CN113603727A - 一种金属铱配合物-紫杉醇偶联物及其制备方法和应用 - Google Patents

一种金属铱配合物-紫杉醇偶联物及其制备方法和应用 Download PDF

Info

Publication number
CN113603727A
CN113603727A CN202110899488.6A CN202110899488A CN113603727A CN 113603727 A CN113603727 A CN 113603727A CN 202110899488 A CN202110899488 A CN 202110899488A CN 113603727 A CN113603727 A CN 113603727A
Authority
CN
China
Prior art keywords
reaction
paclitaxel
iridium complex
ptx
paclitaxel conjugate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110899488.6A
Other languages
English (en)
Other versions
CN113603727B (zh
Inventor
朱东霞
童小凡
孙妍
李光哲
肖骏
谢志刚
苏忠民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Normal University
Original Assignee
Northeast Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Normal University filed Critical Northeast Normal University
Priority to CN202110899488.6A priority Critical patent/CN113603727B/zh
Publication of CN113603727A publication Critical patent/CN113603727A/zh
Application granted granted Critical
Publication of CN113603727B publication Critical patent/CN113603727B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/55Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Materials Engineering (AREA)
  • Immunology (AREA)
  • Nanotechnology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提供一种金属铱配合物‑紫杉醇偶联物及其制备方法和应用,属于化合物技术领域。该金属铱配合物‑紫杉醇偶联物的结构式如式1所示。该方法是先将IrCl3·3H2O和1‑苯基异喹啉加热回流反应,得到1‑苯基异喹啉铱二氯桥[Ir(pqy)2Cl2]2(1);然后将其和2,2'‑联吡啶‑4,4'‑二羧酸配体在溶剂的作用下,置于黑暗处,进行回流反应,反应结束后,加入六氟磷酸钾继续搅拌,得到金属铱配合物Ir‑H(2);最后将Ir‑H(2)与紫杉醇混合,再加入缩合剂和反应溶剂,最后加入三乙胺进行反应,得到金属铱配合物‑紫杉醇偶联物。本发明的金属铱配合物‑紫杉醇偶联物自组装成纳米粒子实现化疗与光动力结合的双重模式治疗。

Description

一种金属铱配合物-紫杉醇偶联物及其制备方法和应用
技术领域
本发明属于化合物技术领域,具体涉及一种金属铱配合物-紫杉醇偶联物及其制备方法和应用。
背景技术
紫杉醇(PTX)是化学疗法(CT)中常用的化疗药物,尽管已被美国食品和药物管理局(FDA)批准用于各类癌症的治疗,但由于多重耐药性,在有效治疗剂量下的PTX会引起潜在的肾脏损害等副作用。同时PTX由于水溶性和渗透性差,已被列为生物利用度最低的IV类药物。目前常用于改善化疗疗效的方式则是将PTX与其他生物活性分子结合,生成水溶性的纳米药物。虽然能够改善PTX 的生物相容性问题,但因无法准确定量各组分的含量和合适的比例,他们的性能仍然在很大程度上受到限制,进一步影响了治疗的效果。因此,设计出一种有效的药物递送系统实现治疗效果最大化,同时对药物分子各组分实现有效定量,减少药代动力学特征的差异,这将成为PTX在临床化疗中得以高效实施所面临的巨大挑战。
近年来,光动力治疗(PDT)作为CT的辅助疗法,越来越受到人们的关注。在PDT过程中,局部注射光敏剂(PS),在特定光的激发下产生毒性的1O2,最终触发细胞死亡机制。由于PDT治疗过程具备创伤小、选择性高和对周围正常组织的毒副作用低等优点,已成为一种新兴的非侵入性治疗癌症方式。但由于癌细胞的异质性和多种病发机制引起的耐药性,仅靠单一的治疗方式往往不足以确保成功治疗癌症。为解决这一问题,联合治疗已被研究者们认为是一种最有效的策略。将PDT中的PSs与CT的药物分子进行有机结合,他们在生物体内的作用机制大不相同但可以相互补充,可以很大程度上降低给药量,最大程度上发挥治疗效果,同时降低由单一CT治疗方式引起的全身毒性。而且PDT 依赖于外界的刺激来激活PSs,实现了对治疗过程进行空间和时间精准控制。总体而言,将PDT与CT进行结合,将可以成为一种有前途的癌症联合治疗方案。
值得注意的是,金属铱配合物具有相对较长的激发态寿命,较高的光致发光效率,大的斯托克斯位移,可调的发光范围和强的系间窜越(ISC)能力而成为目前的研究热点,成为潜在的具有临床应用价值的高效PSs,应用于PDT过程中。而我们设计合成出一种金属铱配合物与PTX的偶联物,在细胞的微环境中能够进行有效的递送和释放,实现细胞内的双模式治疗。目前通过金属铱配合物与PTX的偶联物纳米粒子实现PDT和CT双模式治疗尚未见报道,并通过细胞微环境实现纳米粒子的释放,显著改善原金属铱配合物的聚集猝灭效应,增强系间窜越能力,从而提高1O2产生能力的也尚未报道。
发明内容
本发明提供一种金属铱配合物-紫杉醇偶联物及其制备方法和应用,金属铱配合物-紫杉醇偶联物Ir-PTX,通过引入PTX作为化疗药基元,金属铱配合物作为光动力治疗基元,使其同时实现化疗与光动力治疗效果。
本发明首先提供一种金属铱配合物-紫杉醇偶联物,其结构式如式1所示:
Figure BDA0003199182360000021
式1中,Paclitaxel代表紫杉醇,其结构式如式2所示:
Figure BDA0003199182360000022
本发明还提供一种金属铱配合物-紫杉醇偶联物的制备方法,包括以下步骤:
步骤一:在氮气保护下,将IrCl3·3H2O和1-苯基异喹啉配体加热回流反应,得到1-苯基异喹啉铱二氯桥[Ir(pqy)2Cl2]2(1);
步骤二:在氮气保护下,将步骤一的1-苯基异喹啉铱二氯桥[Ir(pqy)2Cl2]2(1) 和2,2'-联吡啶-4,4'-二羧酸配体在溶剂的作用下,置于黑暗处,进行回流反应,反应结束后,加入六氟磷酸钾继续搅拌,得到Ir-H(2);
步骤三:在氮气保护下,将步骤二得到的Ir-H(2)与紫杉醇PTX混合,再加入缩合剂1-羟基苯并三唑和1-(3-二甲基氨基丙基)-3-乙基碳二亚胺盐酸盐和反应溶剂,最后加入三乙胺进行反应,得到金属铱配合物-紫杉醇偶联物Ir-PTX。
优选的是,所述的步骤一的反应时间为24-30h。
优选的是,所述的IrCl3·3H2O和1-苯基异喹啉配体的摩尔比为0.1:0.33。
优选的是,所述的1-苯基异喹啉铱二氯桥[Ir(pqy)2Cl2]2(1)和2,2'-联吡啶-4,4'-二羧酸配体的摩尔比为1:2。
优选的是,所述的回流反应的时间为4-6h。
优选的是,所述的Ir-H(2)、紫杉醇PTX、缩合剂和三乙胺的摩尔比为1: (2-3):5.2:3。
优选的是,所述的缩合剂中1-羟基苯并三唑和1-(3-二甲基氨基丙基)-3-乙基碳二亚胺盐酸盐的摩尔比为1:1。
优选的是,所述的步骤三的反应温度为室温,反应时间为24-30h。
本发明还提供上述金属铱配合物-紫杉醇偶联物Ir-PTX自组装形成的纳米粒子作为药物在乳腺癌双模式治疗中的应用。
本发明的有益效果
本发明提供一种金属铱配合物-紫杉醇偶联物及其制备方法和应用,该偶联物将化疗药基元PTX和光动力基元金属铱配合物引入到药物分子中,并以自组装的方式,获得纯的、无载体型水溶纳米粒子,同时具有酶响应特征和红光发射性能,并以此制成的纳米粒子实现了细胞内酶响应作用,有效减弱分子间的自聚集,克服固有的聚集猝灭(ACQ)效应,在细胞内进行高效的递送和释放,实现化疗与光动力结合的双重模式治疗;同时,该纳米粒子在细胞环境内有效减弱分子间的自聚集,克服固有的ACQ效应。
附图说明
图1为本发明实施例1制备的Ir-PTX NPs的纳米粒子制备示意图;
图2为本发明实施例1制备的Ir-PTX NPs的DLS粒径图;
图3为本发明实施例1制备的Ir-PTX NPs的透射电镜照片图;
图4为本发明实施例1制备的Ir-PTX NPs在7天内的的尺寸变化及其稳定性;
图5为本发明实施例1制备的Ir-PTX NPs在水溶液中的荧光发射和紫外吸收光谱图;
图6为本发明实施例1制备的Ir-PTX NPs在450nm范围内的紫外吸收光谱图;
图7为本发明实施例1制备的Ir-PTX NPs存在Protein K条件下的DLS粒径图;
图8为本发明实施例1制备的Ir-PTX NPs存在Protein K条件下的透射电镜照片图;
图9为本发明实施例1制备的Ir-PTX NPs存在Protein K条件下的荧光发射和紫外吸收光谱图;
图10为本发明实施例1制备的Ir-PTX NPs存在Protein K条件下,在450nm 范围内的紫外吸收光谱图;
图11为本发明实施例1制备的Ir-PTX NPs以及加入Protein K后,存在光照和ICG条件下的紫外吸收光谱图;
图12为本发明实施例1制备的Ir-PTX NPs以及加入Protein K后,存在光照和ICG条件下,时间依赖性的产生1O2的生成动力学曲线图;
图13为本发明实施例1制备的Ir-PTX NPs在HeLa细胞内培育24h后的细胞存活率图;
图14为本发明实施例1制备的Ir-PTX的1H核磁谱图。
具体实施方式
本发明首先提供一种金属铱配合物-紫杉醇偶联物,分子式为 C136H126IrN6O30,相对分子质量为2515.81g/mol,其结构式如式1所示:
Figure BDA0003199182360000051
式1中,Paclitaxel代表紫杉醇,其结构式如式2所示:
Figure BDA0003199182360000052
本发明还提供一种金属铱配合物-紫杉醇偶联物的制备方法,包括以下步骤:
步骤一:在氮气保护下,将IrCl3·3H2O和1-苯基异喹啉配体加热回流反应,得到1-苯基异喹啉铱二氯桥[Ir(pqy)2Cl2]2(1);
步骤二:在氮气保护下,将步骤一的1-苯基异喹啉铱二氯桥[Ir(pqy)2Cl2]2(1) 和2,2'-联吡啶-4,4'-二羧酸配体在溶剂的作用下,置于黑暗处,进行回流反应,反应结束后,加入六氟磷酸钾继续搅拌,得到Ir-H(2);
步骤三:在氮气保护下,将步骤二得到的Ir-H(2)与紫杉醇PTX混合,再加入缩合剂1-羟基苯并三唑和1-(3-二甲基氨基丙基)-3-乙基碳二亚胺盐酸盐和反应溶剂,最后加入三乙胺进行反应,得到金属铱配合物-紫杉醇偶联物Ir-PTX。具体反应过程如下:
Figure 1
按照本发明,向装有溶剂和水的反应容器中加入IrCl3·3H2O和1-苯基异喹啉配体,在N2保护的氛围下,加热回流反应,所述的反应时间优选为24-30h,待反应冷却至室温,再向其中加入大量的不良溶剂水以析出沉淀并进行过滤,并用大量的水和乙醇等溶剂进行多次洗涤,所得到的固体干燥即为1-苯基异喹啉铱二氯桥[Ir(pqy)2Cl2]2(1)。所述的溶剂优选为2-乙二醇乙醚,IrCl3·3H2O和 1-苯基异喹啉配体的摩尔比优选为0.1:0.33。
按照本发明,向反应容器中加入上述得到的1-苯基异喹啉铱二氯桥 [Ir(pqy)2Cl2]2(1)和2,2'-联吡啶-4,4'-二羧酸配体,然后加入溶剂,所述的溶剂优选为无水甲醇和二氯甲烷混合物,所述的混合物中,无水甲醇和二氯甲烷的体积比优选为1:1,在在充分充入惰性气体N2的情况下,将反应置于黑暗处,进行回流反应,所述的反应时间优选为4-6h,待反应结束冷却至室温时,向瓶内溶液中加入六氟磷酸钾固体,继续在室温下搅拌,所述的搅拌时间优选为 45-60min,然后将悬浮液过滤,利用旋转蒸发仪除去体系中的溶剂,并将得到的物质用石油醚进行洗涤并干燥,柱色谱法纯化,得到深红色固体则为Ir-H(2)。所述的1-苯基异喹啉铱二氯桥[Ir(pqy)2Cl2]2(1)和2,2'-联吡啶-4,4'-二羧酸配体的摩尔比优选为1:2。
按照本发明,在反应容器中加入上述得到的Ir-H(2)和紫杉醇PTX,然后加入缩合剂1-羟基苯并三唑和1-(3-二甲基氨基丙基)-3-乙基碳二亚胺盐酸盐,再加入反应溶剂,所述的反应溶剂优选为超干二氯甲烷,最后加入三乙胺,氮气保护下,室温条件下搅拌回流,所述的搅拌时间优选为24-30小时,反应结束后,用饱和的碳酸氢钠水溶液淬灭,并用水和盐水洗涤,分离有机层,用无水硫酸镁进行干燥,过滤,减压除去溶剂,柱层析色谱法进行提纯,即可得到红色固体产物为Ir-PTX。所述的Ir-H(2)、紫杉醇PTX、缩合剂和三乙胺的摩尔比优选为1:(2-3):5.2:3;所述的缩合剂中1-羟基苯并三唑和1-(3-二甲基氨基丙基)-3-乙基碳二亚胺盐酸盐的摩尔比为1:1。
本发明还提供上述金属铱配合物-紫杉醇偶联物Ir-PTX自组装形成的纳米粒子作为药物在乳腺癌双模式治疗中的应用。
按照本发明,将上述制备得到的金属铱配合物-紫杉醇偶联物Ir-PTX通过自组装的方式制备成纳米粒子,所述的自组装的方法优选包括:
将金属铱配合物-紫杉醇偶联物Ir-PTX溶于四氢呋喃溶液中并做超声处理,在剧烈搅拌下,将溶液逐滴滴加到去离子水中,并在室温下搅拌过夜以使四氢呋喃挥发,再将其用透析袋用水透析,以除去残留的四氢呋喃,通过0.45μm的滤头获得进一步过滤的纳米粒子。得到的纳米粒子可以实现化疗与光动力结合的双重模式治疗。
通过以下实施例进一步举例描述本发明,并不以任何方式限制本发明,在不背离本发明的技术解决方案的前提下,对本发明所作的本领域普通技术人员容易实现的任何改动或改变都将落入本发明的权利要求范围之内。
实施例1
向装有30mL 2-乙二醇乙醚和10mL水的圆底烧瓶中加入IrCl3·3H2O(0.1 mmol,0.0352g)和1-苯基异喹啉配体(0.33mmol,0.0677g),在N2保护的氛围下,加热回流反应24h,待反应冷却至室温,再向其中加入大量的不良溶剂水以析出沉淀并进行过滤,并用大量的水和乙醇等溶剂进行多次洗涤,所得到的固体干燥即为1-苯基异喹啉铱二氯桥[Ir(pqy)2Cl2]2(1)。
向50mL的单口瓶中分别加入环金属二氯桥[Ir(ppy)2Cl2]2(0.1mmol,0.100 g)1和2,2'-联吡啶-4,4'-二羧酸配体(0.2mmol,0.049g),将15mL无水甲醇和 15mL二氯甲烷混合,作为该反应体系的溶剂。在充分充入惰性气体N2的情况下,将反应置于黑暗处,进行回流反应4h。待反应结束冷却至室温时,向瓶内溶液中加入10当量的六氟磷酸钾固体,继续在室温下搅拌45min,然后将悬浮液过滤,利用旋转蒸发仪除去体系中的溶剂,并将得到的物质用石油醚进行洗涤并干燥,柱色谱法纯化,得到深红色固体则为Ir-H(2)。
向100mL双口烧瓶中加入Ir-H(2)(0.025mmol,0.0210g)和紫杉醇PTX (0.05mmol,0.0421g),再加入1-羟基苯并三唑(0.065mmol,0.0087g)和1-(3- 二甲基氨基丙基)-3-乙基碳二亚胺盐酸盐(0.065mmol,0.0121g)作为缩合剂,超干二氯甲烷作为反应溶剂,最后再加入三乙胺(0.075mmol,0.0076g),氮气保护下,室温条件下搅拌回流24小时,反应结束后,用饱和的碳酸氢钠水溶液淬灭,并用水和盐水洗涤,分离有机层,用无水硫酸镁进行干燥,过滤,减压除去溶剂,柱层析色谱法进行提纯,即可得到红色固体粉末0.0522g,产率为83%,分子式为C136H126IrN6O30,相对分子质量为2515.81g/mol。实施例1制备得到的金属铱配合物-紫杉醇偶联物Ir-PTX核磁氢谱图如图14所示。
实施例2
向装有30mL 2-乙二醇乙醚和10mL水的圆底烧瓶中加入IrCl3·3H2O(0.1 mmol,0.0352g)和1-苯基异喹啉配体(0.33mmol,0.0677g),在N2保护的氛围下,加热回流反应24h,待反应冷却至室温,再向其中加入大量的不良溶剂水以析出沉淀并进行过滤,并用大量的水和乙醇等溶剂进行多次洗涤,所得到的固体干燥即为1-苯基异喹啉铱二氯桥[Ir(pqy)2Cl2]2(1)。
向50mL的单口瓶中分别加入环金属二氯桥[Ir(ppy)2Cl2]2(0.1mmol,0.100 g)1和2,2'-联吡啶-4,4'-二羧酸配体(0.2mmol,0.049g),将15mL无水甲醇和 15mL二氯甲烷混合,作为该反应体系的溶剂。在充分充入惰性气体N2的情况下,将反应置于黑暗处,进行回流反应4h。待反应结束冷却至室温时,向瓶内溶液中加入10当量的六氟磷酸钾固体,继续在室温下搅拌45min,然后将悬浮液过滤,利用旋转蒸发仪除去体系中的溶剂,并将得到的物质用石油醚进行洗涤并干燥,柱色谱法纯化,得到深红色固体则为Ir-H(2)。
向100mL双口烧瓶中加入Ir-H(2)(0.025mmol,0.0210g)和紫杉醇PTX(0.055mmol,0.0463g),再加入1-羟基苯并三唑(0.065mmol,0.0087g)和1-(3- 二甲基氨基丙基)-3-乙基碳二亚胺盐酸盐(0.065mmol,0.0121g)作为缩合剂,超干二氯甲烷作为反应溶剂,最后再加入三乙胺(0.075mmol,0.0076g),氮气保护下,室温条件下搅拌回流24小时,反应结束后,用饱和的碳酸氢钠水溶液淬灭,并用水和盐水洗涤,分离有机层,用无水硫酸镁进行干燥,过滤,减压除去溶剂,柱层析色谱法进行提纯,即可得到红色固体粉末0.0535g,产率为 85%,分子式为C136H126IrN6O30,相对分子质量为2515.81g/mol。
实施例3
向装有30mL 2-乙二醇乙醚和10mL水的圆底烧瓶中加入IrCl3·3H2O(0.1 mmol,0.0352g)和1-苯基异喹啉配体(0.33mmol,0.0677g),在N2保护的氛围下,加热回流反应24h,待反应冷却至室温,再向其中加入大量的不良溶剂水以析出沉淀并进行过滤,并用大量的水和乙醇等溶剂进行多次洗涤,所得到的固体干燥即为1-苯基异喹啉铱二氯桥[Ir(pqy)2Cl2]2(1)。
向50mL的单口瓶中分别加入环金属二氯桥[Ir(ppy)2Cl2]2(0.1mmol,0.100 g)1和2,2'-联吡啶-4,4'-二羧酸配体(0.2mmol,0.049g),将15mL无水甲醇和 15mL二氯甲烷混合,作为该反应体系的溶剂。在充分充入惰性气体N2的情况下,将反应置于黑暗处,进行回流反应4h。待反应结束冷却至室温时,向瓶内溶液中加入10当量的六氟磷酸钾固体,继续在室温下搅拌45min,然后将悬浮液过滤,利用旋转蒸发仪除去体系中的溶剂,并将得到的物质用石油醚进行洗涤并干燥,柱色谱法纯化,得到深红色固体则为Ir-H(2)。
向100mL双口烧瓶中加入Ir-H(2)(0.025mmol,0.0210g)和紫杉醇PTX (0.06mmol,0.0505g),再加入1-羟基苯并三唑(0.065mmol,0.0087g)和1-(3- 二甲基氨基丙基)-3-乙基碳二亚胺盐酸盐(0.065mmol,0.0121g)作为缩合剂,超干二氯甲烷作为反应溶剂,最后再加入三乙胺(0.075mmol,0.0076g),氮气保护下,室温条件下搅拌回流24小时,反应结束后,用饱和的碳酸氢钠水溶液淬灭,并用水和盐水洗涤,分离有机层,用无水硫酸镁进行干燥,过滤,减压除去溶剂,柱层析色谱法进行提纯,即可得到红色固体粉末0.0509g,产率为81%,分子式为C136H126IrN6O30,相对分子质量为2515.81g/mol。
实施例4
向装有30mL 2-乙二醇乙醚和10mL水的圆底烧瓶中加入IrCl3·3H2O(0.1 mmol,0.0352g)和1-苯基异喹啉配体(0.33mmol,0.0677g),在N2保护的氛围下,加热回流反应24h,待反应冷却至室温,再向其中加入大量的不良溶剂水以析出沉淀并进行过滤,并用大量的水和乙醇等溶剂进行多次洗涤,所得到的固体干燥即为1-苯基异喹啉铱二氯桥[Ir(pqy)2Cl2]2(1)。
向50mL的单口瓶中分别加入环金属二氯桥[Ir(ppy)2Cl2]2(0.1mmol,0.100 g)1和2,2'-联吡啶-4,4'-二羧酸配体(0.2mmol,0.049g),将15mL无水甲醇和 15mL二氯甲烷混合,作为该反应体系的溶剂。在充分充入惰性气体N2的情况下,将反应置于黑暗处,进行回流反应4h。待反应结束冷却至室温时,向瓶内溶液中加入10当量的六氟磷酸钾固体,继续在室温下搅拌45min,然后将悬浮液过滤,利用旋转蒸发仪除去体系中的溶剂,并将得到的物质用石油醚进行洗涤并干燥,柱色谱法纯化,得到深红色固体则为Ir-H(2)。
向100mL双口烧瓶中加入Ir-H(2)(0.025mmol,0.0210g)和紫杉醇PTX(0.065mmol,0.0547g),再加入1-羟基苯并三唑(0.065mmol,0.0087g)和1-(3- 二甲基氨基丙基)-3-乙基碳二亚胺盐酸盐(0.065mmol,0.0121g)作为缩合剂,超干二氯甲烷作为反应溶剂,最后再加入三乙胺(0.075mmol,0.0076g),氮气保护下,室温条件下搅拌回流24小时,反应结束后,用饱和的碳酸氢钠水溶液淬灭,并用水和盐水洗涤,分离有机层,用无水硫酸镁进行干燥,过滤,减压除去溶剂,柱层析色谱法进行提纯,即可得到红色固体粉末0.0503g,产率为 80%,分子式为C136H126IrN6O30,相对分子质量为2515.81g/mol。
实施例5
向装有30mL 2-乙二醇乙醚和10mL水的圆底烧瓶中加入IrCl3·3H2O(0.1 mmol,0.0352g)和1-苯基异喹啉配体(0.33mmol,0.0677g),在N2保护的氛围下,加热回流反应24h,待反应冷却至室温,再向其中加入大量的不良溶剂水以析出沉淀并进行过滤,并用大量的水和乙醇等溶剂进行多次洗涤,所得到的固体干燥即为1-苯基异喹啉铱二氯桥[Ir(pqy)2Cl2]2(1)。
向50mL的单口瓶中分别加入环金属二氯桥[Ir(ppy)2Cl2]2(0.1mmol,0.100 g)1和2,2'-联吡啶-4,4'-二羧酸配体(0.2mmol,0.049g),将15mL无水甲醇和15mL二氯甲烷混合,作为该反应体系的溶剂。在充分充入惰性气体N2的情况下,将反应置于黑暗处,进行回流反应4h。待反应结束冷却至室温时,向瓶内溶液中加入10当量的六氟磷酸钾固体,继续在室温下搅拌45min,然后将悬浮液过滤,利用旋转蒸发仪除去体系中的溶剂,并将得到的物质用石油醚进行洗涤并干燥,柱色谱法纯化,得到深红色固体则为Ir-H(2)。
向100mL双口烧瓶中加入Ir-H(2)(0.025mmol,0.0210g)和紫杉醇PTX (0.07mmol,0.0589g),再加入1-羟基苯并三唑(0.065mmol,0.0087g)和1-(3- 二甲基氨基丙基)-3-乙基碳二亚胺盐酸盐(0.065mmol,0.0121g)作为缩合剂,超干二氯甲烷作为反应溶剂,最后再加入三乙胺(0.075mmol,0.0076g),氮气保护下,室温条件下搅拌回流24小时,反应结束后,用饱和的碳酸氢钠水溶液淬灭,并用水和盐水洗涤,分离有机层,用无水硫酸镁进行干燥,过滤,减压除去溶剂,柱层析色谱法进行提纯,即可得到红色固体粉末0.0484g,产率为77%,分子式为C136H126IrN6O30,相对分子质量为2515.81g/mol。
实施例6
向装有30mL 2-乙二醇乙醚和10mL水的圆底烧瓶中加入IrCl3·3H2O(0.1 mmol,0.0352g)和1-苯基异喹啉配体(0.33mmol,0.0677g),在N2保护的氛围下,加热回流反应24h,待反应冷却至室温,再向其中加入大量的不良溶剂水以析出沉淀并进行过滤,并用大量的水和乙醇等溶剂进行多次洗涤,所得到的固体干燥即为1-苯基异喹啉铱二氯桥[Ir(pqy)2Cl2]2(1)。
向50mL的单口瓶中分别加入环金属二氯桥[Ir(ppy)2Cl2]2(0.1mmol,0.100 g)1和2,2'-联吡啶-4,4'-二羧酸配体(0.2mmol,0.049g),将15mL无水甲醇和 15mL二氯甲烷混合,作为该反应体系的溶剂。在充分充入惰性气体N2的情况下,将反应置于黑暗处,进行回流反应4h。待反应结束冷却至室温时,向瓶内溶液中加入10当量的六氟磷酸钾固体,继续在室温下搅拌45min,然后将悬浮液过滤,利用旋转蒸发仪除去体系中的溶剂,并将得到的物质用石油醚进行洗涤并干燥,柱色谱法纯化,得到深红色固体则为Ir-H(2)。
向100mL双口烧瓶中加入Ir-H(2)0.025mmol,0.0210g)和紫杉醇PTX (0.075mmol,0.0632g),再加入1-羟基苯并三唑(0.065mmol,0.0087g)和1-(3- 二甲基氨基丙基)-3-乙基碳二亚胺盐酸盐(0.065mmol,0.0121g)作为缩合剂,超干二氯甲烷作为反应溶剂,最后再加入三乙胺(0.075mmol,0.0076g),氮气保护下,室温条件下搅拌回流24小时,反应结束后,用饱和的碳酸氢钠水溶液淬灭,并用水和盐水洗涤,分离有机层,用无水硫酸镁进行干燥,过滤,减压除去溶剂,柱层析色谱法进行提纯,即可得到红色固体粉末0.0472g,产率为75%,分子式为C136H126IrN6O30,相对分子质量为2515.81g/mol。
将实施例1制备得到金属铱配合物-紫杉醇偶联物进行性能表征,具体如下:
1、纳米粒子的制备和表征:
本发明中的Ir-PTX NPs根据图1示意方法,通过自组装的方式制备成纳米粒子。具体操作如下:将Ir-PTX(1mg)溶于四氢呋喃溶液(2mL)中并做超声处理。在剧烈搅拌下,将溶液逐滴滴加到去离子水(10mL)中,并在室温下搅拌过夜以使四氢呋喃挥发,再将其用3500Da透析袋用水透析,以除去残留的四氢呋喃。通过0.45μm的滤头获得进一步过滤的纳米粒子Ir-PTX NPs。
图2为本发明的Ir-PTX NPs的动态光散射(DLS)粒径图,从图2可以看出,平均粒径大小为125.2nm,PDI值为0.127。
图3为本发明的Ir-PTX NPs的透射电镜(TEM)图,从图中可以看出,NPs 呈现为球形形态,平均粒径为85nm。由于在水溶液中,外围形成一层水合层,因此DLS测定的粒径要比TEM的大。
图4为本发明实施例1制备的Ir-PTX NPs在7天内的的尺寸变化及其稳定性;从图中可以看出,Ir-PTX NPs在7天内的尺寸和PDI值无明显变化,表明 Ir-PTX NPs具备良好的稳定性。
2、纳米粒子的光物理性质
本发明中Ir-PTX NPs的光物理性质在水溶液中测定的,图5为本发明的 Ir-PTXNPs的荧光发射和紫外吸收光谱图,从图中可以看出,Ir-PTX NPs在水溶液中显示出明亮的红光发射,其发射峰位为625nm。其紫外吸收光谱图显示两个典型的金属铱配合物吸收带,强的紫外吸收带主要是归因于配体自旋允许的π–π*跃迁,而相对弱的吸收带源于金属到配体的电荷转移(3MLCT)。图6为本发明的Ir-PTX NPs在450nm范围内的紫外吸收光谱图,在450nm处的摩尔吸收系数ε=17345m-1cm-1
3、纳米粒子的酶响应特征
图7为本发明制备的Ir-PTX NPs存在Protein K条件下的DLS粒径图;图8 为本发明制备的Ir-PTX NPs存在Protein K条件下的透射电镜照片图;图7说明存在Protein K的情况下,纳米分散粒径显著增大,粒径大小为823nm,澄清的纳米分散液变得略有浑浊,表明了Ir-PTX NPs具备酶响应特征,能够使连接的酯键被裂解,分别释放出聚集在纳米球内的Ir-H和PTX。而释放出来的两种分子不能再自行组装,原有的纳米结构被破坏,图8的TEM图像也进一步证明了该结论。
图9为本发明的Ir-PTX NPs发生酶响应后的荧光发射和紫外吸收光谱图,加入Protein K后,断裂连接的酯键,有效减弱分子之间的堆积作用,荧光发射强度进一步增强,可达1.54倍,最大峰值为627nm,红移了2nm;由于具备 ACQ特点的Ir-H不再被聚集,而是呈分散状态,紫外吸收强度因此增强,图10 为本发明制备的Ir-PTX NPs存在Protein K条件下,在450nm范围内的紫外吸收光谱图;图10显示在450nm处的摩尔吸收系数ε=27000m-1cm-1,显著增大 1.56倍。这也进一步证明了,组装的NPs能在Protein K作用下,发生指定位点的断裂,释放出Ir-H,能够有效减弱原有NPs的聚集效应,表现出更加明亮的红色荧光和更强的紫外吸收,有利于在生物体内的PDT和成像。
4、纳米粒子的单线态氧产生能力:
图11为本发明的Ir-PTX NPs(A)和Ir-PTX NPs+Protein K(B)的体外单线态氧产生实验,在光照情况下,同时存在ICG与PSs时,ICG的特征吸收峰 790nm会发生连续地下降,也证明了PSs在光照条件下,能够有效产生1O2。其产生1O2的能力符合一阶动力学方程;
图12为本发明制备的Ir-PTX NPs以及加入Protein K后,存在光照和ICG 条件下,时间依赖性的产生1O2的生成动力学曲线图;图12表明方程斜率按照以下顺序排序为:Ir-PTX NPs+Protein K(0.00784)>Ir-PTX NPs(0.00201)斜率值越大,表明该物质的1O2产生能力越强。值得注意的是,加入Protein K后的Ir-PTX NPs显示出更陡的斜率,Ir-PTX NPs+Protein K的斜率分别是Ir-PTX NPs的3.9倍,证明了自组装方式是有效改善水溶性的途径,并且具备酶响应性质Ir-PTX NPs在含有Protein K条件下,能够有效发生断键,释放出其中的Ir-H,极大地改善了PSs自身在水溶液聚集,有效增强了金属铱配合物的ISC能力,更加有利于生成1O2,适合作为高效的PSs用于PDT中。
4、纳米粒子的细胞治疗实验:
图13为本发明Ir-PTX NPs在乳腺癌(HeLa)细胞内培育24h后无光照(A) 和光照条件(B)下的细胞存活率图;本发明的Ir-PTX NPs的3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide,MTT)实验,用于研究纳米粒子对于HeLa细胞的潜在的毒性。从图中可以看出即使当纳米粒子浓度达到较高浓度10μM时,在黑暗条件下,在细胞中培养24小时后,Ir-PTX NPs孵育细胞的存活率达70%,而单独用PTX孵育细胞的存活率达80%,表明以自组装的方式形成水溶性纳米粒子,更加有益于细胞的摄取,并且Ir-PTX NPs在细胞内能够进行有效的递送和释放,进行化疗的作用,显著改善了PTX渗透性和水溶性差的缺陷。而在光照条件下,由于酶响应作用能够也有效克服固有的ACQ效应,减弱分子间的自聚集,增强ISC能力,进一步增强1O2产生能力,因此Ir-PTX NPs孵育细胞的死亡率要大于单独用Ir-H和PTX孵育细胞的死亡率,表明Ir-PTX NPs在细胞内同时进行可了化疗与光动力结合的联合治疗,达到了“1+1>2”的治疗效果。

Claims (10)

1.一种金属铱配合物-紫杉醇偶联物,其特征在于,结构式如式1所示:
Figure FDA0003199182350000011
式1中,Paclitaxel代表紫杉醇,其结构式如式2所示:
Figure FDA0003199182350000012
2.根据权利要求1所述的一种金属铱配合物-紫杉醇偶联物的制备方法,其特征在于,包括以下步骤:
步骤一:在氮气保护下,将IrCl3·3H2O和1-苯基异喹啉配体加热回流反应,得到1-苯基异喹啉铱二氯桥[Ir(pqy)2Cl2]2(1);
步骤二:在氮气保护下,将步骤一的1-苯基异喹啉铱二氯桥[Ir(pqy)2Cl2]2(1)和2,2'-联吡啶-4,4'-二羧酸配体在溶剂的作用下,置于黑暗处,进行回流反应,反应结束后,加入六氟磷酸钾继续搅拌,得到Ir-H(2);
步骤三:在氮气保护下,将步骤二得到的Ir-H(2)与紫杉醇PTX混合,再加入缩合剂1-羟基苯并三唑和1-(3-二甲基氨基丙基)-3-乙基碳二亚胺盐酸盐和反应溶剂,最后加入三乙胺进行反应,得到金属铱配合物-紫杉醇偶联物Ir-PTX。
3.根据权利要求2所述的一种金属铱配合物-紫杉醇偶联物的制备方法,其特征在于,所述的步骤一的反应时间为24-30h。
4.根据权利要求2所述的一种金属铱配合物-紫杉醇偶联物的制备方法,其特征在于,所述的IrCl3·3H2O和1-苯基异喹啉配体的摩尔比为0.1:0.33。
5.根据权利要求2所述的一种金属铱配合物-紫杉醇偶联物的制备方法,其特征在于,所述的1-苯基异喹啉铱二氯桥[Ir(pqy)2Cl2]2(1)和2,2'-联吡啶-4,4'-二羧酸配体的摩尔比为1:2。
6.根据权利要求2所述的一种金属铱配合物-紫杉醇偶联物的制备方法,其特征在于,所述的回流反应的时间为4-6h。
7.根据权利要求2所述的一种金属铱配合物-紫杉醇偶联物的制备方法,其特征在于,所述的Ir-H(2)、紫杉醇PTX、缩合剂和三乙胺的摩尔比为1:(2-3):5.2:3。
8.根据权利要求2所述的一种金属铱配合物-紫杉醇偶联物的制备方法,其特征在于,所述的缩合剂中1-羟基苯并三唑和1-(3-二甲基氨基丙基)-3-乙基碳二亚胺盐酸盐的摩尔比为1:1。
9.根据权利要求2所述的一种金属铱配合物-紫杉醇偶联物的制备方法,其特征在于,所述的步骤三的反应温度为室温,反应时间为24-30h。
10.权利要求1所述的金属铱配合物-紫杉醇偶联物Ir-PTX自组装形成的纳米粒子作为药物在乳腺癌双模式治疗中的应用。
CN202110899488.6A 2021-08-06 2021-08-06 一种金属铱配合物-紫杉醇偶联物及其制备方法和应用 Active CN113603727B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110899488.6A CN113603727B (zh) 2021-08-06 2021-08-06 一种金属铱配合物-紫杉醇偶联物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110899488.6A CN113603727B (zh) 2021-08-06 2021-08-06 一种金属铱配合物-紫杉醇偶联物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113603727A true CN113603727A (zh) 2021-11-05
CN113603727B CN113603727B (zh) 2023-09-19

Family

ID=78307311

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110899488.6A Active CN113603727B (zh) 2021-08-06 2021-08-06 一种金属铱配合物-紫杉醇偶联物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113603727B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270893A (ja) * 2000-03-23 2001-10-02 Takeko Matsumura 高輝度蛍光イリジウム錯体およびそのマイクロ波加熱迅速簡易合成法
CN101787054A (zh) * 2010-03-23 2010-07-28 上海师范大学 一种水溶性阳离子型铱配合物磷光探针及制备方法
CN104586750A (zh) * 2015-01-12 2015-05-06 国家纳米科学中心 一种膜包被的紫杉醇纳米药物及其制备方法和用途
CN106588826A (zh) * 2016-11-16 2017-04-26 浙江大学 阿司匹林紫杉醇抗癌药物偶联物、合成方法及其应用
US20170168041A1 (en) * 2014-04-25 2017-06-15 National University Of Singapore Polymers And Oligomers With Aggregation-Induced Emission Characteristics For Imaging And Image-Guided Therapy
CN108144067A (zh) * 2017-12-27 2018-06-12 安徽大学 四价铂化合物-双环双键两亲性聚合物前药、其纳米胶束及制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270893A (ja) * 2000-03-23 2001-10-02 Takeko Matsumura 高輝度蛍光イリジウム錯体およびそのマイクロ波加熱迅速簡易合成法
CN101787054A (zh) * 2010-03-23 2010-07-28 上海师范大学 一种水溶性阳离子型铱配合物磷光探针及制备方法
US20170168041A1 (en) * 2014-04-25 2017-06-15 National University Of Singapore Polymers And Oligomers With Aggregation-Induced Emission Characteristics For Imaging And Image-Guided Therapy
CN104586750A (zh) * 2015-01-12 2015-05-06 国家纳米科学中心 一种膜包被的紫杉醇纳米药物及其制备方法和用途
CN106588826A (zh) * 2016-11-16 2017-04-26 浙江大学 阿司匹林紫杉醇抗癌药物偶联物、合成方法及其应用
CN108144067A (zh) * 2017-12-27 2018-06-12 安徽大学 四价铂化合物-双环双键两亲性聚合物前药、其纳米胶束及制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
XIAOFAN TONG ET AL.: "Water-soluble cyclometalated Ir(III) complexes as carrier-free and pure nanoparticle photosensitizers for photodynamic therapy and cell imaging", 《DALTON TRANS.》, vol. 49, pages 11493 - 11497 *
李明乐;彭孝军;: "靶标性酞菁类光敏剂的光动力疗法研究进展", 化学学报, no. 12 *
梁恭博等: "紫杉醇联合铂系配合物抗肿瘤作用的研究进展", 《国际检验医学杂》, vol. 34, pages 184 - 186 *
王昊;周志平;戴晓晖;: "温敏性聚己内酯-聚N-异丙基丙烯酰胺作为抗癌药物载体的制备与药物释放的研究", 功能材料, no. 03 *

Also Published As

Publication number Publication date
CN113603727B (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
Huang et al. Designing next generation of photon upconversion: Recent advances in organic triplet-triplet annihilation upconversion nanoparticles
Cai et al. Organic molecules with propeller structures for efficient photoacoustic imaging and photothermal ablation of cancer cells
Wang et al. Opportunities and challenges of fluorescent carbon dots in translational optical imaging
Dong et al. Poly (ethylene glycol) conjugated nano-graphene oxide for photodynamic therapy
Xie et al. Hybrid nanoparticles for drug delivery and bioimaging: mesoporous silica nanoparticles functionalized with carboxyl groups and a near-infrared fluorescent dye
EP2937080B1 (en) Targeting-enahnced anticancer nanoparticles and preparation methods for the same
CN106729738B (zh) 一种枝状金铂双金属纳米粒子及其制备方法和应用
Yang et al. Application of upconversion rare earth fluorescent nanoparticles in biomedical drug delivery system
CN113087877B (zh) 近红外二区荧光发射水溶性共轭聚合物纳米光疗试剂及其制备方法与应用
CN112979935B (zh) 线粒体靶向类高分子载体材料tpp-pla、荧光素纳米粒及制备方法和应用
JP4991563B2 (ja) 胆汁酸−キトサン複合体内部に疎水性抗癌剤が封入された剤形及びその製造方法
Zhou et al. Construction of reduction-responsive photosensitizers based on amphiphilic block copolymers and their application for photodynamic therapy
CN109678905A (zh) 一种配位驱动的自组装超分子笼、制备方法及其应用
CN112812137A (zh) 一种双核Ir(Ⅲ)金属-有机三螺旋结构化合物的制备方法及其应用
CN110981918B (zh) 一种修饰的铂类化合物及其制备方法与应用
EP3970753A1 (en) Manganese-dopped nanostructured carbon dots with applications in antitumoral treatments and medical imaging
Pandey et al. Significance and applications of carbon dots in anti cancerous nanodrug conjugate development: A review
CN109180715B (zh) 一种硼-二吡咯亚甲基衍生物、纳米粒子、制备方法及应用
CN109481696B (zh) 用于癌症光动力治疗和化学治疗的药物及其制备方法
Molaei Carbon quantum dots-based fluorescent layered double hydroxide for targeted drug delivery application
CN113603727B (zh) 一种金属铱配合物-紫杉醇偶联物及其制备方法和应用
CN110437239B (zh) 装载四-(n-甲基烯丙基胺)酞菁化合物的金属有机框架材料及制备方法和应用
Liu et al. Confining isolated photosensitizers to relieve self-aggregation and potentiate photodynamic efficacy for synergistic cancer therapy
CN112451485A (zh) 一种短时间近红外光照激活的纳米胶束用于药物快速释放
CN112107542A (zh) 具有肿瘤pH和H2O2特异性激活抗肿瘤活性多功能聚合物胶束及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant