CN113595205B - 一种直流v2v电动汽车充放电装置及其方法 - Google Patents

一种直流v2v电动汽车充放电装置及其方法 Download PDF

Info

Publication number
CN113595205B
CN113595205B CN202110933256.8A CN202110933256A CN113595205B CN 113595205 B CN113595205 B CN 113595205B CN 202110933256 A CN202110933256 A CN 202110933256A CN 113595205 B CN113595205 B CN 113595205B
Authority
CN
China
Prior art keywords
charging
current
direct current
direct
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110933256.8A
Other languages
English (en)
Other versions
CN113595205A (zh
Inventor
何开堤
柳永旭
夏涛
苏明明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shengman Power Technology Co ltd
Original Assignee
Shengman Power Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shengman Power Technology Co ltd filed Critical Shengman Power Technology Co ltd
Priority to CN202110933256.8A priority Critical patent/CN113595205B/zh
Publication of CN113595205A publication Critical patent/CN113595205A/zh
Application granted granted Critical
Publication of CN113595205B publication Critical patent/CN113595205B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种直流V2V电动汽车充放电装置及其方法,包括与直流放电车相连的直流放电接头、V2V转换设备和与直流充电车辆相连的直流充电转换接头,所述直流放电接头包括CC1电阻检测电路、CC2电阻检测电路、DC+/DC‑回路、A+/A‑回路、S+/S‑回路、电阻R2、电阻R3、电阻R4,所述V2V转换设备包括V2V控制器和用于升压/降压的DC/DC变换器、电阻R1、电阻R1’,采用上述技术方案,通过对充放电车辆的数据参数监控,并通过对升压、降压的调整,从而可进行任意两辆电动车之间的直流充放电;在直流充放电时,对升压、降压的调控,从而不受蓄电池电池参数的影响。

Description

一种直流V2V电动汽车充放电装置及其方法
技术领域
本发明涉及新能源汽车充放电技术领域,具体指一种直流V2V电动汽车充放电装置及其方法。
背景技术
电动车作为新能源的杰出代表,具有环保节能等优点,正在取代传统的燃油汽车。
目前,为了满足电动汽车充放电的需求,电动汽车目前具有交流车对车充放电功能,但在直流车对车充放电的应用相对比较少。车对车充放电方案已经广泛应用在电动汽车领域,当前市场上直流V2V的装置形态是一根电缆,两端各连接一个充电枪头,枪头一端接入充电车辆,另一端接入放电车辆,直接实现车对车充放电,中间没有经过其他功率变换器电路。
在实现过程中,发明人发现传统技术中至少存在如下问题:
传统方案直流车对车充放电,能量只能从电池电压比较高的往电池电压比较低的方向传输,不能实现电池能量比较高的往电池能量比较低的方向传输;
传统方案直流车对车充放电,充放电电压和电流受到充放电车辆的电池的参数影响其中主要包括电池开路电压和电池内阻等;
传统方案直流车对车充放电,由于放电车辆电池和充电车辆电池没有实现电气隔离存在比较大的安全隐患。
发明内容
本发明根据现有技术的不足,提出一种直流V2V电动汽车充放电装置及其方法,能实现任意两辆电动车之间的直流充放电。
为了解决上述技术问题,本发明的技术方案为:
一种直流V2V电动汽车充放电装置,包括与直流放电车相连的直流放电接头、V2V转换设备和与直流充电车辆相连的直流充电转换接头,所述直流放电接头包括CC1电阻检测电路、CC2电阻检测电路、DC+/DC-回路、A+/A-回路、S+/S-回路、电阻R2、电阻R3、电阻R4,所述V2V转换设备包括V2V控制器和具备升压/降压和隔离功能的DC/DC变换器、电阻R1、电阻R1’,所述V2V控制器包括低压供电端口A+、低压供电端口A-、CC1检测端口、CC1’检测端口、通信端口S+、通信端口S-、通信端口S+’、通信端口S-’;直流充电接头包括CC1’电阻检测回路、CC2’电阻检测电路、DC+’/DC-’回路、A+’/A-’回路、S+’/S-’回路、电阻R2’、电阻R3’、电阻R4’,所述CC2电阻检测电路与电阻R3的一端相连接,所述CC1电阻检测电路通过电阻R2和电阻R4进行分压,所述CC1电阻检测电路的采样口与CC1检测端口相连接,所述CC1检测端口与电阻R1的一端相连接,所述DC+/DC-回路连接至DC/DC变换器的输入端,所述A+/A-回路分别与低压供电端口A+和低压供电端口A-相连接,所述S+/S-回路分别与通信端口S+和通信端口S-相连接,用于获取直流放电车辆的数据参数;所述CC2’电阻检测电路与电阻R3’的一端相连接,所述CC1’电阻检测电路通过电阻R2’和电阻R4’进行分压,所述CC1’电阻检测电路的采样口与CC1’检测端口相连接,所述CC1’检测端口与电阻R1’的一端相连接,所述DC+’/DC-’回路连接至DC/DC变换器的输入端,所述A+’/A-’回路分别与低压供电端口A+’和低压供电端口A-’相连接,所述S+’/S-’回路分别与通信端口S+’和通信端口S-’相连接,用于获取直流充电电车辆的数据参数。
作为优选,所述V2V转换设备还包括高压继电器K1、高压继电器K2、高压继电器K1’和高压继电器K2’,所述高压继电器K1的两端分别与DC+/DC-回路的DC+输出端和DC/DC变换器的输入端相连接,所述高压继电器K2的两端分别与DC+/DC-回路的DC-输出端和DC/DC变换器的输入端相连接,所述高压继电器K1’的两端分别与DC+’/DC-’回路的DC+’输入端和DC/DC变换器的输出端相连接,所述高压继电器K2’的两端分别与DC+’/DC-’回路的DC-’输入端和DC/DC变换器的输出端相连接。
作为优选,所述DC+/DC-回路与DC/DC变换器之间连接有:用于测量直流放电侧DC+端口和接地端以及DC-端口与接地端之间的绝缘阻值的直流放电侧IMD电路;用于确保直流放电侧在和直流放电车辆分离时DC+/DC-端口的电压不高压60V的直流放电侧泄放电路;用于确保直流放电侧在放电时发生短路故障时能够及时切断直流放电侧的放电回路的FUSE;用于实时检测直流放电侧放电电流的直流放电侧电流测量电路;用于实时检测直流放电侧放电电流的直流放电侧电流测量电路。
作为优选,所述DC+’/DC-’回路与DC/DC变换器之间连接有:用于测量直流充电侧DC+’端口和接地端以及DC-’端口与接地端之间的绝缘阻值的直流充电侧IMD电路;用于确保直流充电侧在和直流充电车辆分离时DC+’/DC-’端口的电压不高压60V的直流充电侧泄放电路;用于确保直流充电侧在放电时发生短路故障时能够及时切断直流充电侧的放电回路的FUSE;用于实时检测直流充电侧充电电流的直流充电侧电流测量电路;用于实时检测直流充电侧放电电流的直流充电侧电流测量电路。
作为优选,所述DC+/DC-回路与DC/DC变换器之间连接有直流放电侧电压测量电路,所述DC+’/DC-’回路与DC/DC变换器之间连接有直流充电侧电压测量电路。
作为优选,所述直流放电电车辆的数据参数包括最小允许放电电流、最大允许放电电流、最低允许放电电压、最高允许放电电压以及最低允许放电SOC;所述直流充电电车辆的数据参数包括最小允许充电电流、最大允许充电电流、最低允许充电电压、最高允许充电电压、最低允许充电SOC、当前请求充电的充电电压、当前请求的充电电流以及当前SOC。
作为优选,所述V2V控制器与DC/DC变换器之间通过CAN通信,所述V2V控制器通过通信端口S+、通信端口S-和直流放电车辆进行BMS通信;通信端口S+’和通信端口S-’和直流充电车辆进行BMS通信。
作为优选,所述DC/DC变换器输出电压和电流不得超过直流充电车辆的请求电压和请求电流,所述DC/DC变换器工作功率为直流放电车辆和直流充电车辆中较小的一个。
一种直流V2V电动汽车充放电方法,其特征在于,步骤包括:
S1、获取直流放电车辆的BMS数据参数和直流充电车辆的BMS数据参数;
S2、根据上述获取的BMS数据参数对DC/DC变换器进行升压/降压调整;
S3、进行充放电;
S4、对充放电状态进行实时监控并调整。
作为优选,所述步骤S4包括:检测是否需要辅助电源;检测直流放电侧DC+和DC-分别对接地端之间的绝缘阻值,确保直流放电侧的绝缘性能良好;检测直流放电侧DC+和DC-母线多余的能量释放,确保直流放电侧在和直流放电车辆分离时DC+DC-端口的电压不高于60V;检测直流放电侧的保护,确保直流放电侧在放电时发生短路故障能够及时切断直流放电侧的放电回路;检测直流放电车辆输出的电流;测量直流充电电侧电池电压,确保直流放电侧电池参数的一致性;测量直流充电侧DC+’/DC-’和接地端之间的绝缘阻值,确保直流充电侧的绝缘性能良好;检测直流充电侧在和直流充电车辆之间的泄放,确保分离时DC+’DC-’端口的电压不高于60V;通过FUSE确保直流充电侧在充电时发生短路故障能够及时切断直流充电侧的放电回路;实时检测直流充电侧充电电流。
本发明具有以下的特点和有益效果:
采用上述技术方案,通过对充放电车辆的BMS数据参数监控,并通过对DC/DC变换器进行升压/降压控制,从而可进行任意两辆电动车之间的直流充放电;在直流充放电时,通过对DC/DC变换器进行升压/降压控制,从而不受蓄电池电池参数的影响。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的原理示意图。
图2为图1中电压测量电路电路原理图。
图3为图1中电流测量电路电路原理图。
图4为图1中泄放电路电路原理图。
图5为图1中CC1检测端口电路原理图
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本发明中的具体含义。
本发明提供了一种直流V2V电动汽车充放电装置,包括与直流放电车相连的直流放电接头、V2V转换设备和与直流充电车辆相连的直流充电转换接头,所述直流放电接头包括CC1电阻检测电路、CC2电阻检测电路、DC+/DC-回路、A+/A-回路、S+/S-回路、电阻R2、电阻R3、电阻R4,所述V2V转换设备包括V2V控制器和用于升压/降压的DC/DC变换器、电阻R1、电阻R1’,所述V2V控制器包括低压供电端口A+、低压供电端口A-、CC1检测端口、CC1’检测端口、通信端口S+、通信端口S-、通信端口S+’、通信端口S-’;直流充电接头包括CC1’电阻检测回路、CC2’电阻检测电路、DC+’/DC-’回路、A+’/A-’回路、S+’/S-’回路、电阻R2’、电阻R3’、电阻R4’,所述CC2电阻检测电路与电阻R3的一端相连接,所述CC1电阻检测电路通过电阻R2和电阻R4进行分压,所述CC1电阻检测电路的采样口与CC1检测端口相连接,所述CC1检测端口与电阻R1的一端相连接,所述DC+/DC-回路连接至DC/DC变换器的输入端,所述A+/A-回路分别与低压供电端口A+和低压供电端口A-相连接,所述S+/S-回路分别与通信端口S+和通信端口S-相连接,用于获取直流放电车辆的数据参数;所述CC2’电阻检测电路与电阻R3’的一端相连接,所述CC1’电阻检测电路通过电阻R2’和电阻R4’进行分压,所述CC1’电阻检测电路的采样口与CC1’检测端口相连接,所述CC1’检测端口与电阻R1’的一端相连接,所述DC+’/DC-’回路连接至DC/DC变换器的输入端,所述A+’/A-’回路分别与低压供电端口A+’和低压供电端口A-’相连接,所述S+’/S-’回路分别与通信端口S+’和通信端口S-’相连接,用于获取直流充电电车辆的数据参数。
可以理解的,直流放电接头与直流放电车辆相连接,直流充电接头与直流充电车辆相连接,通过V2V转换设备实现直流放电车辆的电能往直流充电车辆传送。
上述技术方案中,通过检测CC2电阻检测电路中的R3电阻值的大小,进而判断A+和A-的辅助电源是否需要对外输出,从而为V2V转换设备提供12V10A的辅助电源;V2V控制器通过CC1电阻检测电路中的检测端口的电压确定V2V控制器和直流放电车辆是否连接良好;V2V控制器通过DC+、DC-和直流放电车辆进行能量传送,V2V控制器通过S+、S-和直流放电车辆进行BMS通信,通过S+、S-获取直流放电车辆的电池参数信息,通过BMS通信设置V2V转换设备最大功率点。V2V控制器通过CC1’电阻检测电路确定V2V转换设备和充电电车辆是否可靠连接,V2V控制器通过S+’S-’获取直流充电电车辆的电池参数信息,其中BMS通信在进行数据传输时产生的数据包包含有直流放电车辆的放电电压和直流放电电流,V2V转换设备通过获取到直流放电车辆的放电电压和直流放电电流,进而设置DC/DC变换器,其最大功率点不得大于直流放电电压和直流放电电流的乘积。
V2V控制器分别计算出直流放电车辆最高允许放电功率和最低允许放电功率和直流充电车辆当前请求的充电功率;专用V2V控制器设置DC/DC变换器的功率为直流放电车辆和直流充电桩车辆中较小的一个。
可以理解的,DC/DC变换器需同时具备升压和降压的功能,当直流放电车辆的电池电压高与直流充电车辆的电池电压时,DC/DC变换器需要进行降压使得DC/DC变换器的输出电压等于直流充电车辆的电池电压,避免在V2V直流充放电时因放电车辆电池电压远高于充电车辆电池电压造成比较大的充电电流;当直流放电车辆的电池电压低与直流充电车辆的电池电压时,DC/DC变换器需要进行升压使得DC/DC变换器的输出电压等于直流充电车辆的电池电压,避免在V2V直流充放电时因放电车辆电池电压远低于充电车辆电池电压从而不能进行能量传递。
由此可知,对充放电车辆的数据参数进行实时监控,并通过对升压、降压的调整,从而可进行任意两辆电动车之间的直流充放电;在直流充放电时,对升压、降压的调控,从而不受蓄电池电池参数的影响。
其中获取的数据参数包括直流放电车电池信息并从电池相关信息中解析处放电车辆的最小允许放电电流、最大允许放电电流、最低允许放电电压、最高允许放电电压以及最低允许放电SOC;获取直流充电车辆电池相关信息并从电池相关信息中解析出充电车辆的最小允许充电电流,最高允许充电电流,最低允许充电电压、最高允许充电电压、最高允许充电SOC以及当前请求充电的充电电压、当前请求的充电电流以及当前SOC。
具体的,如图5所示,CC1电阻检测电路,CC1通过直流充放电接头的电阻R3进行分压,通过运算放电器LM358和光耦隔离HCNR201进行隔离和放电然后接入AD采样口进行采样检测,并发送至V2V控制器。
其中V2V控制器为MCU控制器。
需要说明的是,该电阻检测电路为常规的检测电路,因此本申请中对电路的连接不进行具体的描述。
本发明的进一步设置,所述V2V转换设备还包括高压继电器K1、高压继电器K2、高压继电器K1’、高压继电器K2’,所述高压继电器K1的两端分别与DC+/DC-回路的DC+输出端和DC/DC变换器的输入端相连接,所述高压继电器K2的两端分别与DC+/DC-回路的DC-输出端和DC/DC变换器的输入端相连接,所述高压继电器K1’的两端分别与DC+’/DC-’回路的DC+’输入端和DC/DC变换器的输出端相连接,所述高压继电器K2’的两端分别与DC+’/DC-’回路的DC-’输入端和DC/DC变换器的输出端相连接。
上述技术方案中,通过高压继电器K1、高压继电器K2实现直流放电侧能量可控传输,通过高压继电器K1’、高压继电器K2’实现对直流充电侧能量可控传输。
进一步的,所述DC+/DC-回路与DC/DC变换器之间连接有:用于测量直流放电侧DC+端口和接地端以及DC-端口与接地端之间的绝缘阻值的直流放电侧IMD电路,从而确保直流放电侧的绝缘性能良好;用于确保直流放电侧在和直流放电车辆分离时DC+/DC-端口的电压不高压60V的直流放电侧泄放电路,通过直流放电侧电流测量实时检测直流放电侧放电电流;用于确保直流放电侧在放电时发生短路故障时能够及时切断直流放电侧的放电回路的FUSE;用于实时检测直流放电侧放电电流的直流放电侧电流测量电路;用于实时检测直流放电侧放电电流的直流放电侧电流测量电路。
进一步的,所述DC+’/DC-’回路与DC/DC变换器之间连接有:用于测量直流充电侧DC+’端口和接地端以及DC-’端口与接地端之间的绝缘阻值的直流充电侧IMD电路,通过直流充电侧IMD测量直流充电侧DC+’和PE以及DC-’和PE之间的绝缘阻值确保直流充电侧的绝缘性能良好;用于确保直流充电侧在和直流充电车辆分离时DC+’/DC-’端口的电压不高压60V的直流充电侧泄放电路;用于确保直流充电侧在放电时发生短路故障时能够及时切断直流充电侧的放电回路的FUSE;用于实时检测直流充电侧充电电流的直流充电侧电流测量电路;用于实时检测直流充电侧放电电流的直流充电侧电流测量电路。
另外,所述DC+/DC-回路与DC/DC变换器之间连接有直流放电侧电压测量电路,所述DC+’/DC-’回路与DC/DC变换器之间连接有直流充电侧电压测量电路,通过直流放电侧电压测量测量直流放电侧电池电压确保直流放电侧电池参数的一致性,通过高压继电器K1K2实现直流放电侧能量可控传输,通过直流充电侧电压测量测量直流充电电侧电池电压确保直流放电侧电池参数的一致性,通过高压继电器K1’K2’实现对直流充电侧能量可控传输。
具体的,如图2所示,电压测量电路包括电阻R165、电阻R166、隔离运放ACPL-C87B和TLV271,直流母线电压通过R165和R166进行电阻分压,然后通过隔离运放ACPL-C87B和TLV271进行隔离电直流母线电压采样,并将采样数据发送至V2V控制器。
如图3所示,电路测量电路包括霍尔传感器ACS770xCB-100B-PFF和TLV271放大器,直流电流通过霍尔传感器ACS770xCB-100B-PFF采样然后通过TLV271放大进行隔离电流采样,并将采样数据发送至V2V控制器。
如图4所示,泄放电路包括IXTA1N170DHV MOSFET,V2V控制器通过控制IXTA1N170DHV MOSFET导通进行多余的能量释放。
进一步的,所述V2V控制器与DC/DC变换器之间通过CAN通信,实现直流充电侧的DC+’、DC-’的电压以及直流充电侧的电流能够满足充电车辆的需求。所述V2V控制器与通信端口S+、通信端口S-、通信端口S+’和通信端口S-’进行BMS通信。
本发明还捅开了一种直流V2V电动汽车充放电方法,其特征在于,步骤包括:
S1、获取直流放电车辆的数据参数和直流充电车辆的数据参数;
S2、根据上述获取的数据参数对DC/DC变换器进行升压/降压调整;
S3、进行充放电;
S4、对充放电状态进行实时监控并调整。
其中,所述步骤S4包括:检测是否需要辅助电源;检测直流放电侧DC+和DC-分别对接地端之间的绝缘阻值,确保直流放电侧的绝缘性能良好;检测直流放电侧DC+和DC-母线多余的能量释放,确保直流放电侧在和直流放电车辆分离时DC+DC-端口的电压不高于60V;检测直流放电侧的保护,确保直流放电侧在放电时发生短路故障能够及时切断直流放电侧的放电回路;检测直流放电车辆输出的电流;测量直流充电电侧电池电压,确保直流放电侧电池参数的一致性;测量直流充电侧DC+’/DC-’和接地端之间的绝缘阻值,确保直流充电侧的绝缘性能良好;检测直流充电侧在和直流充电车辆之间的泄放,确保分离时DC+’DC-’端口的电压不高于60V;通过FUSE确保直流充电侧在充电时发生短路故障能够及时切断直流充电侧的放电回路;实时检测直流充电侧充电电流。
上述技术方案中,其中获取的数据参数包括直流放电车电池信息并从电池相关信息中解析处放电车辆的最小允许放电电流、最大允许放电电流、最低允许放电电压、最高允许放电电压以及最低允许放电SOC;获取直流充电车辆电池相关信息并从电池相关信息中解析出充电车辆的最小允许充电电流,最高允许充电电流,最低允许充电电压、最高允许充电电压、最高允许充电SOC以及当前请求充电的充电电压、当前请求的充电电流以及当前SOC。
而DC/DC变换器需同时具备升压和降压的功能,当直流放电车辆的电池电压高与直流充电车辆的电池电压时,DC/DC变换器需要进行降压使得DC/DC变换器的输出电压等于直流充电车辆的电池电压,避免在V2V直流充放电时因放电车辆电池电压远高于充电车辆电池电压造成比较大的充电电流;当直流放电车辆的电池电压低与直流充电车辆的电池电压时,DC/DC变换器需要进行升压使得DC/DC变换器的输出电压等于直流充电车辆的电池电压,避免在V2V直流充放电时因放电车辆电池电压远低于充电车辆电池电压从而不能进行能量传递。
由此可知,对充放电车辆的数据参数进行实时监控,并通过对DC/DC变换器进行升压/降压控制,从而可进行任意两辆电动车之间的直流充放电;在直流充放电时,并通过对DC/DC变换器进行升压/降压控制,从而不受蓄电池电池参数的影响。
以上结合附图对本发明的实施方式作了详细说明,但本发明不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明原理和精神的情况下,对这些实施方式包括部件进行多种变化、修改、替换和变型,仍落入本发明的保护范围内。

Claims (8)

1.一种直流V2V电动汽车充放电装置,其特征在于,包括与直流放电车相连的直流放电接头、V2V转换设备和与直流充电车辆相连的直流充电转换接头,所述直流放电接头包括CC1电阻检测电路、CC2电阻检测电路、DC+/DC-回路、A+/A-回路、S+/S-回路、电阻R2、电阻R3、电阻R4,所述V2V转换设备包括V2V控制器和用于升压/降压的DC/DC变换器、电阻R1、电阻R1’,所述V2V控制器包括低压供电端口A+ 、低压供电端口A-、CC1检测端口、CC1’检测端口、通信端口S+ 、通信端口S-、通信端口S+’、通信端口S-’;直流充电接头包括CC1’电阻检测回路、CC2’电阻检测电路、DC+’/DC-’回路、A+’/A-’回路、S+’/S-’回路、电阻R2’、电阻R3’、电阻R4’,所述CC2电阻检测电路与电阻R3的一端相连接,所述CC1电阻检测电路通过电阻R2和电阻R4进行分压,所述CC1电阻检测电路的采样口与CC1检测端口相连接,所述CC1检测端口与电阻R1的一端相连接,所述DC+/DC-回路连接至DC/DC变换器的输入端,所述A+/A-回路分别与低压供电端口A+和低压供电端口A-相连接,所述S+/S-回路分别与通信端口S+和通信端口S-相连接,用于获取直流放电车辆的数据参数;所述CC2’电阻检测电路与电阻R3’的一端相连接,所述CC1’电阻检测电路通过电阻R2’和电阻R4’进行分压,所述CC1’电阻检测电路的采样口与CC1’检测端口相连接,所述CC1’检测端口与电阻R1’的一端相连接,所述DC+’/DC-’回路连接至DC/DC变换器的输入端,所述A+’/A-’回路分别与低压供电端口A+’和低压供电端口A-’相连接,所述S+’/S-’回路分别与通信端口S+’和通信端口S-’相连接,用于获取直流充电电车辆的数据参数;所述V2V转换设备还包括高压继电器K1、高压继电器K2、高压继电器K1’和高压继电器K2’,所述高压继电器K1的两端分别与DC+/DC-回路的DC+输出端和DC/DC变换器的输入端相连接,所述高压继电器K2的两端分别与DC+/DC-回路的DC-输出端和DC/DC变换器的输入端相连接,所述高压继电器K1’的两端分别与DC+’/DC-’回路的DC+’输入端和DC/DC变换器的输出端相连接,所述高压继电器K2’的两端分别与DC+’/DC-’回路的DC-’输入端和DC/DC变换器的输出端相连接;所述直流放电车辆的数据参数包括最小允许放电电流、最大允许放电电流、最低允许放电电压、最高允许放电电压以及最低允许放电SOC;所述直流充电车辆的数据参数包括最小允许充电电流、最大允许充电电流、最低允许充电电压、最高允许充电电压、最低允许充电SOC、当前请求充电的充电电压、当前请求的充电电流以及当前SOC。
2.根据权利要求1所述的直流V2V电动汽车充放电装置,其特征在于,所述DC+/DC-回路与DC/DC变换器之间连接有:用于测量直流放电侧DC+端口和接地端以及DC-端口与接地端之间的绝缘阻值的直流放电侧IMD电路;用于确保直流放电侧在和直流放电车辆分离时DC+/DC-端口的电压不高压60V的直流放电侧泄放电路;用于确保直流放电侧在放电时发生短路故障时能够及时切断直流放电侧的放电回路的FUSE;用于实时检测直流放电侧放电电流的直流放电侧电流测量电路;用于实时检测直流放电侧放电电流的直流放电侧电流测量电路。
3.根据权利要求2所述的直流V2V电动汽车充放电装置,其特征在于,所述DC+’/DC-’回路与DC/DC变换器之间连接有:用于测量直流充电侧DC+’端口和接地端以及DC-’端口与接地端之间的绝缘阻值的直流充电侧IMD电路;用于确保直流充电侧在和直流充电车辆分离时DC+’/DC-’端口的电压不高压60V的直流充电侧泄放电路;用于确保直流充电侧在放电时发生短路故障时能够及时切断直流充电侧的放电回路的FUSE;用于实时检测直流充电侧充电电流的直流充电侧电流测量电路;用于实时检测直流充电侧放电电流的直流充电侧电流测量电路。
4.根据权利要求3所述的直流V2V电动汽车充放电装置,其特征在于,所述DC+/DC-回路与DC/DC变换器之间连接有直流放电侧电压测量电路,所述DC+’/DC-’回路与DC/DC变换器之间连接有直流充电侧电压测量电路,所述DC+’/DC-’回路的DC+’输入端和DC/DC变换器的输出端之间连接有高压继电器K1’,所述DC+’/DC-’回路的DC-’输入端和DC/DC变换器的输出端之间连接有高压继电器K2’。
5.根据权利要求1所述的直流V2V电动汽车充放电装置,其特征在于,所述V2V控制器与DC/DC变换器之间通过CAN通信,所述V2V控制器与通信端口S+、通信端口S-、通信端口S+’和通信端口S-’进行BMS通信。
6.根据权利要求5所述的直流V2V电动汽车充放电装置,其特征在于,所述DC/DC变换器输出电压和电流不得超过直流充电车辆的请求电压和请求电流,所述DC/DC变换器工作功率为直流放电车辆和直流充电车辆中较小的一个。
7.一种根据权利要求1-6任意一项所述直流V2V电动汽车充放电方法,其特征在于,步骤包括:
S1、获取直流放电车辆的数据参数和直流充电车辆的数据参数;
S2、根据上述获取的数据参数对DC/DC变换器进行升压/降压调整;
S3、进行充放电;
S4、对充放电状态进行实时监控并调整。
8.根据权利要求7所述的直流V2V电动汽车充放电方法,其特征在于,所述步骤S4包括:检测是否需要辅助电源;检测直流放电侧DC+和DC-分别对接地端之间的绝缘阻值,确保直流放电侧的绝缘性能良好;检测直流放电侧DC+和DC-母线多余的能量释放,确保直流放电侧在和直流放电车辆分离时DC+ DC-端口的电压不高于60V;检测直流放电侧的保护,确保直流放电侧在放电时发生短路故障能够及时切断直流放电侧的放电回路;检测直流放电车辆输出的电流;测量直流充电电侧电池电压,确保直流放电侧电池参数的一致性;测量直流充电侧DC+’/DC-’和接地端之间的绝缘阻值,确保直流充电侧的绝缘性能良好;检测直流充电侧在和直流充电车辆之间的泄放,确保分离时DC+’ DC-’端口的电压不高于60V;通过FUSE确保直流充电侧在充电时发生短路故障能够及时切断直流充电侧的放电回路;实时检测直流充电侧充电电流。
CN202110933256.8A 2021-08-14 2021-08-14 一种直流v2v电动汽车充放电装置及其方法 Active CN113595205B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110933256.8A CN113595205B (zh) 2021-08-14 2021-08-14 一种直流v2v电动汽车充放电装置及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110933256.8A CN113595205B (zh) 2021-08-14 2021-08-14 一种直流v2v电动汽车充放电装置及其方法

Publications (2)

Publication Number Publication Date
CN113595205A CN113595205A (zh) 2021-11-02
CN113595205B true CN113595205B (zh) 2024-05-03

Family

ID=78257895

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110933256.8A Active CN113595205B (zh) 2021-08-14 2021-08-14 一种直流v2v电动汽车充放电装置及其方法

Country Status (1)

Country Link
CN (1) CN113595205B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291005A (zh) * 2008-04-30 2008-10-22 刘云海 外充电式的混合动力车辆的能量管理系统
KR20100085791A (ko) * 2009-01-21 2010-07-29 주식회사 파워트론 축전지팩의 제어 관리 장치 및 그 방법
CN106042972A (zh) * 2016-07-28 2016-10-26 武汉大学 一种用于电动汽车互相充电的装置
KR101692635B1 (ko) * 2015-08-31 2017-01-03 쌍용자동차 주식회사 계자권선형 동기전동기를 탑재한 전기 자동차의 배터리 충전 제어장치 및 그 방법
CN106994910A (zh) * 2017-05-15 2017-08-01 西安特锐德智能充电科技有限公司 一种用于电动汽车之间的电能转换设备及方法
CN109455106A (zh) * 2018-10-17 2019-03-12 国网浙江省电力有限公司杭州供电公司 一种电动汽车智能充电站
CN210478445U (zh) * 2019-07-26 2020-05-08 国网山东省电力公司电力科学研究院 适用v2g的电动汽车能量管理系统
CN112297893A (zh) * 2019-07-31 2021-02-02 比亚迪股份有限公司 放电车辆和车辆充电系统
CN112526409A (zh) * 2020-12-12 2021-03-19 江阴信邦电子有限公司 一种新能源汽车直流接口放电识别及控制方法
CN213413530U (zh) * 2020-10-22 2021-06-11 浙江吉利控股集团有限公司 新能源车辆的充放电系统、新能源车辆及车车互充系统
CN216121846U (zh) * 2021-08-14 2022-03-22 晟曼电力科技有限公司 一种直流v2v电动汽车充放电装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11673482B2 (en) * 2020-12-18 2023-06-13 Preh Gmbh Method and charging device for charging a high-voltage battery of an electric vehicle

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291005A (zh) * 2008-04-30 2008-10-22 刘云海 外充电式的混合动力车辆的能量管理系统
KR20100085791A (ko) * 2009-01-21 2010-07-29 주식회사 파워트론 축전지팩의 제어 관리 장치 및 그 방법
KR101692635B1 (ko) * 2015-08-31 2017-01-03 쌍용자동차 주식회사 계자권선형 동기전동기를 탑재한 전기 자동차의 배터리 충전 제어장치 및 그 방법
CN106042972A (zh) * 2016-07-28 2016-10-26 武汉大学 一种用于电动汽车互相充电的装置
CN106994910A (zh) * 2017-05-15 2017-08-01 西安特锐德智能充电科技有限公司 一种用于电动汽车之间的电能转换设备及方法
CN109455106A (zh) * 2018-10-17 2019-03-12 国网浙江省电力有限公司杭州供电公司 一种电动汽车智能充电站
CN210478445U (zh) * 2019-07-26 2020-05-08 国网山东省电力公司电力科学研究院 适用v2g的电动汽车能量管理系统
CN112297893A (zh) * 2019-07-31 2021-02-02 比亚迪股份有限公司 放电车辆和车辆充电系统
CN213413530U (zh) * 2020-10-22 2021-06-11 浙江吉利控股集团有限公司 新能源车辆的充放电系统、新能源车辆及车车互充系统
CN112526409A (zh) * 2020-12-12 2021-03-19 江阴信邦电子有限公司 一种新能源汽车直流接口放电识别及控制方法
CN216121846U (zh) * 2021-08-14 2022-03-22 晟曼电力科技有限公司 一种直流v2v电动汽车充放电装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
电动汽车蓄电池充放电装置研究;李武峰;罗小英;边孝成;谢添卉;;电力电子技术;20130820(第08期);全文 *

Also Published As

Publication number Publication date
CN113595205A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
CN110481468B (zh) 用于l3级自动驾驶的汽车双电源系统及车辆
EP2874270A1 (en) Battery pack and electric vehicle
CN105207303A (zh) 一种电动汽车充电机充电系统及方法
CN210792823U (zh) 电动汽车充电系统及电动汽车
CN204567343U (zh) 轻型客车双路冗余安全高压设备及其控制系统
CN104115016A (zh) 使用旋转机械检测混合动力车内的高压线缆
CN210577827U (zh) 低压电池管理系统、车辆电池管理系统、车辆
CN109720204A (zh) 一种dc/dc转换器的故障检测系统及方法
CN101710630B (zh) 一种车载锂电池智能充电方法及装置
CN216121846U (zh) 一种直流v2v电动汽车充放电装置
DE202022103449U1 (de) Tragbare Ladevorrichtung von Elektrofahrzeug zu Elektrofahrzeug
CN106936183B (zh) 供电控制电路、电动车充电导引电路以及充电桩
CN109444507B (zh) 一种电动汽车直流充电桩充电电压采集电路、绝缘检测系统及方法
CN214164900U (zh) 一种新能源汽车高压配电盒
CN108275026A (zh) 用于车对车充电的充电装置及方法
CN107415709A (zh) 用于混合动力客车的复合电源系统
CN113595205B (zh) 一种直流v2v电动汽车充放电装置及其方法
CN112440816B (zh) 电池管理系统及电动汽车
CN205429836U (zh) 一种智能低压辅助电源装置和非车载充电机
CN110450662A (zh) 一种通用性充电桩辅助电源识别及转换电路
CN111251907B (zh) 一种新能源汽车的混合电池驱动系统及供能方法
KR101619467B1 (ko) 적분을 이용한 절연 저항 측정 장치 및 방법
CN110661309A (zh) 车辆的对外充电方法和装置
CN114243824A (zh) 一种电动汽车电源管理模块和电动汽车及电源管理方法
KR101584253B1 (ko) 배터리 셀을 이용한 절연 저항 측정 장치 및 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant