CN113583429A - Preparation method of polyurethane composite material for building - Google Patents

Preparation method of polyurethane composite material for building Download PDF

Info

Publication number
CN113583429A
CN113583429A CN202111058444.7A CN202111058444A CN113583429A CN 113583429 A CN113583429 A CN 113583429A CN 202111058444 A CN202111058444 A CN 202111058444A CN 113583429 A CN113583429 A CN 113583429A
Authority
CN
China
Prior art keywords
parts
stirring
nano
composite material
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111058444.7A
Other languages
Chinese (zh)
Other versions
CN113583429B (en
Inventor
佟义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Century United New Material Technology Co ltd
Original Assignee
Hangzhou Dili New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dili New Material Co ltd filed Critical Hangzhou Dili New Material Co ltd
Priority to CN202111058444.7A priority Critical patent/CN113583429B/en
Publication of CN113583429A publication Critical patent/CN113583429A/en
Application granted granted Critical
Publication of CN113583429B publication Critical patent/CN113583429B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The invention discloses a preparation method of a polyurethane composite material for buildings, which comprises the following components in parts by weight: 20-30 parts of polyurethane resin, 12-18 parts of cellulose aerogel, 6-12 parts of modified montmorillonite, 1-2 parts of dibutyltin dilaurate, 8-10 parts of corn straw, 6-10 parts of phenolic resin and 3-5 parts of ethylenediamine. The preparation method comprises the steps of crushing corn straws into aggregates with different thicknesses of 15-30 mm, adding the aggregates into a sulfuric acid solution, soaking for 2-3 hours, filtering, washing and drying with water, adding the aggregates into a mixed solution of water, a nano-silica solution, calcium pyruvate and dimethylformamide, stirring for 3-5 hours, taking out, drying at 75-80 ℃, mixing and stirring with polyurethane resin, cellulose aerogel, modified montmorillonite, dibutyltin dilaurate, phenolic resin and ethylenediamine according to the proportion, wherein the stirring temperature is 80-90 ℃, the rotating speed is 450-600 rpm/min, and the stirring reaction time is 20-40 min; and pouring the mixture after the stirring reaction into a mold, curing and molding, and cooling and demolding to obtain the polyurethane composite material.

Description

Preparation method of polyurethane composite material for building
Technical Field
The invention belongs to the technical field of building materials, and particularly relates to a preparation method of a polyurethane composite material for buildings.
Background
The polyurethane material is prepared by the polymerization reaction of polyol and polyisocyanate, different structures and properties are obtained by utilizing different raw materials, and finally products such as liquid to solid and soft to hard coatings, adhesives, plastics, fibers, rubber and the like can be prepared, so that the application is very wide and the application range is rapidly increased. The polyurethane rigid foam plastic material is an important component of a polyurethane product, and has the advantages of rich raw materials, simple and convenient preparation process, excellent comprehensive performance, wide application range and the like compared with other foam plastics. In addition, the extremely low thermal conductivity coefficient is a great advantage of the material, and can reach about 0.025W/K.m, so that the material becomes the heat-insulating material with the best use effect at present.
At present, polyurethane materials are used in building materials, the production capacity of the polyurethane materials is increasing, the polyurethane materials have the advantages of large hardness, high compression strength, good dimensional stability, light weight, low thermal conductivity, high closed porosity (above 95%), good corrosion resistance, good wear resistance and the like, the polyurethane materials also have wide application, can replace materials such as rubber, plastic, nylon and the like, and are used for airport, hotel, building materials, automobile factory, coal mine factory, cement factory, high-level apartment, villa, garden beautification and the like. However, the polyurethane composite material belongs to a flammable material, and toxic gases such as HCN, CO and the like are released in the combustion process, which brings great difficulty to fire extinguishment and escape from fire scenes.
Disclosure of Invention
Aiming at the problems that the polyurethane composite material in the prior art is inflammable, has large smoke quantity after combustion, and generates gases such as HCN, CO and the like. The invention aims to provide a preparation method of a polyurethane composite material for buildings, wherein the building material comprises the following components in parts by weight: 20-30 parts of polyurethane resin, 12-18 parts of cellulose aerogel, 6-12 parts of modified montmorillonite, 1-2 parts of dibutyltin dilaurate, 8-10 parts of corn straw, 6-10 parts of phenolic resin and 3-5 parts of ethylenediamine.
The preparation method comprises the following steps:
s1: crushing corn straws into aggregates with different thicknesses of 15-30 mm, adding the aggregates into a sulfuric acid solution, soaking for 2-3 h, filtering, washing with water, drying, adding the aggregates into a mixed solution of water, a nano-silica solution, calcium pyruvate and dimethylformamide, stirring for 3-5 h, taking out, and drying at 75-80 ℃ for later use.
S2: and (4) mixing and stirring the corn straws, the polyurethane resin, the cellulose aerogel, the modified montmorillonite, the dibutyltin dilaurate, the phenolic resin and the ethylenediamine in the step (S1) according to the proportion, wherein the stirring temperature is 80-90 ℃, the rotating speed is 450-600 rpm/min, and the stirring reaction time is 20-40 min.
S3: and (5) pouring the mixture stirred and reacted in the step S2 into a mold, curing and molding, and cooling and demolding to obtain the polyurethane composite material.
Preferably, the mass-to-volume ratio of the water, the nano-silica solution, the calcium pyruvate and the dimethylformamide is (100-150) mL, (4.2-6.8) mL, (1.3-1.9) g, (10-16) mL.
Preferably, the curing and forming in the step S3 are divided into three stages, wherein the curing temperature in the first stage is 140 to 150 ℃, and the curing time is 2 to 3 hours; the curing temperature of the second stage is 220-230 ℃, and the curing time is 2.5-4 h; the curing temperature of the third stage is 255-270 ℃, and the curing time is 1-1.5 h.
Preferably, the cellulose aerogel is prepared by the following method:
1) adding cellulose nano-fibers into water, stirring at a high speed for 5-8 hours to obtain a suspension I, adding nano-montmorillonite into the water, stirring at a high speed to disperse the nano-montmorillonite to obtain a suspension II, mixing the suspension I and the suspension II, and stirring for 6-9 hours for later use.
2) Freezing the suspension mixed solution obtained in the step 1) for 25-40 min at the temperature of-50 to-65 ℃, and then carrying out freeze drying for 45-60 h in a liquid nitrogen environment to obtain the cellulose aerogel.
Preferably, the modified montmorillonite is prepared by the following method:
the method comprises the following steps: uniformly mixing nano montmorillonite, expanded graphite, aluminum hydroxide and magnesium hydroxide, adding the mixture into distilled water, ultrasonically stirring for 10-15 min, then adding an ammonia water solution to adjust the pH value to 10.5-11.5, and stirring for later use.
Step two: and (3) moving the mixed solution obtained in the step one to a high-pressure reaction kettle, then placing the mixed solution in an oven, reacting for 5-8 h at 210-230 ℃, cooling, washing with distilled water for three times, and drying at 80-90 ℃ to obtain the modified montmorillonite.
More preferably, the mass ratio of the nano montmorillonite, the expanded graphite, the aluminum hydroxide and the magnesium hydroxide is (1-2): (0.4-0.75): (0.42-0.78): (0.36-0.69).
The invention has the following beneficial effects:
1. according to the invention, the prepared polyurethane composite material has excellent mechanical properties, excellent heat insulation performance and flame retardant performance, and has the maximum smoke density of below 38, excellent smoke generation amount and less toxic gas generation.
2. In the invention, the montmorillonite is modified by adopting expanded graphite, aluminum hydroxide and magnesium hydroxide to obtain the modified montmorillonite, wherein the aluminum hydroxide and the magnesium hydroxide are attached to the surface of the expanded graphite after the montmorillonite is modified, and the aluminum hydroxide and the magnesium hydroxide are compounded with the montmorillonite to play a role in flame retardance and influence the structure of a high molecular material, reduce the combustion smoke generation amount of the high molecular material and improve the mechanical property of the composite material.
3. According to the invention, the aerogel prepared from the nano-fibers and the montmorillonite is added into the polyurethane composite material, and the aerogel can effectively reduce the smoke generation amount in the combustion process of the polyurethane composite material while playing a flame retardant role; and the mechanical property and the heat preservation property of the building material are effectively improved after the corn straws are treated.
Detailed Description
In order to make the objects, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the embodiments of the present invention, and it is obvious that the described embodiments are some embodiments of the present invention, but not all embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
Example 1
A preparation method of a polyurethane composite material for buildings specifically comprises the following steps:
the building material comprises the following components in parts by weight: 20 parts of polyurethane resin, 12 parts of cellulose aerogel, 6 parts of modified montmorillonite, 1 part of dibutyltin dilaurate, 8 parts of corn straw, 6 parts of phenolic resin and 3 parts of ethylenediamine.
The cellulose aerogel is prepared by adopting the following method:
1) adding cellulose nano-fiber into water, stirring at high speed for 5h to obtain suspension I, adding nano-montmorillonite into water, stirring at high speed to disperse the nano-montmorillonite to obtain suspension II, mixing the suspension I and the suspension II, and stirring for 6h for later use.
2) Freezing the suspension mixed liquor obtained in the step 1) at-50 ℃ for 25min, and then freezing and drying for 45h in a liquid nitrogen environment to obtain the cellulose aerogel.
The modified montmorillonite is prepared by the following method:
the method comprises the following steps: uniformly mixing nano montmorillonite, expanded graphite, aluminum hydroxide and magnesium hydroxide, adding the mixture into distilled water, ultrasonically stirring the mixture for 10min, then adding an ammonia water solution to adjust the pH value to 10.5, and stirring the mixture for later use, wherein the mass ratio of the nano montmorillonite to the expanded graphite to the aluminum hydroxide to the magnesium hydroxide is 1:0.4:0.42: 0.36.
Step two: and (3) moving the mixed solution in the step one to a high-pressure reaction kettle, then placing the mixed solution in an oven, reacting for 5 hours at 210 ℃, cooling, washing with distilled water for three times, and drying at 80 ℃ to obtain the modified montmorillonite.
The preparation method comprises the following steps:
s1: crushing corn straws into aggregates with different thicknesses of 15mm, adding the aggregates into a sulfuric acid solution, soaking for 2 hours, filtering, washing and drying with water, then adding the aggregates into a mixed solution of water, a nano-silica solution, calcium pyruvate and dimethylformamide, stirring for 3 hours, taking out the aggregates, and drying at 75 ℃ for later use, wherein the mass-volume ratio of the water, the nano-silica solution, the calcium pyruvate and the dimethylformamide is 100mL:4.2mL:1.3g:10 mL.
S2: and (4) mixing and stirring the corn straws, the polyurethane resin, the cellulose aerogel, the modified montmorillonite, the dibutyltin dilaurate, the phenolic resin and the ethylenediamine in the step (S1) according to the proportion, wherein the stirring temperature is 80 ℃, the rotating speed is 450rpm/min, and the stirring reaction time is 20 min.
S3: pouring the mixture stirred and reacted in the step S2 into a mould, and carrying out three-stage curing molding, wherein the curing temperature of the first stage is 140 ℃, and the curing time is 2 hours; the curing temperature of the second stage is 220 ℃, and the curing time is 2.5 h; and the curing temperature of the third stage is 255 ℃, the curing time is 1h, and the polyurethane composite material is obtained after cooling and demolding.
Example 2
A preparation method of a polyurethane composite material for buildings specifically comprises the following steps:
the building material comprises the following components in parts by weight: 30 parts of polyurethane resin, 18 parts of cellulose aerogel, 12 parts of modified montmorillonite, 2 parts of dibutyltin dilaurate, 10 parts of corn straw, 10 parts of phenolic resin and 5 parts of ethylenediamine.
The cellulose aerogel is prepared by adopting the following method:
1) adding cellulose nano-fiber into water, stirring at high speed for 8h to obtain suspension I, adding nano-montmorillonite into water, stirring at high speed to disperse the nano-montmorillonite to obtain suspension II, mixing the suspension I and the suspension II, and stirring for 9h for later use.
2) Freezing the suspension mixed liquor obtained in the step 1) for 40min at the temperature of-65 ℃, and then freezing and drying for 60h in a liquid nitrogen environment to obtain the cellulose aerogel.
The modified montmorillonite is prepared by the following method:
the method comprises the following steps: uniformly mixing nano montmorillonite, expanded graphite, aluminum hydroxide and magnesium hydroxide, adding the mixture into distilled water, ultrasonically stirring the mixture for 15min, then adding an ammonia water solution to adjust the pH value to 11.5, and stirring the mixture for later use, wherein the mass ratio of the nano montmorillonite to the expanded graphite to the aluminum hydroxide to the magnesium hydroxide is 2:0.75:0.78: 0.69.
Step two: and (3) moving the mixed solution in the step one to a high-pressure reaction kettle, then placing the mixed solution in an oven, reacting for 8 hours at 230 ℃, cooling, washing with distilled water for three times, and drying at 90 ℃ to obtain the modified montmorillonite.
The preparation method comprises the following steps:
s1: crushing corn straws into aggregates with different thicknesses of 30mm, adding the aggregates into a sulfuric acid solution, soaking for 3 hours, filtering, washing and drying with water, then adding the aggregates into a mixed solution of water, a nano-silica solution, calcium pyruvate and dimethylformamide, stirring for 5 hours, taking out and drying at 80 ℃ for later use, wherein the mass-volume ratio of the water, the nano-silica solution, the calcium pyruvate and the dimethylformamide is 150mL:6.8mL:1.9g:16 mL.
S2: and (4) mixing and stirring the corn straws, the polyurethane resin, the cellulose aerogel, the modified montmorillonite, the dibutyltin dilaurate, the phenolic resin and the ethylenediamine in the step (S1) according to the proportion, wherein the stirring temperature is 90 ℃, the rotating speed is 600rpm/min, and the stirring reaction time is 40 min.
S3: pouring the mixture stirred and reacted in the step S2 into a mould, and carrying out three-stage curing molding, wherein the curing temperature of the first stage is 150 ℃, and the curing time is 3 hours; the curing temperature of the second stage is 230 ℃, and the curing time is 4 hours; and the curing temperature of the third stage is 270 ℃, the curing time is 1.5h, and the polyurethane composite material is obtained after cooling and demolding.
Example 3
A preparation method of a polyurethane composite material for buildings specifically comprises the following steps:
the building material comprises the following components in parts by weight: 25 parts of polyurethane resin, 15 parts of cellulose aerogel, 9 parts of modified montmorillonite, 2 parts of dibutyltin dilaurate, 9 parts of corn straw, 8 parts of phenolic resin and 4 parts of ethylenediamine.
The cellulose aerogel is prepared by adopting the following method:
1) adding cellulose nano-fiber into water, stirring at high speed for 6h to obtain suspension I, adding nano-montmorillonite into water, stirring at high speed to disperse the nano-montmorillonite to obtain suspension II, mixing the suspension I and the suspension II, and stirring for 7h for later use.
2) Freezing the suspension mixed liquor obtained in the step 1) at-55 ℃ for 30min, and then freezing and drying for 50h in a liquid nitrogen environment to obtain the cellulose aerogel.
The modified montmorillonite is prepared by the following method:
the method comprises the following steps: uniformly mixing nano montmorillonite, expanded graphite, aluminum hydroxide and magnesium hydroxide, adding the mixture into distilled water, ultrasonically stirring the mixture for 12min, then adding an ammonia water solution to adjust the pH value to 11, and stirring the mixture for later use, wherein the mass ratio of the nano montmorillonite to the expanded graphite to the aluminum hydroxide to the magnesium hydroxide is 1.2:0.55:0.48: 0.49.
Step two: and (3) moving the mixed solution in the step one to a high-pressure reaction kettle, then placing the mixed solution in an oven, reacting for 6 hours at 220 ℃, cooling, washing with distilled water for three times, and drying at 85 ℃ to obtain the modified montmorillonite.
The preparation method comprises the following steps:
s1: the method comprises the steps of crushing corn straws into aggregates with different thicknesses of 20mm, adding the aggregates into a sulfuric acid solution, soaking for 2.5 hours, filtering, washing with water, drying, adding the aggregates into a mixed solution of water, a nano-silica solution, calcium pyruvate and dimethylformamide, stirring for 4 hours, taking out, and drying at 77 ℃ for later use, wherein the mass volume ratio of the water, the nano-silica solution, the calcium pyruvate and the dimethylformamide is 120mL:4.8mL:1.5g:12 mL.
S2: and (4) mixing and stirring the corn straws, the polyurethane resin, the cellulose aerogel, the modified montmorillonite, the dibutyltin dilaurate, the phenolic resin and the ethylenediamine in the step (S1) according to the proportion, wherein the stirring temperature is 85 ℃, the rotating speed is 500rpm/min, and the stirring reaction time is 25 min.
S3: pouring the mixture stirred and reacted in the step S2 into a mould, and carrying out three-stage curing molding, wherein the curing temperature of the first stage is 145 ℃, and the curing time is 2.5 h; the curing temperature of the second stage is 225 ℃, and the curing time is 3 hours; and the curing temperature of the third stage is 260 ℃, the curing time is 1.2h, and the polyurethane composite material is obtained after cooling and demolding.
Example 4
A preparation method of a polyurethane composite material for buildings specifically comprises the following steps:
the building material comprises the following components in parts by weight: 28 parts of polyurethane resin, 16 parts of cellulose aerogel, 11 parts of modified montmorillonite, 2 parts of dibutyltin dilaurate, 9 parts of corn straw, 9 parts of phenolic resin and 5 parts of ethylenediamine.
The cellulose aerogel is prepared by adopting the following method:
1) adding cellulose nano-fiber into water, stirring at high speed for 7h to obtain suspension I, adding nano-montmorillonite into water, stirring at high speed to disperse the nano-montmorillonite to obtain suspension II, mixing the suspension I and the suspension II, and stirring for 8h for later use.
2) Freezing the suspension mixed liquor obtained in the step 1) at-60 ℃ for 30min, and then freezing and drying for 55h in a liquid nitrogen environment to obtain the cellulose aerogel.
The modified montmorillonite is prepared by the following method:
the method comprises the following steps: uniformly mixing nano montmorillonite, expanded graphite, aluminum hydroxide and magnesium hydroxide, adding the mixture into distilled water, ultrasonically stirring for 14min, then adding an ammonia water solution to adjust the pH value to 11.2, and stirring for later use, wherein the mass ratio of the nano montmorillonite to the expanded graphite to the aluminum hydroxide to the magnesium hydroxide is 1.8:0.68:0.74: 0.58.
Step two: and (3) moving the mixed solution in the step one to a high-pressure reaction kettle, then placing the mixed solution in an oven, reacting for 7h at 225 ℃, cooling, washing with distilled water for three times, and drying at 90 ℃ to obtain the modified montmorillonite.
The preparation method comprises the following steps:
s1: crushing corn straws into aggregates with different thicknesses of 25mm, adding the aggregates into a sulfuric acid solution, soaking for 3 hours, filtering, washing and drying with water, then adding the aggregates into a mixed solution of water, a nano-silica solution, calcium pyruvate and dimethylformamide, stirring for 5 hours, taking out and drying at 79 ℃ for later use, wherein the mass-volume ratio of the water, the nano-silica solution, the calcium pyruvate and the dimethylformamide is 140mL:6.4mL:1.7g:15 mL.
S2: and (4) mixing and stirring the corn straws, the polyurethane resin, the cellulose aerogel, the modified montmorillonite, the dibutyltin dilaurate, the phenolic resin and the ethylenediamine in the step (S1) according to the proportion, wherein the stirring temperature is 90 ℃, the rotating speed is 550rpm/min, and the stirring reaction time is 35 min.
S3: pouring the mixture stirred and reacted in the step S2 into a mould, and carrying out three-stage curing molding, wherein the curing temperature of the first stage is 150 ℃, and the curing time is 3 hours; the curing temperature of the second stage is 230 ℃, and the curing time is 3 hours; and the curing temperature of the third stage is 265 ℃, the curing time is 1.2h, and the polyurethane composite material is obtained after cooling and demolding.
Examples of the experiments
Performance test 1-mechanical property testing: the mechanical property test of the building materials prepared in examples 1-4 is performed according to GB T/2567-,
table 1. mechanical properties test results:
Figure BDA0003255563040000081
as can be seen from Table 1, the polyurethane composite materials prepared in examples 1-4 of the present invention have tensile strength of 41MPa or more, impact strength of 385N or more, elongation at break of 45.25% or more, and excellent mechanical properties and flexibility.
Performance test 2-flame retardant performance test: the building materials prepared in examples 1 to 4 were subjected to the limit epoxy index, the maximum smoke density and the combustion grade tests, and the test results are shown in Table 2,
table 2. flame retardant properties test results:
Figure BDA0003255563040000082
as can be seen from Table 2, the limit epoxy index of the polyurethane composite material prepared in examples 1-4 is above 38.4, and the maximum smoke density is about 37.3, which indicates that the polyurethane composite material has a low smoke generation amount, and the flame retardant grades are V-0 grade through a vertical combustion test, so that the polyurethane composite material has excellent flame retardant property, and the thermal conductivity is about 0.023W/K.m, so that the polyurethane composite material has excellent heat insulation property.

Claims (6)

1. The preparation method of the polyurethane composite material for the building is characterized in that the building material comprises the following components in parts by weight: 20-30 parts of polyurethane resin, 12-18 parts of cellulose aerogel, 6-12 parts of modified montmorillonite, 1-2 parts of dibutyltin dilaurate, 8-10 parts of corn straw, 6-10 parts of phenolic resin and 3-5 parts of ethylenediamine;
the preparation method comprises the following steps:
s1: crushing corn straws into aggregates with different thicknesses of 15-30 mm, adding the aggregates into a sulfuric acid solution, soaking for 2-3 h, filtering, washing with water, drying, adding the aggregates into a mixed solution of water, a nano-silica solution, calcium pyruvate and dimethylformamide, stirring for 3-5 h, taking out, and drying at 75-80 ℃ for later use;
s2: mixing and stirring the corn straws, the polyurethane resin, the cellulose aerogel, the modified montmorillonite, the dibutyltin dilaurate, the phenolic resin and the ethylenediamine in the step S1 according to the proportion, wherein the stirring temperature is 80-90 ℃, the rotating speed is 450-600 rpm/min, and the stirring reaction time is 20-40 min;
s3: and (5) pouring the mixture stirred and reacted in the step S2 into a mold, curing and molding, and cooling and demolding to obtain the polyurethane composite material.
2. The method for preparing a polyurethane composite material for use in construction as claimed in claim 1, wherein the cellulose aerogel is prepared by the following method:
1) adding cellulose nano-fibers into water, stirring at a high speed for 5-8 hours to obtain a suspension I, adding nano-montmorillonite into the water, stirring at a high speed to disperse the nano-montmorillonite to obtain a suspension II, mixing the suspension I and the suspension II, and stirring for 6-9 hours for later use;
2) freezing the suspension mixed solution obtained in the step 1) for 25-40 min at the temperature of-50 to-65 ℃, and then carrying out freeze drying for 45-60 h in a liquid nitrogen environment to obtain the cellulose aerogel.
3. The method for preparing the polyurethane composite material for the buildings according to claim 1, wherein the modified montmorillonite is prepared by the following method:
the method comprises the following steps: uniformly mixing nano montmorillonite, expanded graphite, aluminum hydroxide and magnesium hydroxide, adding the mixture into distilled water, ultrasonically stirring for 10-15 min, then adding an ammonia water solution to adjust the pH value to 10.5-11.5, and stirring for later use;
step two: and (3) moving the mixed solution obtained in the step one to a high-pressure reaction kettle, then placing the mixed solution in an oven, reacting for 5-8 h at 210-230 ℃, cooling, washing with distilled water for three times, and drying at 80-90 ℃ to obtain the modified montmorillonite.
4. The method as claimed in claim 3, wherein the mass ratio of the nano montmorillonite to the expanded graphite to the aluminum hydroxide to the magnesium hydroxide is (1-2): (0.4-0.75): (0.42-0.78): (0.36-0.69).
5. The preparation method of the polyurethane composite material for the building according to claim 1, wherein the mass-to-volume ratio of the water, the nano-silica solution, the calcium pyruvate and the dimethylformamide is (100-150) mL, (4.2-6.8) mL, (1.3-1.9) g and (10-16) mL.
6. The method for preparing a polyurethane composite material for use in buildings according to claim 1, wherein the curing molding in step S3 is divided into three stages, the curing temperature of the first stage is 140 to 150 ℃, and the curing time is 2 to 3 hours; the curing temperature of the second stage is 220-230 ℃, and the curing time is 2.5-4 h; the curing temperature of the third stage is 255-270 ℃, and the curing time is 1-1.5 h.
CN202111058444.7A 2021-09-10 2021-09-10 Preparation method of polyurethane composite material for building Active CN113583429B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111058444.7A CN113583429B (en) 2021-09-10 2021-09-10 Preparation method of polyurethane composite material for building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111058444.7A CN113583429B (en) 2021-09-10 2021-09-10 Preparation method of polyurethane composite material for building

Publications (2)

Publication Number Publication Date
CN113583429A true CN113583429A (en) 2021-11-02
CN113583429B CN113583429B (en) 2022-10-14

Family

ID=78241701

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111058444.7A Active CN113583429B (en) 2021-09-10 2021-09-10 Preparation method of polyurethane composite material for building

Country Status (1)

Country Link
CN (1) CN113583429B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108736A1 (en) * 2003-06-09 2004-12-16 Daihachi Chemical Industry Co., Ltd. Organophosphorus compound having phosphate-phosphonate bond, and flame-retardant polyester fiber and flame-retardant polyurethane resin composition each containing the same
CN1712463A (en) * 2005-07-27 2005-12-28 厦门大学 Fire-proof paint modifier of tunnel based on polymer/clay intercalation modifying technology and production thereof
CN103768752A (en) * 2014-02-20 2014-05-07 铜陵祥云消防科技有限责任公司 Dry powder extinguisher containing modified smectite powder
CN103790248A (en) * 2014-01-27 2014-05-14 钟春燕 Method for preparing building thermal insulation heat-resisting board
CN106832635A (en) * 2016-12-30 2017-06-13 安徽华普环境修复材料科技有限公司 A kind of fire-retardant heat insulation composite sandwich plate
CN108410014A (en) * 2018-01-15 2018-08-17 大连亚泰科技新材料股份有限公司 A kind of montmorillonite/magnesium hydroxide composite flame retardant material and preparation method
CN108483996A (en) * 2018-04-09 2018-09-04 合肥聪亨新型建材科技有限公司 A kind of corrosion-resistant thermal insulation material of construction wall and preparation method thereof
CN108866815A (en) * 2018-08-02 2018-11-23 苏州市天翱特种织绣有限公司 A kind of preparation method of coral fleece sqouynd absorption lowering noise textile material
CN111440353A (en) * 2020-04-26 2020-07-24 云南中烟工业有限责任公司 Preparation method of heat-conducting hydrophobic flame-retardant nano-cellulose aerogel

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108736A1 (en) * 2003-06-09 2004-12-16 Daihachi Chemical Industry Co., Ltd. Organophosphorus compound having phosphate-phosphonate bond, and flame-retardant polyester fiber and flame-retardant polyurethane resin composition each containing the same
CN1712463A (en) * 2005-07-27 2005-12-28 厦门大学 Fire-proof paint modifier of tunnel based on polymer/clay intercalation modifying technology and production thereof
CN103790248A (en) * 2014-01-27 2014-05-14 钟春燕 Method for preparing building thermal insulation heat-resisting board
CN103768752A (en) * 2014-02-20 2014-05-07 铜陵祥云消防科技有限责任公司 Dry powder extinguisher containing modified smectite powder
CN106832635A (en) * 2016-12-30 2017-06-13 安徽华普环境修复材料科技有限公司 A kind of fire-retardant heat insulation composite sandwich plate
CN108410014A (en) * 2018-01-15 2018-08-17 大连亚泰科技新材料股份有限公司 A kind of montmorillonite/magnesium hydroxide composite flame retardant material and preparation method
CN108483996A (en) * 2018-04-09 2018-09-04 合肥聪亨新型建材科技有限公司 A kind of corrosion-resistant thermal insulation material of construction wall and preparation method thereof
CN108866815A (en) * 2018-08-02 2018-11-23 苏州市天翱特种织绣有限公司 A kind of preparation method of coral fleece sqouynd absorption lowering noise textile material
CN111440353A (en) * 2020-04-26 2020-07-24 云南中烟工业有限责任公司 Preparation method of heat-conducting hydrophobic flame-retardant nano-cellulose aerogel

Also Published As

Publication number Publication date
CN113583429B (en) 2022-10-14

Similar Documents

Publication Publication Date Title
CN102061059B (en) Wood fiber reinforced inflaming retarding foam material and machining method thereof
CN101717514B (en) Modified phenolic resin, foamed material thereof and method for preparing same
CN102585153B (en) Halogen-free and flame-retardant hard polyurethane foam plastic and preparation method thereof
CN103030780A (en) Flame-retardant polyurethane modified polyisocyanurate foam, and preparation method and application of foam
CN104387608A (en) Self-flame-retardant modified melamine-formaldehyde foam as well as preparation method and application thereof
CN102040364A (en) Water-resistant vermiculite insulation board and preparation method thereof
CN107556514B (en) Preparation method of modified melamine formaldehyde rigid foam board for flame retardation and heat preservation
CN103435970A (en) Modified phenolic foam for heat preservation of wall body and preparation method thereof
CN114835942B (en) High-strength sodium alginate/lignin flame-retardant aerogel and preparation method and application thereof
CN108192128A (en) Polyurethane heated board combination material
CN101307129A (en) Polyurethane/organic montmorillonite nano composite material and method for preparing same
CN113583429B (en) Preparation method of polyurethane composite material for building
CN112279987B (en) Hard melamine foam and preparation method thereof
CN110105683B (en) Polystyrene foam material and preparation method thereof
CN100530873C (en) Light noninflammable anti corrosion high strength electric cable bridge trough box
CN113248206B (en) Cement-based polyurethane composite insulation board and preparation method thereof
CN109836767A (en) A kind of high-performance modified phenolic resin cold-storage insulation board
CN106916275A (en) A kind of composite modified polyurethane type foam plastics and preparation method thereof
CN107325423A (en) A kind of energy-saving floor and preparation method thereof
CN113444327A (en) Preparation method of borosilicate flame-retardant wall insulation board
CN104845356B (en) A kind of halogen-free anti-inflaming polyurethane hard foam material and preparation method thereof
CN113736355A (en) Preparation method of hydrolysis-resistant flame-retardant breathable moisture-permeable polyurethane porous coating
CN110105536A (en) A kind of low-smoke low-toxicity combined polyether and its polyurethane preparation method
CN109867532A (en) A kind of insulating board for building and preparation method thereof
CN114085064B (en) Hydrophobic perlite composite insulation board with low thermal conductivity coefficient and production process thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220913

Address after: 255000 north of Nanling South Road, high tech Zone, Zibo City, Shandong Province, east of Zidong Railway

Applicant after: Shandong century United New Material Technology Co.,Ltd.

Address before: 310000 no.5000, Jiangdong 1st Road, Qianjin Street, Qiantang New District, Hangzhou City, Zhejiang Province

Applicant before: Hangzhou Dili New Material Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant