CN113609450B - 基于LCGAMP网络和1-Bit量化的大规模稀疏阵列DoA估计方法 - Google Patents

基于LCGAMP网络和1-Bit量化的大规模稀疏阵列DoA估计方法 Download PDF

Info

Publication number
CN113609450B
CN113609450B CN202110199471.XA CN202110199471A CN113609450B CN 113609450 B CN113609450 B CN 113609450B CN 202110199471 A CN202110199471 A CN 202110199471A CN 113609450 B CN113609450 B CN 113609450B
Authority
CN
China
Prior art keywords
lcgamp
network
signals
bit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110199471.XA
Other languages
English (en)
Other versions
CN113609450A (zh
Inventor
李辰雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202110199471.XA priority Critical patent/CN113609450B/zh
Publication of CN113609450A publication Critical patent/CN113609450A/zh
Application granted granted Critical
Publication of CN113609450B publication Critical patent/CN113609450B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本发明提供基于LCGAMP网络和1‑Bit量化的大规模稀疏阵列DoA估计方法,基于对接收信号进行1‑Bit量化,1‑Bit模数转换操作能够大幅降低采样、存储和处理过程的复杂性,对于大规模阵列DoA的估计,LCGAMP网络的收敛性最快,且计算时间短,有利于节约工程的时间成本,LCGAMP网络不需要信源数作为先验信息,适用于信号分布先验未知的情况,并且对于各类阵列模型在低信噪比和单快拍的情况下都有较好的估计效果,且对宽带信号、相干信号和非圆信号等非理想化信号同样可以进行1‑Bit信号恢复。本发明所提LCGAMP网络不需要调整权衡参数,不需要知道信源数目,并且它在不损失估计的准确性和精确度的情况下收敛速度更短,特别是在大量1‑Bit数据的情况下,且适用于高维阵列和非理想化信号。

Description

基于LCGAMP网络和1-Bit量化的大规模稀疏阵列DoA估计方法
技术领域
本发明涉及大规模稀疏天线阵列波达方向(Direction of Arrival,DoA)估计技术领域,更具体地说涉及基于LCGAMP网络和1-Bit量化的大规模稀疏阵列DoA估计方法。
背景技术
波达方向(Direction of Arrival,DoA)估计是雷达、声纳等许多领域的基本问题。指出1-Bit量化在波达方向估计中受到广泛关注,样本存储的内存显著减少(因为每个样本只需要1-Bit),这可以简化计算复杂度。1-Bit DoA估计方法主要分为三类:1)基于子空间的方法,2)基于压缩感知的方法,3)基于深度学习的方法。
首先关于子空间的方法,基于1-Bit量化的多重信号分类算法(Multiple SignalClassification,MUSIC)和原子形式最小化(Atomic Norm Minimization,ANM)方法已被提出并用于均匀线性阵列或稀疏线性阵列下的波达方向估计。然而,它们总是需要多个快拍数来提高精度,这导致了很大的计算复杂性,并极大地限制了它们的应用。
压缩感知是一种用于重构不完全测量的非常简单有效的信号采集协议,在压缩感知方法中,波达方向估计被看做是一个稀疏恢复问题。有几种基于压缩感知的1-Bit波达方向估计方法已被提出并用于实值信号,如:二进制迭代硬阈值法(Binary Iterative HardThresholding,BIHT)和复值信号,如:复硬阈值法(Complex BIHT,CBIHT)和广义稀疏贝叶斯学习(Generalized Sparse Bayesian Learning,Gr-SBL)。然而,BIHT算法和Gr-SBL算法需要信源数作为先验信息,BIHT算法需要知道信号的稀疏性。一种期望最大化(Expectation Maximization,EM)算法被结合到广义近似消息传递(GeneralizeApproximate Message Passing,GAMP)中,并且未知的系统参数被迭代地学习。
近年来,除了压缩感知外,人工智能也成为一个热门的研究课题,有许多实际应用。这是一项可以从经验和数据中提高计算机系统性能的技术。深度学习是机器学习的特定类型,具有很强的能力和灵活性。深度学习还提供了一个非常强大的工具来处理海量数据,并在科学领域做出准确的预测。因此,基于数字信号处理器的波达方向估计算法的研究具有非常重要的理论和实用价值。此外,像深度神经网络(Deep Neural Network,DNN)一样,由于其强大的学习能力、适应性和可移植性,深度神经网络被广泛用于1-Bit波达方向估计。然而,DNN被认为是黑盒模型,不包含关于信号结构的先验知识。通过结合关于信号先验的知识,深度展开的网络已经显示出优于传统的基于优化的方法和DNN模型。这种网络的例子包括:基于深度学习的矢量近似消息传递(Learned Vector Approximate MessagePassing,LVAMP)网络,基于深度学习的近似消息传递(Learned approximate messagepassing,LAMP)网络,深度定点延拓(Deep Fixed-point Continuation,DeepFPC)被提出来恢复原始信号。然而,LVAMP网络和LAMP网络对1-Bit数据的稀疏恢复无效,DeepFPC网络只讨论了均匀线阵的情况。
发明内容
本发明克服了现有技术中的不足,传统的子空间类算法和压缩感知类算法存在对快拍数的要求以及计算复杂性高的问题,进而限制了其应用领域,提供了基于LCGAMP网络和1-Bit量化的大规模稀疏阵列DoA估计方法,本发明基于对接收信号进行1-Bit量化,1-Bit模数转换操作可以大幅降低采样、存储和处理过程的复杂性,对于大规模阵列DoA估计问题,LCGAMP网络的收敛性最快,且计算时间短,有利于节约工程的时间成本;LCGAMP网络不需要信源数作为先验信息,适用于信号分布先验未知的情况,并且对于各类阵列模型在低信噪比和单快拍的情况下都有较好的估计效果,且对宽带信号、相干信号和非圆信号等非理想化信号同样可以进行1-Bit信号恢复。
本发明的目的通过下述技术方案予以实现。
基于LCGAMP网络和1-Bit量化的大规模稀疏阵列DoA估计方法,按照下述步骤进行:
步骤1,假设有K个窄带不相干信号投射到M个阵元的稀疏线阵上,将DoA按照[-90°,90°]离散为N个,其中,K远小于N,即接收信号能够等效为稀疏信号,以满足压缩感知条件,接收信号表达式如下:
y=Ax+w
其中,A为阵列流型,这里等价为感知矩阵,且不满秩,x为包含K个非零复值的信源,符合高斯混合分布,w为加性高斯白噪声,噪声方差为Δ;
步骤2,对步骤1得到的接收信号表达式进行实部和虚部分解得到如下表达式:
接收信号表达式重新表示为:
其中,并且/>
步骤3,对步骤2得到的接收信号表达式进行1-Bit量化得到如下表达式:
其中,sgn为单位化符号,即:
步骤4,为了从y中恢复稀疏信号x,由于x和DoA是一一对应的关系,故恢复出x,即可得到DoA值,步骤2得到的1-Bit DoA估计表达式修改后如下:
其中,λ为稀疏性和采样值间的权衡参数,为算法的估计值,LCGAMP网络的目的就是从量化信号/>中恢复稀疏信号/>网络的损失函数为:
LCGAMP的第t层网络结构,具体变量间的关系如下:
其中,·表示Hadamard积。
本发明的有益效果为:本发明所提出基于深度学习的复数广义近似消息传递网络(Learned Complex Generalized Approximate Message Passing,LCGAMP)和1-Bit量化的估计方法,相对于传统的子空间类算法和压缩感知类算法,通过深度学习网络的概念,分析广义近似消息传递算法并将该算法网络化,所提网络可以对1-Bit量化下的复数信号进行处理,在精确恢复1-bit稀疏信号的同时,大大减少了计算时间;在实际的大规模阵列DoA估计应用场景下,传输数据量急剧上升的情况下,采用此种基于深度学习的复数广义近似消息传递网络(Learned Complex Generalized Approximate Message Passing,LCGAMP)去实现DoA估计,在低信噪比和单快拍的时候可以保证获得更好的估计性能和更短的收敛速度,且对各类阵列和信号模型都适用,适应性较强。
附图说明
图1是LCGAMP的第t层网络示意图;
图2是均匀线阵和稀疏线阵下算法RMSE对比图;
图3是非圆信号下算法RMSE对比图;
图4是宽带信号下算法RMSE对比图;
图5是相干信号下算法RMSE对比图;
图6是均匀线阵和稀疏线阵下算法计算时间对比图;
图7是不同层数下LCGAMP网络的收敛情况图。
具体实施方式
下面通过具体的实施例对本发明的技术方案作进一步的说明。
实施例1
基于LCGAMP网络和1-Bit量化的大规模稀疏阵列DoA估计方法,按照下述步骤进行:
步骤1,假设有K个窄带不相干信号投射到M个阵元的稀疏线阵上,将DoA按照[-90°,90°]离散为N个,其中,K远小于N,即接收信号能够等效为稀疏信号,以满足压缩感知条件,接收信号表达式如下:
y=Ax+w
其中,A为阵列流型,这里等价为感知矩阵,且不满秩,x为包含K个非零复值的信源,符合高斯混合分布,w为加性高斯白噪声,噪声方差为Δ;
步骤2,对步骤1得到的接收信号表达式进行实部和虚部分解得到如下表达式:
接收信号表达式重新表示为:
其中,并且/>
步骤3,对步骤2得到的接收信号表达式进行1-Bit量化得到如下表达式:
其中,sgn为单位化符号,即:
步骤4,为了从y中恢复稀疏信号x,由于x和DoA是一一对应的关系,故恢复出x,即可得到DoA值,步骤2得到的1-Bit DoA估计表达式修改后如下:
其中,λ为稀疏性和采样值间的权衡参数,为算法的估计值,LCGAMP网络的目的就是从量化信号/>中恢复稀疏信号/>网络的损失函数为:
LCGAMP的第t层网络结构,如图1所示,具体变量间的关系如下:
其中,·表示Hadamard积。
仿真实验中,将阵元数M设为1024,阵元位置按照互质阵排列:从图2至图5能够看出,在低信噪比的情况下,LCGAMP依然保持良好的估计性能;从图6能够看出LCGAMP算法计算时间最短;从图7能够看出LCGAMP在第二层就收敛了,且收敛速度非常快。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (1)

1.基于LCGAMP网络和1-Bit量化的大规模稀疏阵列DoA估计方法,其特征在于:按照下述步骤进行:
步骤1,假设有K个远场窄带不相干信号投射到M个阵元的稀疏线阵上,将DoA按照[-90°,90°]离散为N个,其中,K小于N,即接收信号能够等效为稀疏信号,以满足压缩感知条件,接收信号表达式如下:
y=Ax+w
其中,A为阵列流型,这里等价为感知矩阵,且不满秩,x为包含K个非零复值的信源,符合高斯混合分布,w为加性高斯白噪声,噪声方差为Δ;
步骤2,对步骤1得到的接收信号表达式进行实部和虚部分解得到如下表达式:
接收信号表达式重新表示为:
其中,并且/>
步骤3,对步骤2得到的接收信号表达式进行1-Bit量化得到如下表达式:
其中,sgn为单位化符号,即:
步骤4,为了从y中恢复稀疏信号x,由于x和DoA是一一对应的关系,故恢复出x,即得到DoA值,步骤2得到的1-Bit DoA估计表达式修改后如下:
其中,λ为稀疏性和采样值间的权衡参数,为算法的估计值,LCGAMP网络的目的就是从量化信号/>中恢复稀疏信号/>网络的损失函数为:
LCGAMP的第t层网络结构,具体变量间的关系如下:
其中,·表示Hadamard积。
CN202110199471.XA 2021-02-22 2021-02-22 基于LCGAMP网络和1-Bit量化的大规模稀疏阵列DoA估计方法 Active CN113609450B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110199471.XA CN113609450B (zh) 2021-02-22 2021-02-22 基于LCGAMP网络和1-Bit量化的大规模稀疏阵列DoA估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110199471.XA CN113609450B (zh) 2021-02-22 2021-02-22 基于LCGAMP网络和1-Bit量化的大规模稀疏阵列DoA估计方法

Publications (2)

Publication Number Publication Date
CN113609450A CN113609450A (zh) 2021-11-05
CN113609450B true CN113609450B (zh) 2023-11-03

Family

ID=78303254

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110199471.XA Active CN113609450B (zh) 2021-02-22 2021-02-22 基于LCGAMP网络和1-Bit量化的大规模稀疏阵列DoA估计方法

Country Status (1)

Country Link
CN (1) CN113609450B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117388791A (zh) * 2023-09-13 2024-01-12 桂林电子科技大学 一种6gisca系统宽带信号doa估计算法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167995A2 (en) * 2000-06-29 2002-01-02 Lockheed Martin Corporation Matrix monopulse ratio radar processor for two target azimuth and elevation angle determination
CN109655799A (zh) * 2018-12-26 2019-04-19 中国航天科工集团八五研究所 基于iaa的协方差矩阵向量化的非均匀稀疏阵列测向方法
CN111337893A (zh) * 2019-12-19 2020-06-26 江苏大学 一种基于实值稀疏贝叶斯学习的离格doa估计方法
WO2020253690A1 (zh) * 2019-06-17 2020-12-24 浙江大学 一种基于近似消息传递算法的深度学习波束域信道估计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167995A2 (en) * 2000-06-29 2002-01-02 Lockheed Martin Corporation Matrix monopulse ratio radar processor for two target azimuth and elevation angle determination
CN109655799A (zh) * 2018-12-26 2019-04-19 中国航天科工集团八五研究所 基于iaa的协方差矩阵向量化的非均匀稀疏阵列测向方法
WO2020253690A1 (zh) * 2019-06-17 2020-12-24 浙江大学 一种基于近似消息传递算法的深度学习波束域信道估计方法
CN111337893A (zh) * 2019-12-19 2020-06-26 江苏大学 一种基于实值稀疏贝叶斯学习的离格doa估计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
小波域的自适应波束形成算法;张小飞, 徐大专;航空学报(第01期);全文 *
盐酸利多卡因纳米高分子脂质体的制备与体外透皮实验研究;李雨辰;曹岩;王悦;王汉杰;李芹;李长义;张连云;;天津医药(第04期);全文 *

Also Published As

Publication number Publication date
CN113609450A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
Zhou et al. Off-grid direction-of-arrival estimation using coprime array interpolation
Hamilton et al. Ensemble Kalman filtering without a model
Cao et al. Radar emitter identification with bispectrum and hierarchical extreme learning machine
CN108416723B (zh) 基于全变分正则化和变量分裂的无透镜成像快速重构方法
Zhu et al. Two-dimensional DOA estimation via deep ensemble learning
CN113609450B (zh) 基于LCGAMP网络和1-Bit量化的大规模稀疏阵列DoA估计方法
CN106291449B (zh) 对称稳定分布噪声下波达方向角估计方法
Wang et al. Research and experiment of radar signal support vector clustering sorting based on feature extraction and feature selection
CN114764577A (zh) 一种基于深度神经网络的轻量级调制识别模型及其方法
Van Vaerenbergh et al. A spectral clustering approach to underdetermined postnonlinear blind source separation of sparse sources
Wang et al. Low probability of intercept radar waveform recognition based on dictionary leaming
CN117092585B (zh) 单比特量化DoA估计方法、系统和智能终端
CN111965592A (zh) 基于近似消息传递和1-bit量化波达方向估计方法
Waheed et al. Algebraic overcomplete independent component analysis
Chen et al. One-bit DOA estimation using robust sparse covariance fitting in non-uniform noise
Liu et al. Reduced‐dimension MVDR beamformer based on sub‐array optimization
Tan et al. A dilated inception convolutional neural network for gridless DOA estimation under low SNR scenarios
de Ridder et al. Probabilistic PCA and ICA Subspace Mixture Models for Image Segmentation.
Forero et al. Robust multi-dimensional scaling via outlier-sparsity control
Ramamurthy et al. Ensemble sparse models for image analysis
CN112180317A (zh) 一种基于先验知识的非均匀过完备字典的doa估计算法
Browne et al. Visual feature extraction via PCA-based parameterization of wavelet density functions
Han et al. A two-step 2-D DOA estimation algorithm via underwater acoustic vector-sensor array
CN113242072B (zh) 一种基于卷积神经网络的混合波束形成方法
CN113093097B (zh) 一种使用互质阵列的概率假设密度doa跟踪的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Li Chenyu

Inventor before: Li Yuchen

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant