信息可在一定程度上减少借款人和出借人之间的信息不对称,进而使得出借人和贷款平台能够更好地评估借款认的违约风险和贷款利率。区分软信息和硬信息也缓解金融市场带来的逆向选择问题,提高借贷市场的运作效率。具体而言,对于借款者提高了其贷款可得性,对于投资者降低了其投资风险。
针对借款人,软信息包括借款人的性别、年龄、贷款描述中的文本信息、社交网络发布的照片、在线行为、人格和道德等指标。硬信息包括年收入、工作年限、负债收入比、FICO评分和循环贷款利用率等指标。针对小微企业,硬信息包括税前利润/总资产(ROA,profit before taxes/total assets),短期债务/股东权益(Short-term debt/equity),和现金/总资产(cash/total asset)等指标,软信息包括无形资产/固定资产(intangibleassets/fixed assets),研发支出/销售额(R&D/sales)和潜在的市场情况(potentialmarket)指标。
由于文本信息包含了借款人的文字组织能力,拼写错误的单词的百分比,借款目的和债务状况等信息,还款能力和还款意愿,所以被广泛研究。RientsGalema(2020)为考察熟悉借款人的投资者在P2P贷款中信贷配给的作用,通过荷兰的P2P借贷数据进行实证,结果表明,熟悉借款人的投资者可以在其他P2P投资者之前进行投资,并且该笔贷款具有较低的违约概率。Weiguo Zhang等(2020)提出了一种充分挖掘贷款描述中的文本信息的新方法。通过美国LendingClub和中国人人贷的贷款数据进行实证,结果表明,在贷款预测的AUC和G-mean的指标上,考虑贷款描述文本信息的软信息和硬信息的组合模型优于仅考虑硬信息的模型。区分指标类型的统计计量模型考虑了软信息和硬信息对违约概率的不同影响,提高了违约判别的准确率。
但是,现有研究忽略了从指标变化方式和变化幅度的角度探索离散指标和连续指标对违约概率的不同影响。在数学上,离散型指标是一个仅有可数个取值的变量,连续型指标是在一定区间内有无限个取值的变量。在信用评分领域中,典型的离散型指标是信用卡账户的数量,典型的连续型指标是年收入。软信息和硬信息与离散型和连续型指标有交叉,例如“年收入”这个指标,从硬信息和软信息的分类上属于硬信息,从离散型指标和连续型指标的分类上属于连续型指标。从指标类型的角度看,不同指标类型与违约状态之间的映射关系不同,不同指标类型的违约鉴别能力也不同。
在很多实际的决策问题中,决策者很难知道精确的相关信息,或者很多决策需要的信息可能存在缺失。随机多属性可接受度分析方法(stochastic multi-criteriaacceptability analysis,SMAA)就是为了帮助决策者不确定情景下进行多属性决策的一种决策方法。通过逆权重空间分析的方法可以在不知道精确的属性值和决策者偏好信息的情况下,帮助决策者找出最好的方案。通过逆权重空间分析的方法,会得到很多信息,决策者可以根据这些信息,判断出最优的方案。
证据理论由美国哈佛大学数学家Dempster于1967年提出的,他的学生Shafer对其进行推广和完善,所以证据理论又称为Dempster-Shafer理论(简称D-S理论)。证据理论是一种不确定性推理方法,它允许把问题当作一个证据,把问题的描述情况当作支持证据的命题,所有可能出现命题的集合当作支持证据的幂集。例如,换句话说,支持证据的命题是幂集的子集。比如:法官断案某个嫌疑犯,则该嫌疑犯的描述情况一定是幂集{有罪}{无罪}和{不确定}的子集。由于问题的复杂性或主观判定的不确定性,证据理论对各个命题采用置信度的形式表示。比如m(A)=0.5,m(B)=0.2,m(C)=0.3,它表示本证据说明有罪的置信度为化0.5,无罪的置信度为0.2,不确定的置信度为0.3。但是,在实际应用中,证据间存在冲突问题,D-S理论有时无法融合出合理效果,特别是在1984年Zadeh提出D-S理论存在悖论现象,这在很大程度上制约了它的应用。为解决冲突问题,杨剑波、王应明等提出了证据推理(Evidential Reasoning,ER)方法,该方法引入了证据权重,并在D-S理论基础上采用了ER组合规则,有效地解决了证据合成时出现悖论问题。
发明内容
针对现有技术存在的问题,本发明提供一种基于SMAA-DS的信用等级与违约损失率相匹配的评级系统及方法。
为了解决上述技术问题,本发明采用以下的技术方案:
一方面,一种基于SMAA-DS的信用等级与违约损失率相匹配的评级系统,包括:用户登录注册模块,用户数据管理模块,用户信用评级模块。
所述用户登录注册模块,借款人通过用户页面进行注册自己的个人信息,包括手机号和姓名,注册成功后进入登录页面进行账号登录;
所述用户数据管理模块,借款人登录后点击借款按钮进入借款详细信息页面,在借款详细信息页面添加和修改借款人指标数据;
所述用户信用评级模块,借款人登录后点击信用评级按钮进入信用评级信息页面,进行信用评级,并进行显示。
另一方面,一种基于SMAA-DS的信用等级与违约损失率匹配的信用评级调整方法,基于前述一种基于SMAA-DS的信用等级与违约损失率匹配的信用评级系统实现,具体包括以下步骤:
步骤1:对金融机构积累的信用贷款业务的所有借款人历史数据进行预处理;
步骤1.1:将定量指标值采取最大最小标准化方法进行标准化处理;
步骤1.2:将定性指标值的打分结果与违约状态,根据定性指标取值对应的打分结果越大违约概率越低的原则相匹配,利用Excel的数据透视图工具统计出定性指标取值与违约概率的对应关系,其中违约概率同一个定性指标取值对应的违约人数除以总人数;
步骤1.3:使用功效系数法对定性指标值进行打分,如下式所示:
设xij表示第i个借款人第j个指标的隶属度值;Vij表示第i个借款人第j个指标的值,则功效系数法公式(1):
Figure BDA0003222419910000031
其中:
Figure BDA0003222419910000032
Figure BDA0003222419910000033
是第j个指标的满意值和不允许值,c,d为常数;
步骤:2:构建单个定性指标与违约状态间的二元Logistic回归模型,使用Wald统计量筛选具有违约判别能力的单个指标,再将保留的单个指标按照指标性质区分成离散型指标和连续型指标;
所述二元Logistic回归模型中,假设一组独立同分布的观测数据(X,Y),其中Y为因变量,Y=(y1,y2,…,yn),yn表示第n个借款人的违约状态,n表示一共有n个观测数据,即借款人,X为J维向量的自变量,X=(xi1,xi2,…,xij…,xiJ),xij表示第i个借款人的第j个指标的取值,J表示一共有J个维度(指标),yi∈{0,1}。设定yi=1表示借款人违约,yi=0表示借款人没有违约,P(yi=1|xi)=pi表示在xi已知的情况下yi=1的概率,xi表示第i个借款人,pi如式(2)所示,其中β为系数向量。
Figure BDA0003222419910000034
通过式(2)对进行变换可以得到Logistic模型,如式(3)所示。
Figure BDA0003222419910000041
构建Wald统计量,对单个指标的回归系数做显著性检验;设Wj为第j个指标的Wald统计量值,
Figure BDA0003222419910000042
为第j个指标的系数估计值,SEβj为系数βj的标准误差,故第j个指标的Wald统计量Wi如式(4)所示。
Figure BDA0003222419910000043
步骤3:使用Lasso-Logistic模型对离散型指标和连续型指标进行多重共线性检验,构建两种指标类型下具有最优整体违约判别能力的信用评分指标体系,分别以Lasso-Logistic的回归系数作为指标权重大小的依据,设置权重约束,利用随机多属性可接受度分析方法SMAA求解两种指标类型下的最优权重,计算借款人在两种指标类型下的信用评分;
所述Lasso-Logistic模型中,假设一组独立同分布的观测数据(X,Y),其中Y为因变量,Y=(y1,y2,…,yn),X为p维向量的自变量,X=(xi1,xi2,…,xip),共n组数据,每组数据包含p个自变量和1个因变量。当因变量为二分类变量时,因变量是借款人表现为违约或是非违约两种情况的还款状态,使用Lasso-Logistic回归模型进行拟合;
Lasso-Logistic回归对n个自变量X的系数β的参数估计具体如式(5)所示。
Figure BDA0003222419910000044
其中,λ为调节压缩系数的参数,
Figure BDA0003222419910000045
表示模型拟合程度,
Figure BDA0003222419910000046
是对模型中变量系数的惩罚,由于各观测数据独立同分布,则它们的联合分布可用各边际分布的乘积来表示,即n个观测值(借款人)的似然函数用L(θ)表示。
利用特征组合内的指标评分和指标权重,以线性加和方式计算借款人的信用评分。假设
Figure BDA0003222419910000047
表示第j个指标第k次模拟的权重(j=1,2,3,…,J),(k=1,2,3,…,K,),uij表示第i个借款人在指标j下的标准化数值,第i个借款人在第k次模拟的信用评分
Figure BDA0003222419910000048
如式(6)所示:
Figure BDA0003222419910000049
第i个借款人在K次模拟的信用评分均值
Figure BDA00032224199100000410
如式(7)所示:
Figure BDA00032224199100000411
步骤4:建立信用等级划分优化模型,优化模型是由1个目标函数和2个约束条件组成,以相邻信用等级间违约损失率之差的平方和最大为目标函数,以信用等级越高违约损失率越低为约束条件1,以相邻等级违约损失率差值约束,后一个违约损失率差值为前一个差值的a至b倍范围为约束条件2,确定借款人在两种指标类型下的信用等级。
步骤4.1:目标函数f的建立;
将借款人划分为L个信用等级,LGDl为第l个信用等级的违约损失率,则目标函数如式(8)所示。
obj:maxf=(LGDl-LGDl-1)2+(LGDl-1-LGDl-2)2+...+(LGD2-LGD1)2 (8)
步骤4.2:约束条件1以及约束条件2的建立
约束条件1:各信用等级违约损失率随信用等级降低而递增,如式(9)所示:
s.t.:0<LGD1<LGD2<...<LGDl≤1 (9)
约束条件2:相邻等级违约损失率差值约束,后一个违约损失率差值为前一个差值的a至b倍范围。
设ΔLGDl,l+1为第l个信用等级LGDl与第l+1个信用等级LGDl+1的违约损失率差值,即相邻等级间的差值表示如式(10)所示。
ΔLGDl,l+1=LGDl+1-LGDl (10)
则设置相邻等级间的违约损失率差值关系如式(11)所示。
ΔLGDl,l+1=[a,b]×ΔLGDl-1,l (11)
其中,第l个信用等级的违约损失率LGDl如式(12):
Figure BDA0003222419910000051
其中,gl表示第l个信用等级的借款人样本个数;Gl表示前l-1个信用等级的借款人样本个数总和,Gl=g1+g2+…+gl-1;Lli表示第l个信用等级中第i个借款人的违约损失金额(Loss);Rli表示第l个信用等级中第i个借款人的应收本息和(Receivables)。
步骤5:在两种指标类型下基于SMAA方法分别确定借款人的T次信用评分,进而将T次信用评分与各个信用等级的阈值点进行比较,确定各借款人属于不同信用等级的概率;
将T次评分的均值作为借款人的信用评分,记为信用评分均值,通过信用评分均值确定借款人的信用等级;模拟T次信用评分,然后把T次信用评分和各个信用等级的阈值点进行比较,确定各借款人属于不同信用等级的概率;
步骤6:对两种指标类型进行不同比例组合,使用证据理论ER组合规则将两种指标类型下的借款人信用等级进行集成,通过计算比较不同组合比例下的违约损失区分度f的大小,即步骤4.1中的目标函数f,以区分度f最大为依据,得到离散型指标和连续型指标的最佳组合比例,作为SMAA-DS模型中两种指标类型的最终组合比例,并将此比例输入证据理论ER合成规则确定借款人的信用等级信息;
所述证据理论ER组合规则如下所示:
步骤D1:求出各证据在合成之前的BPA值,其中各证据是指借款人分别在离散型指标和连续型指标中属于所有等级的概率
设Θ为识别框架,2个证据m1、m2:2Θ→[0,1]。
Figure BDA0003222419910000061
Figure BDA0003222419910000062
Figure BDA0003222419910000063
Figure BDA0003222419910000064
其中wo为证据o的相对权重,且
Figure BDA0003222419910000065
O为证据的个数。βo(Hn)和βo(H)分别代表焦元
Figure BDA0003222419910000066
Figure BDA0003222419910000067
的置信度,
Figure BDA0003222419910000068
是证据o的BPA值,l表示第l个等级,一共有L个等级。
步骤D2:利用证据理论ER组合规则将证据进行合成,求出合成后各个证据的BPA值。
Figure BDA0003222419910000069
Figure BDA00032224199100000610
Figure BDA00032224199100000611
Figure BDA00032224199100000612
其中m12(Hl)表示借款人组合后属于第l个等级的BPA值;K为证据冲突系数,K越大表明证据之间的冲突越大;B和C表示为借款人在离散型指标类型下和连续型指标类型下分别属于某个等级;
Figure BDA00032224199100000613
为过程参数;
Figure BDA00032224199100000614
分别表示离散型,连续型,离散型和连续型指标中待分配信念比例(概率);m1(B),m2(C)分别表示B和C在组合前的BPA(mass函数)。
步骤D3:将合成后各个证据的BPA值转换成置信度Bel,即借款人在SMAA-DS模型中属于信用等级Hl的概率。
Figure BDA00032224199100000615
Figure BDA00032224199100000616
步骤7:用户在用户登录模块登录,然后在用户数据管理模块填写和修改个人信息。对借款人在用户数据管理模块输入的数据输入到用户信用评级模块,用户点击用户信用评级模块,显示信用评级。
本发明所产生的有益效果在于:
本发明提出一种基于SMAA-DS的评级与违约损失率匹配的信用评级系统及方法,具备以下有益效果:
1、本发明从指标变化幅度和方式的角度将离散型和连续型指标以非线性方式构建的信用评级模型满足“信用等级越高违约损失率越低”的标准,且其区分不同违约可能性借款人的能力较强。
2、本发明为金融机构或贷款人信用评级与信贷决策提供重要参考,有效分配信贷资源,包括是否贷款、信用评级等。
附图说明
图1为本发明实施例中信用评级系统总体结构框图;
图2为本发明实施例中信用评级方法的总体流程图;
图3为本发明实施例中不同模型信用等级划分结果对比图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
一方面,一种基于SMAA-DS的信用等级与违约损失率相匹配的评级系统,如图1所示,包括:用户登录注册模块,用户数据管理模块,用户信用评级模块。
所述用户登录注册模块,借款人通过用户页面进行注册自己的个人信息,包括手机号和姓名,注册成功后进入登录页面进行账号登录;
所述用户数据管理模块,借款人登录后点击借款按钮进入借款详细信息页面,在借款详细信息页面添加和修改借款人指标数据;
所述用户信用评级模块,借款人登录后点击信用评级按钮进入信用评级信息页面,进行信用评级,并进行显示。
另一方面,一种基于SMAA-DS的信用等级与违约损失率匹配的信用评级调整方法,基于前述一种基于SMAA-DS的信用等级与违约损失率匹配的信用评级系统实现,如图2所示,具体包括以下步骤:
步骤1:对金融机构积累的信用贷款业务的所有借款人历史数据进行预处理;
步骤1.1:将定量指标值采取最大最小标准化方法进行标准化处理;其中指标值为全是数字的指标;
步骤1.2:将定性指标值的打分结果与违约状态根据定性指标取值对应的打分结果越大违约概率越低的原则相匹配,利用Excel的数据透视图工具统计出定性指标取值与违约概率的对应关系,其中违约概率同一个定性指标取值对应的违约人数除以总人数;例如家庭住址是某市的有10000人,其中10000人违约,则借款人在家庭住址这个定性指标中取值是某市,其对应的违约概率是0.1;
其中违约状态是历史样本中每一条数据自带的指标;
步骤1.3:使用功效系数法对定性指标值进行打分,如下式所示:
设xij表示第i个借款人第j个指标的隶属度值;Vij表示第i个借款人第j个指标的值,则功效系数法公式(1):
Figure BDA0003222419910000081
其中:
Figure BDA0003222419910000082
Figure BDA0003222419910000083
是第j个指标的满意值和不允许值,c,d为常数,c的作用是对变换后的值进行平移,d的作用是对变换后的值进行放大或者缩小。此时设定c=0.5,d=0.5。根据初始指标体系中定性指标各分类的违约情况,对定性指标进行打分处理,6个定性指标的标准化处理过程如表1所示。
表1定性指标标准化处理过程
Figure BDA0003222419910000084
本实施例中使用某平台2012年三年期的43471个贷款数据进行实证,经过数据清洗之后剩余了16574个贷款数据作为样本。
步骤:2:构建单个定性指标与违约状态间的二元Logistic回归模型,使用Wald统计量筛选具有违约判别能力的单个指标,去除Wald统计量小于3.841的指标,保留Wald统计量大于3.841的指标,再将保留的单个指标按照指标性质区分成离散型指标和连续型指标;
离散型指标包括年龄,学历,婚姻状况,房屋所有权状况,有无贷款记录,是否有未归还的银行借款等。连续型指标包括月收入,每月还款金额占月收入的比例,每月日常支出等。
Logistic回归是常用的分类模型,该模型中因变量为离散变量,以二元变量为主。
所述二元Logistic回归模型中,假设一组独立同分布的观测数据(X,Y),其中Y为因变量,Y=(y1,y2,…,yn),yn表示第n个借款人的违约状态,n表示一共有n个观测数据,即借款人,X为J维向量的自变量,X=(xi1,xi2,…,xij…,xiJ),xij表示第i个借款人的第j个指标的取值,J表示一共有J个维度(指标),yi∈{0,1}。设定yi=1表示借款人违约,yi=0表示借款人没有违约,P(yi=1|xi)=pi表示在xi已知的情况下yi=1的概率,xi表示第i个借款人,pi如式(2)所示,其中β为系数向量。
Figure BDA0003222419910000091
通过式(2)对进行变换可以得到Logistic模型,如式(3)所示。
Figure BDA0003222419910000092
构建Wald统计量,对单个指标的回归系数做显著性检验;设Wj为第j个指标的Wald统计量值,
Figure BDA0003222419910000093
为第j个指标的系数估计值,SEβj为系数βj的标准误差,故第j个指标的Wald统计量Wi如式(4)所示。
Figure BDA0003222419910000094
由于是对单个指标进行Wald统计量检验,故服从自由度为1的χ2分布,由χ2分布表知,此时满足显著性水平α=0.05下的χ2临界值为χ0.05 2(1)=3.841,即当指标i的Wald统计量大于3.841认为该指标具有显著违约判别能力。
步骤3:使用Lasso-Logistic模型对离散型指标和连续型指标进行多重共线性检验,构建两种指标类型下具有最优整体违约判别能力的信用评分指标体系,分别以Lasso-Logistic的回归系数作为指标权重大小的依据,设置权重约束,确定指标权重合理区间,利用随机多属性可接受度分析方法SMAA求解两种指标类型下的最优权重,计算借款人在两种指标类型下的信用评分;
其中合理区间为,考虑指标回归系数受数据变化的影响,导致部分指标权重过大或过小,干扰信用评分的准确性,通过设置权重约束
Figure BDA0003222419910000095
n为指标个数,来减少客观数据变化对指标权重的影响。即当指标权重小于
Figure BDA0003222419910000096
时,该指标的权重调整为
Figure BDA0003222419910000097
当指标权重大于
Figure BDA0003222419910000098
时,该指标的权重调整为
Figure BDA0003222419910000099
所述信用评分的计算如下面所示。
Lasso-Logistic模型是通过在最小二乘法的基础上添加系数惩罚进行系数收缩,从而实现变量选择的技术。所述Lasso-Logistic模型中,假设一组独立同分布的观测数据(X,Y),其中Y为因变量,Y=(y1,y2,…,yn),X为p维向量的自变量,X=(xi1,xi2,…,xip),共n组数据,每组数据包含p个自变量和1个因变量。当因变量为二分类变量时,因变量是借款人表现为违约或是非违约两种情况的还款状态,使用Lasso-Logistic回归模型进行拟合;
Lasso-Logistic回归对n个自变量X的系数β的参数估计具体如式(5)所示。
Figure BDA0003222419910000101
其中,λ为调节压缩系数的参数,
Figure BDA0003222419910000102
表示模型拟合程度,
Figure BDA0003222419910000103
是对模型中变量系数的惩罚,由于各观测数据独立同分布,则它们的联合分布可用各边际分布的乘积来表示,即n个观测值(借款人)的似然函数用L(θ)表示。
利用特征组合内的指标评分和指标权重,以线性加和方式计算借款人的信用评分。假设
Figure BDA0003222419910000104
表示第j个指标第k次模拟的权重(j=1,2,3,…,J),(k=1,2,3,…,K,),uij表示第i个借款人在指标j下的标准化数值,第i个借款人在第k次模拟的信用评分
Figure BDA0003222419910000105
如式(6)所示:
Figure BDA0003222419910000106
第i个借款人在K次模拟的信用评分均值
Figure BDA0003222419910000107
如式(7)所示:
Figure BDA0003222419910000108
步骤4:建立信用等级划分优化模型,优化模型是由1个目标函数和2个约束条件组成,以相邻信用等级间违约损失率之差的平方和最大为目标函数,以信用等级越高违约损失率越低为约束条件1,以相邻等级违约损失率差值约束,后一个违约损失率差值为前一个差值的a至b倍范围为约束条件2,确定借款人在两种指标类型下的信用等级。
步骤4.1:目标函数f的建立;
将借款人划分为L个信用等级,LGDl为第l个信用等级的违约损失率Loss GivenDefault,则目标函数如式(8)所示。
obj:max f=(LGDl-LGDl-1)2+(LGDl-1-LGDl-2)2+...+(LGD2-LGD1)2 (8)
通过计算所有两两相邻信用等级之间的违约损失率差值平方和的总和,选取所有信用等级划分方案中该值最大的方案,保证了筛选出的信用等级划分结果的各信用等级违约损失区分度最大,较好地区分不同信用状况的借款人,实现合理有效的信用等级划分,进而确定各等级间的阈值点。
步骤4.2:约束条件1以及约束条件2的建立
约束条件1:各信用等级违约损失率随信用等级降低而递增,如式(9)所示:
s.t.:0<LGD1<LGD2<...<LGDl≤1 (9)
约束条件2:相邻等级违约损失率差值约束,后一个违约损失率差值为前一个差值的a至b倍范围。为避免违约损失率变化过于敏感,且由于目标函数是求最大,盲目追求等级间的违约损失率差值容易导致划分结果的不合理,通过设置合理的区间范围,既保证划分结果的区分度也可保证其合理性。本实施例中设置相邻等级违约损失率差值区间范围为[1,1.2]。
设ΔLGDl,l+1为第l个信用等级LGDl与第l+1个信用等级LGDl+1的违约损失率差值,即相邻等级间的差值表示如式(10)所示。
ΔLGDl,l+1=LGDl+1-LGDl (10)
则设置相邻等级间的违约损失率差值关系如式(11)所示。
ΔLGDl,l+1=[a,b]×ΔLGDl-1,l (11)
其中,第l个信用等级的违约损失率LGDl如式(12):
Figure BDA0003222419910000111
其中,gl表示第l个信用等级的借款人样本个数;Gl表示前l-1个信用等级的借款人样本个数总和,Gl=g1+g2+…+gl-1;Lli表示第l个信用等级中第i个借款人的违约损失金额(Loss);Rli表示第l个信用等级中第i个借款人的应收本息和(Receivables)。
该模型可以输出每个等级的信用评分阈值点、违约损失金额、应收本息、人数和违约损失率。
步骤5:在两种指标类型下基于SMAA方法分别确定借款人的T次信用评分,进而将T次信用评分与各个信用等级的阈值点进行比较,确定各借款人属于不同信用等级的概率;
将T次评分的均值作为借款人的信用评分,记为信用评分均值,通过信用评分均值确定借款人的信用等级;模拟T次信用评分,然后把T次信用评分和各个信用等级的阈值点进行比较,确定各借款人属于不同信用等级的概率;
例如模拟1000次信用评分,第1个借款人被划分到第一、二、三、四、五、六、七个等级的次数分别为0、0、817、183、0、0、0,用划分为每个等级的次数分别除以1000得到的比例是0、0、0.817、0.183、0、0、0,则该借款人属于第一、二、三、四、五、六、七个等级的概率分别为0、0、0.817、0.183、0、0、0。将借款人在离散型指标和连续型指标类型下属于每个等级的概率分别放入表2中的第2列到第15列,表2中的第1列为借款人的序号。
表2借款人在两种指标类型下属于不同信用等级的概率
Figure BDA0003222419910000112
Figure BDA0003222419910000121
步骤6:对两种指标类型进行不同比例组合,使用证据理论ER组合规则将两种指标类型下的借款人信用等级进行集成,通过计算比较不同组合比例下的违约损失区分度f的大小,即步骤4.1中的目标函数f,以区分度f最大为依据,得到离散型指标和连续型指标的最佳组合比例,作为SMAA-DS模型中两种指标类型的最终组合比例,并将此比例输入证据理论ER合成规则确定借款人的信用等级信息;
以违约损失区分度f最大为0.0086时对应的w1=0.54,w2=0.46为例介绍ER规则在表2第1个借款人在SMAA-DS模型中信用等级的计算过程,算例中Hl分别取值为A,B,C,D,E,F和G等级,H取A,B,C,D,E,F和G等级的集合。
步骤D1:构造mass函数m1,m2,求出离散型指标类型(简记为1)和连续型指标类型(简记为2)的BPA值
将表2第一行数字和w1=0.54,w2=0.46代入公式13可以得到:
m1({A})=w11({A})=0.54*0=0
m1({B})=w11({B})=0.54*0=0
m1({C})=w11({C})=0.54*0.8170=0.4412
同理,m1({D})=0.0988,m1({E})=0,m1({F})=0,m1({G})=0。
m2({A})=w22({A})=0.46*0=0
m2({B})=w22({B})=0.46*0=0
m2({C})=w22({C})=0.46*0=0
同理,m2({D})=0,m2({E})=0.0069,m2({F})=0.4531,m2({G})=0。
将w1=0.54,w2=0.46代入公式14可以得到:
Figure BDA0003222419910000122
Figure BDA0003222419910000123
将w1=0.54,w2=0.46和表2第一行数字代入公式15可以得到:
Figure BDA0003222419910000124
Figure BDA0003222419910000131
Figure BDA0003222419910000132
Figure BDA0003222419910000133
代入公式16可以得到:
Figure BDA0003222419910000134
Figure BDA0003222419910000135
步骤D2:利用证据理论ER规则进行合成,求出离散型指标类型(简记为1)和连续型指标类型(简记为2)合成后证据的BPA值:
代入公式17计算冲突系数K
Figure BDA0003222419910000136
(1)计算信用等级A,B,C,D,E,F,G组合后的BPA值
代入公式18,可以得到
Figure BDA0003222419910000137
代入公式19,可以得到
Figure BDA0003222419910000138
代入公式20可以得到
Figure BDA0003222419910000139
(2)计算各个信用等级组合后的BPA值
代入公式20可以得到信用等级A的组合后的BPA值
Figure BDA0003222419910000141
代入公式20可以得到信用等级B的组合后的BPA值
Figure BDA0003222419910000142
同理,m12({C})=0.3170,m12({D})=0.0710,m12({E})=0.0042,m12({F})=0.2773,m12({G})=0。
步骤D3:组合后证据的BPA值转换成置信度,即借款人在SMAA-DS模型中的属于各个信用等级的概率
代入公式21,可以得到
Figure BDA0003222419910000143
代入公式22,可以得到借款人在SMAA-DS模型中的属于信用等级A的概率
Figure BDA0003222419910000144
借款人在SMAA-DS模型中的属于信用等级B的概率
Figure BDA0003222419910000145
借款人在SMAA-DS模型中的属于信用等级C的概率
Figure BDA0003222419910000146
借款人在SMAA-DS模型中的属于信用等级D的概率
Figure BDA0003222419910000147
同理β12({E})=0.0063,β12({F})=0.4142,β12({G})=0。
将此借款人在SMAA-DS模型中属于各个等级的概率放入表3中的第2行,选概率最大的等级作为借款人在SMAA-DS模型中的信用等级。第1个借款人属于等级C的概率最大,于是该借款人在SMAA-DS模型中的信用等级是C。同理可以计算第2-16574个借款人在SMAA-DS模型中属于各信用等级的概率分布情况,放入表3第3-16575行。当公式(13)中的比例w1从0到1遍历过程(w2=1-w1)中,w1=0.54,w2=0.46时违约损失区分度f最大为0.0086,能够最大程度区分不同信用水平的借款人。于是w1=0.54,w2=0.46就是SMAA-DS模型中两种指标类型的最佳组合比例。
表3借款人在SMAA-DS中属于各信用等级的概率分布情况
Figure BDA0003222419910000148
Figure BDA0003222419910000151
并统计表3最后一列的数据可以得到SMAA-DS模型中每个等级的人数,将表3的最后一列数据带入公式(12)可以计算得到SMAA-DS模型的、违约损失率、各个等级的人数,并通过各个等级的人数确定各个等级的信用评分阈值点。
步骤7:用户在用户登录模块登录,然后在用户数据管理模块填写和修改个人信息。对借款人在用户数据管理模块输入的数据输入到用户信用评级模块,用户点击用户信用评级模块,显示信用评级。
本实施例中信用等级划分结果对比如表4所示,由图3可知,在SMAA-DS模型中w1=0.54,w2=0.46时使用证据理论ER方法的信用等级划分结果最优。
表4信用等级划分结果的对比
Figure BDA0003222419910000152
Figure BDA0003222419910000161
图1对比4个模型信用等级划分结果
同时SMAA-DS模型具有可解释性,能够指导实际银行等金融机构的贷款实践。SMAA-DS模型的优势表现在6个方面:
1)SMAA-DS模型的违约损失区分度f最大,能最大程度地区分不同违约可能性的借款人。信用等级划分的本质是能最大程度区分不同违约可能性的借款人,而相邻等级之间的违约损失率的差f越大说明相邻等级借款人的信用水平差异越大,同一信用等级借款人的信用水平差异越小。SMAA-DS模型的违约损失区分度f=0.0086,Lending club 43471个样本和16574个样本、不区分指标类型、离散型指标和连续型指标对应的违约损失区分度f分别是0.0028、0.0022、0.0065、0.0067和0.0032。SMAA-DS模型的违约损失区分度f是不区分指标类型模型f的132.31%。显然,SMAA-DS模型中最能区分不同违约程度地借款人。
2)SMAA-DS模型的高信用等级的违约损失率最低,能最大程度留住高信用等级的优质客户。在美国这样一个金融行业比较发达的市场,信用等级比较高的借款人往往拥有多个贷款来源,所以给高信用等级的客户划分的违约损失率最低,相应的贷款利率也最低,更能留住高信用等级的优质客户。SMAA-DS模型的A等级的违约损失率是0.68%,Lendingclub 43471个样本和16574个样本、不区分指标类型、离散型指标和连续型指标对应的A等级违约损失率分别是3.41%、2.91%、1.25%、0.75%和0.62%。相对于不区分指标类型A等级的违约损失率,SMAA-DS模型的A等级的违约损失率降低了45.60%。显然,SMAA-DS模型中的高等级的违约损失率最小,最能留住优质客户。
3)SMAA-DS模型的低等级的违约损失率最高,能最大程度降低平台预期的违约损失。对于信用等级比较低的借款人,P2P平台的主要目的是减少违约损失,所以将识别出最低等级借款人并给予较高的贷款定价,可以最大程度弥补P2P平台的违约损失。SMAA-DS模型的G等级的损失率是21.69%,Lending club 43471个样本和16574个样本、不区分指标类型、离散型指标和连续型指标对应的G等级违约损失率分别是8.87%、7.27%、20.19%、20.53%和13.93%。相对于不区分指标类型G等级的违约损失率,SMAA-DS模型的G等级的违约损失率提高了7.43%。显然,SMAA-DS模型中的低等级的违约损失率最小,最能减少违约损失。
4)SMAA-DS模型相邻等级之间的违约损失率最小间隔按照从大到小顺序排名第二,仅次于离散型指标。SMAA-DS模型的相邻等级之间的违约损失率最小间隔是2.41%,Lending club 43471个样本和16574个样本、不区分指标类型、离散型指标和连续型指标对应的相邻等级之间的违约损失率最小间隔分别是0.81%、0.27%、1.97%、2.44%和1.50%。相对于不区分指标类型违约损失率的最小间隔,SMAA-DS模型提高了22.34%。显然,SMAA-DS模型中使得同一信用等级的借款人信用水平差距小,等级间借款人的信用水平差距大。
5)SMAA-DS模型中A等级和G等级违约损失率差距最大,可以最大程度区分所有借款人的信用水平。SMAA-DS模型的A等级和G等级违约损失率差是21.01%,Lending club43471个样本和16574个样本、不区分指标类型、离散型指标和连续型指标对应的相邻等级之间的违约损失率最小间隔分别是5.46%、4.36%、18.94%、19.78%和13.31%。相对于不区分指标类型A等级和G等级违约损失率的差距,SMAA-DS模型提高了22.34%。显然,SMAA-DS模型中的A等级和G等级违约损失率差距最大。
6)SMAA-DS模型服从信用等级越高违约损失率越低的信用等级划分的标准。从表11可以看出,SMAA-DS模型、不区分指标类型、离散型指标和连续型指标的信用等级划分结果服从信用等级越高违约损失率越低的信用等级划分标准;但是,Lending club 43471个样本和16574个样本划分结果不服从上述标准。所以,SMAA-DS模型信用等级划分结果较好。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明权利要求所限定的范围。

Claims (7)

1.一种基于SMAA-DS的信用等级与违约损失率相匹配的评级系统,其特征在于,包括:用户登录注册模块,用户数据管理模块,用户信用评级模块;
所述用户登录注册模块,借款人通过用户页面进行注册自己的个人信息,包括手机号和姓名,注册成功后进入登录页面进行账号登录;
所述用户数据管理模块,借款人登录后点击借款按钮进入借款详细信息页面,在借款详细信息页面添加和修改借款人指标数据;
所述用户信用评级模块,借款人登录后点击信用评级按钮进入信用评级信息页面,进行信用评级,并进行显示。
2.一种基于SMAA-DS的信用等级与违约损失率匹配的信用评级调整方法,基于前述基于SMAA-DS的信用等级与违约损失率相匹配的评级系统实现,其特征在于,包括以下步骤:
步骤1:对金融机构积累的信用贷款业务的所有借款人历史数据进行预处理;
步骤2:构建单个定性指标与违约状态间的二元Logistic回归模型,使用Wald统计量筛选具有违约判别能力的单个指标,再将保留的单个指标按照指标性质区分成离散型指标和连续型指标;
步骤3:使用Lasso-Logistic模型对离散型指标和连续型指标进行多重共线性检验,构建两种指标类型下具有最优整体违约判别能力的信用评分指标体系,分别以Lasso-Logistic的回归系数作为指标权重大小的依据,设置权重约束,利用随机多属性可接受度分析方法SMAA求解两种指标类型下的最优权重,计算借款人在两种指标类型下的信用评分;
步骤4:建立信用等级划分优化模型,优化模型是由1个目标函数和2个约束条件组成,以相邻信用等级间违约损失率之差的平方和最大为目标函数,以信用等级越高违约损失率越低为约束条件1,以相邻等级违约损失率差值约束,后一个违约损失率差值为前一个差值的a至b倍范围为约束条件2,确定借款人在两种指标类型下的信用等级;
步骤5:在两种指标类型下基于SMAA方法分别确定借款人的T次信用评分,进而将T次信用评分与各个信用等级的阈值点进行比较,确定各借款人属于不同信用等级的概率;
将T次评分的均值作为借款人的信用评分,记为信用评分均值,通过信用评分均值确定借款人的信用等级;模拟T次信用评分,然后把T次信用评分和各个信用等级的阈值点进行比较,确定各借款人属于不同信用等级的概率;
步骤6:对两种指标类型进行不同比例组合,使用证据理论ER组合规则将两种指标类型下的借款人信用等级进行集成,通过计算比较不同组合比例下的违约损失区分度f的大小,即目标函数f,以区分度f最大为依据,得到离散型指标和连续型指标的最佳组合比例,作为SMAA-DS模型中两种指标类型的最终组合比例,并将此比例输入证据理论ER合成规则确定借款人的信用等级信息;
步骤7:用户在用户登录模块登录,然后在用户数据管理模块填写和修改个人信息,对借款人在用户数据管理模块输入的数据输入到用户信用评级模块,用户点击用户信用评级模块,显示信用评级。
3.根据权利要求2所述的基于SMAA-DS的信用等级与违约损失率匹配的信用评级调整方法,其特征在于,所述步骤1包括:
步骤1.1:将定量指标值采取最大最小标准化方法进行标准化处理;
步骤1.2:将定性指标值的打分结果与违约状态,根据定性指标取值对应的打分结果越大违约概率越低的原则相匹配,利用Excel的数据透视图工具统计出定性指标取值与违约概率的对应关系,其中违约概率同一个定性指标取值对应的违约人数除以总人数;
步骤1.3:使用功效系数法对定性指标值进行打分,如下式所示:
设xij表示第i个借款人第j个指标的隶属度值;Vij表示第i个借款人第j个指标的值,则功效系数法公式(1):
Figure FDA0003222419900000021
其中:
Figure FDA0003222419900000022
Figure FDA0003222419900000023
是第j个指标的满意值和不允许值,c,d为常数。
4.根据权利要求2所述的基于SMAA-DS的信用等级与违约损失率匹配的信用评级调整方法,其特征在于,步骤2中所述二元Logistic回归模型中,假设一组独立同分布的观测数据(X,Y),其中Y为因变量,Y=(y1,y2,…,yn),yn表示第n个借款人的违约状态,n表示一共有n个观测数据,即借款人,X为J维向量的自变量,X=(xi1,xi2,…,xij…,xiJ),xij表示第i个借款人的第j个指标的取值,J表示一共有J个维度(指标),yi∈{0,1},设定yi=1表示借款人违约,yi=0表示借款人没有违约,P(yi=1|xi)=pi表示在xi已知的情况下yi=1的概率,xi表示第i个借款人,pi如式(2)所示,其中β为系数向量;
Figure FDA0003222419900000024
通过式(2)对进行变换可以得到Logistic模型,如式(3)所示:
Figure FDA0003222419900000025
构建Wald统计量,对单个指标的回归系数做显著性检验;设Wj为第j个指标的Wald统计量值,
Figure FDA0003222419900000026
为第j个指标的系数估计值,SEβj为系数βj的标准误差,故第j个指标的Wald统计量Wi如式(4)所示:
Figure FDA0003222419900000027
5.根据权利要求2所述的基于SMAA-DS的信用等级与违约损失率匹配的信用评级调整方法,其特征在于,步骤3中所述Lasso-Logistic模型中,假设一组独立同分布的观测数据(X,Y),其中Y为因变量,Y=(y1,y2,…,yn),X为p维向量的自变量,X=(xi1,xi2,…,xip),共n组数据,每组数据包含p个自变量和1个因变量;当因变量为二分类变量时,因变量是借款人表现为违约或是非违约两种情况的还款状态,使用Lasso-Logistic回归模型进行拟合;
Lasso-Logistic回归对n个自变量X的系数β的参数估计具体如式(5)所示:
Figure FDA0003222419900000031
其中,λ为调节压缩系数的参数,
Figure FDA0003222419900000032
表示模型拟合程度,
Figure FDA0003222419900000033
是对模型中变量系数的惩罚,由于各观测数据独立同分布,则它们的联合分布可用各边际分布的乘积来表示,即n个观测值(借款人)的似然函数用L(θ)表示;
利用特征组合内的指标评分和指标权重,以线性加和方式计算借款人的信用评分;假设wjk表示第j个指标第k次模拟的权重(j=1,2,3,…,J),(k=1,2,3,…,K,),uij表示第i个借款人在指标j下的标准化数值,第i个借款人在第k次模拟的信用评分
Figure FDA0003222419900000034
如式(6)所示:
Figure FDA0003222419900000035
第i个借款人在K次模拟的信用评分均值
Figure FDA0003222419900000036
如式(7)所示:
Figure FDA0003222419900000037
6.根据权利要求2所述的基于SMAA-DS的信用等级与违约损失率匹配的信用评级调整方法,其特征在于,所述步骤4具体包括以下步骤:
步骤4.1:目标函数f的建立;
将借款人划分为L个信用等级,LGDl为第l个信用等级的违约损失率,则目标函数如式(8)所示:
obj:maxf=(LGDl-LGDl-1)2+(LGDl-1-LGDl-2)2+...+(LGD2-LGD1)2 (8)
步骤4.2:约束条件1以及约束条件2的建立;
约束条件1:各信用等级违约损失率随信用等级降低而递增,如式(9)所示:
s.t.:0<LGD1<LGD2<...<LGDl≤1 (9)
约束条件2:相邻等级违约损失率差值约束,后一个违约损失率差值为前一个差值的a至b倍范围;
设ΔLGDl,l+1为第l个信用等级LGDl与第l+1个信用等级LGDl+1的违约损失率差值,即相邻等级间的差值表示如式(10)所示:
ΔLGDl,l+1=LGDl+1-LGDl (10)
则设置相邻等级间的违约损失率差值关系如式(11)所示:
ΔLGDl,l+1=[a,b]×ΔLGDl-1,l (11)
其中,第l个信用等级的违约损失率LGDl如式(12):
Figure FDA0003222419900000041
其中,gl表示第l个信用等级的借款人样本个数;Gl表示前l-1个信用等级的借款人样本个数总和,Gl=g1+g2+…+gl-1;Lli表示第l个信用等级中第i个借款人的违约损失金额(Loss);Rli表示第l个信用等级中第i个借款人的应收本息和(Receivables)。
7.根据权利要求2所述的基于SMAA-DS的信用等级与违约损失率匹配的信用评级调整方法,其特征在于,步骤6中所述证据理论ER组合如下所示:
步骤D1:求出各证据在合成之前的BPA值,其中各证据是指借款人分别在离散型指标和连续型指标中属于所有等级的概率
设Θ为识别框架,2个证据m1、m2:2Θ→[0,1];
Figure FDA0003222419900000042
Figure FDA0003222419900000043
Figure FDA0003222419900000044
Figure FDA0003222419900000045
其中wo为证据o的相对权重,且
Figure FDA0003222419900000046
O为证据的个数,βo(Hn)和βo(H)分别代表焦元
Figure FDA0003222419900000047
Figure FDA0003222419900000048
的置信度,
Figure FDA0003222419900000049
是证据o的BPA值,l表示第l个等级,一共有L个等级;
步骤D2:利用证据理论ER组合规则将证据进行合成,求出合成后各个证据的BPA值:
Figure FDA00032224199000000410
Figure FDA00032224199000000411
Figure FDA00032224199000000412
Figure FDA00032224199000000413
其中m12(Hl)表示借款人组合后属于第l个等级的BPA值;K为证据冲突系数,K越大表明证据之间的冲突越大;B和C表示为借款人在离散型指标类型下和连续型指标类型下分别属于某个等级;
Figure FDA0003222419900000051
Figure FDA0003222419900000052
为过程参数;
Figure FDA0003222419900000053
分别表示离散型,连续型,离散型和连续型指标中待分配信念比例;m1(B),m2(C)分别表示B和C在组合前的BPA;
步骤D3:将合成后各个证据的BPA值转换成置信度Bel,即借款人在SMAA-DS模型中属于信用等级Hl的概率:
Figure FDA0003222419900000054
Figure FDA0003222419900000055
CN202110962078.1A 2021-08-20 2021-08-20 基于smaa-ds的信用等级与违约损失率相匹配的评级系统及方法 Active CN113610638B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110962078.1A CN113610638B (zh) 2021-08-20 2021-08-20 基于smaa-ds的信用等级与违约损失率相匹配的评级系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110962078.1A CN113610638B (zh) 2021-08-20 2021-08-20 基于smaa-ds的信用等级与违约损失率相匹配的评级系统及方法

Publications (2)

Publication Number Publication Date
CN113610638A true CN113610638A (zh) 2021-11-05
CN113610638B CN113610638B (zh) 2023-11-21

Family

ID=78309039

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110962078.1A Active CN113610638B (zh) 2021-08-20 2021-08-20 基于smaa-ds的信用等级与违约损失率相匹配的评级系统及方法

Country Status (1)

Country Link
CN (1) CN113610638B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102779317A (zh) * 2012-06-18 2012-11-14 大连理工大学 基于信用等级与违约损失率匹配的信用评级系统与方法
CN103124105A (zh) * 2012-03-27 2013-05-29 湖南大学 一种面向智能变电站设备状态监测的无线智能传感器网络系统
CN105426624A (zh) * 2015-12-04 2016-03-23 浙江工业大学 一种基于证据推理迭代算法和熵权的建筑开窗行为仿真方法
CN108492877A (zh) * 2018-03-26 2018-09-04 西安电子科技大学 一种基于ds证据理论的心血管病辅助预测方法
CN109724617A (zh) * 2017-10-31 2019-05-07 腾讯科技(深圳)有限公司 一种导航路线的绘制方法以及相关设备
CN109886473A (zh) * 2019-01-24 2019-06-14 河海大学 一种考虑下游生态的流域风光水系统多目标优化调度方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103124105A (zh) * 2012-03-27 2013-05-29 湖南大学 一种面向智能变电站设备状态监测的无线智能传感器网络系统
CN102779317A (zh) * 2012-06-18 2012-11-14 大连理工大学 基于信用等级与违约损失率匹配的信用评级系统与方法
CN105426624A (zh) * 2015-12-04 2016-03-23 浙江工业大学 一种基于证据推理迭代算法和熵权的建筑开窗行为仿真方法
CN109724617A (zh) * 2017-10-31 2019-05-07 腾讯科技(深圳)有限公司 一种导航路线的绘制方法以及相关设备
CN108492877A (zh) * 2018-03-26 2018-09-04 西安电子科技大学 一种基于ds证据理论的心血管病辅助预测方法
CN109886473A (zh) * 2019-01-24 2019-06-14 河海大学 一种考虑下游生态的流域风光水系统多目标优化调度方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GANGSHU CAI 等: "The Roles of Bank and Trade Credits: Theoretical Analysis and Empirical Evidence", 《 PRODUCTION AND OPERATIONS MANAGEMENT》, vol. 23, no. 4, pages 583 - 598 *
杨星亚: "基于证据理论的中小企业信用评级研究", 《中国优秀硕士学位论文全文数据库》, no. 6, pages 152 - 1696 *

Also Published As

Publication number Publication date
CN113610638B (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
Chen et al. A fuzzy credit-rating approach for commercial loans: a Taiwan case
Abdou et al. Neural nets versus conventional techniques in credit scoring in Egyptian banking
US8515862B2 (en) Computer-implemented systems and methods for integrated model validation for compliance and credit risk
KR20010103784A (ko) 입력이 없는 상황에서의 가치 평가 예측 모델
JP2003535387A (ja) 金融商品等の資産ポートフォリオの高速評価
JP2003526146A (ja) 評価値を求めてリスクを低減する方法とシステム
CN111401600A (zh) 基于关联关系的企业信用风险评价方法和系统
Blanco Oliver et al. Improving bankruptcy prediction in micro-entities by using nonlinear effects and non-financial variables
Wu et al. Group decision-making using improved multi-criteria decision making methods for credit risk analysis
Nath Country risk analysis: A survey of the quantitative methods
CN113344692B (zh) 多信息源融合的网络借贷信用风险评估模型的建立方法
Yuan Research on credit risk assessment of P2P network platform: based on the logistic regression model of evidence weight
Ryan et al. FinTech isn’t so different from traditional banking: trading off aggregation of soft information for transaction processing efficiency
Jiang et al. Bank Technology Adoption and Loan Production in the US Mortgage Market
CN113610638A (zh) 基于smaa-ds的信用等级与违约损失率相匹配的评级系统及方法
Guo et al. Borrower-lender Information Fusion for P2P Lending: A Nonparametric Approach.
Adewusi et al. Residential Tenants Classification: A Test of Performance of Five Selected Artificial Neural Networks training Algorithms
Tan et al. Investment recommendation with total capital value maximization in online P2P lending
Bahabadi et al. Customer ranking based on credit risk using MCDM methods
Ekong et al. Development Of Credit Scoring Model For Borrowers Using Machine Learning Techniques
Wang Data-driven Investment Decisions in P2P Lending: Strategies of Integrating Credit Scoring and Profit Scoring
Tajik et al. Presenting the smart pattern of credit risk of the real banks’ customers using machine learning algorithm.
Yaghini et al. A Prediction Model for Recognition of Bad Credit Customers in Saman Bank Using Neural Networks
SULTANA An Evaluation of Automated Credit Scoring System for Financial Services in Developing Countries
Şakar Variable Importance Analysis in Default Prediction using Machine Learning Techniques

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant