CN113580099B - 一种编码式纳米机器及其控制、制备方法 - Google Patents
一种编码式纳米机器及其控制、制备方法 Download PDFInfo
- Publication number
- CN113580099B CN113580099B CN202110700953.9A CN202110700953A CN113580099B CN 113580099 B CN113580099 B CN 113580099B CN 202110700953 A CN202110700953 A CN 202110700953A CN 113580099 B CN113580099 B CN 113580099B
- Authority
- CN
- China
- Prior art keywords
- nano
- robot
- deoxyribonucleic acid
- substrate
- holes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J7/00—Micromanipulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/007—Means or methods for designing or fabricating manipulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1602—Programme controls characterised by the control system, structure, architecture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/686—Polymerase chain reaction [PCR]
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/10—Glass or silica
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
- C23C16/402—Silicon dioxide
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Robotics (AREA)
- Metallurgy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Nanotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Composite Materials (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Biotechnology (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micromachines (AREA)
Abstract
本发明涉及一种编码式纳米机器人及其控制、制作方法,本发明可以通过编码调节纳米孔与纳米金电极所连接电压源的方向与强度,进而控制纳米孔内的电渗流强度,从而利用电渗驱动和电泳驱动联合或竞争驱动,对具有多自由度的编码式纳米机器人的运动方向以及运动速度进行精准的操控,有利于快速有效地对待测分子进行研究;该纳米机器人的两条脱氧核糖核酸链长度可调节,具有大范围的可调量程,可以基于两纳米孔之间的距离通过合成末端巯基化不同长度的脱氧核糖核酸链,即可控制编码式纳米机器人在捕获情况下的运动范围。
Description
技术领域
本发明涉及一种基于纳米孔的电渗和电泳联合驱动技术;尤其涉及编码式纳米机器及其控制、制备方法。
背景技术
纳米机器人是一种重要的分子机器,可以自动执行复杂的纳米机械任务。到目前为止, DNA纳米机器人的发展一直局限于简单的功能,如在一个受控的方向上行走,且控制过程十分复杂,难以控制。
由于纳米机器人的控制是一件困难且复杂的任务,尤其是对功能稍微复杂一些的纳米机器人而言,其控制方法更加复杂。
Lulu Qian教授在Science期刊上报道 了一种由单链DNA组装成的纳米机器人,该纳米机器人能够自主地在铺有DNA折纸的基底表面上行走,抓住某些分子,并且将它们释放到指定的位置,实现对目标货物分子的分拣,但可以了解到其研究的控制算法非常复杂,需要包括运动、识别、拾取、放下,过程并不容易。
因此,如果能设计出控制简易的纳米机器人,只需要一串数字即可控制其运动的方向、速度,到达预定的与纳米孔结合的位置,对纳米孔和DNA测序方面的研究会有非常大的帮助。
在纳米孔研究方面,目前在纳米孔对DNA的捕获中,由于机械和温度漂移的存在,无论是使用原子力显微镜或是光镊、磁镊的方法,待测分子在纳米孔中被捕获的时间较短,大多数会存在跳跃导致实验成功率低。
发明内容
本发明要解决的技术问题:本发明的目的是为了解决现有技术中的不足,提供一种实现对待测分子的精准操控,既能够与纳米孔芯片进行集成又能够钳住待测分子,又同时可以控制待测分子运动的方向和速度,并实现以亚纳米级进给精度运动,将待测分子精准的送至纳米孔内,同时有效地减小温漂等干扰因素的影响的编码式纳米机器及其控制、制备方法。
本发明的技术方案:包括纳米机器人和适用于所述纳米机器人的纳米机器人行走基底;
所述纳米机器人包括微纳米颗粒和设置在所述微纳米颗粒上的两条脱氧核糖核酸链;
所述纳米机器人行走基底包括基底、纳米孔和设置在所述纳米孔上的纳米电极;所述纳米电极与独立电压源相连;所述纳米孔贯穿所述基底;
通过编码对所述纳米孔连通的独立电压源的电压方向和电压强度调控,控制纳米机器人的运动速度和方向,实现纳米机器人的精准定向运动。
进一步的,所述脱氧核糖核酸链的末端修饰有生物素;所述微纳米颗粒的表面附有链霉亲和素;
所述脱氧核糖核酸链通过生物素和链霉亲和素的相互作用,绑定在所述微纳米颗粒上。
进一步的,所述脱氧核糖核酸链的末端修饰有巯基;所述微纳米颗粒的表面附有金薄膜;所述脱氧核糖核酸链通过金-巯键,绑定在所述微纳米颗粒上。
本发明还公开了一种编码式纳米机器人的控制方法,包括捕获纳米机器人和释放纳米机器人;
所述捕获纳米机器人,步骤为:在基底的两端加上外加电压,控制需要纳米机器人进入的纳米孔带正电荷,所述基底上其余纳米孔均带负电荷;使得带正电荷的两个纳米孔可以分别捕获所述纳米机器人上的两条脱氧核糖核酸链,完成对纳米机器人的捕获;
所述释放纳米机器人,步骤为:对于被捕获的纳米机器人,在纳米孔施加反向的电场使其释放脱氧核糖核酸链。
进一步的,对所述基底上的所有纳米孔编号,使用编码控制所述纳米电极的电荷,分别以0表示纳米孔带负电荷,1表示纳米孔带正电,组合为二进制码。
进一步的,所述被捕获的纳米机器人的步骤为:切换所述纳米孔所带电荷与电场反向,使所述脱氧核糖核酸链从所述纳米孔中释放,再反转电场方向,使所述纳米机器人上的两条脱氧核糖核酸链被另外两个带有与当前电场相反的电荷的纳米孔捕获,使纳米机器人在两孔之间定向精准移动。
本发明还公开了一种编码式纳米机器的制作方法,包括编码式纳米机器人的制作方法包括如下步骤:
S1、将微纳米颗粒依次在APTES混合液中反应20分钟,之后在含有0.2%的PDITC的次亚苯基二异硫氰酸盐溶液中反应2小时,最后将微纳米颗粒加入0.3μM的STV溶液,静置两小时;其中,所述APTES混合液中,包含去离子水、APTES和无水乙醇,所述去离子水、APTES和无水乙醇混合比例为:2:2:6;
S2、采用PCR扩增技术合成末端含有生物素biotin的脱氧核糖核酸链;具体方法为:将脱氧核糖核酸链在94℃环境下变性5min;在94℃变性0.5min,57℃复性0.5min,72℃延伸1min设定下PCR循环共35次;最后72℃延伸8min;4℃终止反应;
S3、将S1中的微纳米颗粒与S2中所配制的脱氧核糖核酸溶液混合,在4℃环境下孵育 24h,使连接在微纳米颗粒上的STV与连接在DNA上的生物素绑定。
进一步的,纳米机器人行走基底的制作方法包括如下步骤:
A1:通过涂胶、曝光、显影、刻蚀等操作加工碳基薄膜,完成基底芯片的加工,所述基底芯片的厚度在10nm+0.2nm;
A2:在基底上选择一个正方形区域,所述正方形区域边长小于两条所述脱氧核糖核酸链的长度之和;使得所述微纳米颗粒在该矩形范围内运动时,所述脱氧核糖核酸链均不会移出纳米孔;在所述正方形区域选取均匀等距分布的圆形电极孔,并制作引线用于与外接电压源相连;
A3:在上述圆形电极孔中心处加工仅可容单条脱氧核糖核酸链穿过的纳米孔;
A4:在基底芯片上镀上用于防止电极氧化和芯片绝缘的防护层。
有益效果:
本发明与现有技术相比的有益效果:
1.本发明设计的编码式机器人能够与纳米孔芯片进行集成又能够钳住待测分子,又同时可以控制待测分子运动的方向和速度,并实现以亚纳米级进给精度运动,将待测分子精准的送至纳米孔内,同时有效地减小温漂等干扰因素的影响。
2.本发明可以通过编码调节纳米孔与纳米金电极所连接电压源的方向与强度,进而控制纳米孔内的电渗流强度,从而利用电渗驱动和电泳驱动联合或竞争驱动,对具有多自由度的编码式纳米机器人的运动方向以及运动速度进行精准的操控,有利于快速有效地对待测分子进行研究。
3.该纳米机器人的两条脱氧核糖核酸链长度可调节,具有大范围的可调量程,可以基于两纳米孔之间的距离通过合成末端巯基化不同长度的脱氧核糖核酸链,即可控制编码式纳米机器人在捕获情况下的运动范围。
附图说明
图1是本发明中编码式纳米机器的具体结构示意图。
图2是图1中编码式纳米机器人通过编码控制,经过释放后重新被另外两个孔捕获的示意图。
具体实施方式
为了加深本发明的理解,下面我们将结合附图对本发明作进一步详述,该实施例仅用于解释本发明,并不构成对本发明保护范围的限定。
如图1所示,本发明包括纳米机器人和适用于纳米机器人的纳米机器人行走基底,其中,纳米机器人行走基底包括基底1、纳米孔2和设置在纳米孔2上的纳米电极5;纳米电极5与独立电压源相连;纳米孔2贯穿基底1;
纳米机器人由微纳米颗粒3和两条脱氧核糖核酸链4组成,其具体布局参见图1所示。供该纳米机器人行走的基底薄膜1,在该基底薄膜1上加工有阵列纳米孔2和纳米金电极5。
两条脱氧核糖核酸链4的末端修饰有生物素,而微纳米颗粒3的表面包裹有链霉亲和素,通过链霉亲和素和生物素的相互作用将脱氧核糖核酸链4绑定在微纳米颗粒3上。
本发明的编码式机器人的前期准备过程、工作过程和其运动控制方法如下:
首先对图1所示的纳米机器人进行合成组装制备,方法如下:
步骤1:
A、依次在APTES(去离子水:APTES:无水乙醇=2:2:6)中反应20分钟和在含有0.2%的PDITC的次亚苯基二异硫氰酸盐溶液中反应2小时,然后再加入0.3μM的STV溶液,静置两小时;
B、采用PCR扩增技术合成末端含有生物素biotin的脱氧核糖核酸链,反应程序:94℃变性5min;PCR循环(94℃变性0.5min,57℃复性0.5min,72℃延伸1min)共35次; 72℃延伸8min;4℃终止反应;
C、将步骤A中的微纳米颗粒与步骤B中所配制的脱氧核糖核酸溶液混合,在4℃下孵育 24h使连接在微纳米颗粒上的STV与连接在DNA上的生物素绑定。
步骤2:然后从步骤1中含有编码式的纳米机器人溶液中取出微量溶液,通过原子力显微镜AFM进行表征,如果在微纳米颗粒上绑定的脱氧核糖核酸链少于2条则不选择该纳米机器人;如果在微纳米颗粒上绑定的脱氧核糖核酸链等于2条,则可以直接用AFM探针将脱氧核糖核酸链取出备用;如果在微纳米颗粒上绑定的脱氧核糖核酸链多于2条,可以采用AFM 探针对多余的脱氧核糖核酸链切除后再提取备用。
采用微纳加工工艺加工如图1所示的纳米机器人行走基底,具体步骤如下:
A:首先通过涂胶、曝光、显影等操作,通过刻蚀技术完成基底的加工,厚度在10nm左右;
B:在基底上选择一个正方形区域,其边长根据步骤1中合成末端巯基化脱氧核糖核酸链的长度作为参考选择,然后在正方形的九个对应点加工厚度为2nm、直径为3nm的圆形金电极,并制作引线用于与外接电压源相连;
C:采用聚焦离子束(FIB)或透射电子显微镜(TEM)在纳米金电极中心加工一个2nm的纳米孔;
D:采用磁控溅射或者原子层沉积设备在基底芯片上镀上一层2-3nm厚的二氧化硅薄膜用于防止金电极氧化和芯片绝缘,同时将纳米孔的直径降低至1.6nm左右。
完成上述步骤后,将基底芯片放置于两个液池中间,保证两个液池内的溶液仅能通过该芯片上的纳米孔进行流通,然后在芯片的一侧放入步骤2中制备而得的纳米机器人。
在对编码式纳米机器人的控制中,在基底芯片的两端加上外加电压,并且控制纳米金电极的电荷(控制需要纳米机器人进入的纳米孔带正电荷,其它纳米孔均带负电荷),在纳米机器人上的两条脱氧核糖核酸链将会受到电渗流驱动和电泳驱动的作用从而被纳米孔捕获。由于纳米孔的直径只允许一条脱氧核糖核酸链进入,因此两条脱氧核糖核酸链最终会分别进入基底薄膜的两个纳米孔内。对于被捕获的纳米机器人,施加反向的电场使其释放,然后再施加正向电场且改变纳米孔带电状态编码使其被另一对纳米孔捕获。
在控制纳米金电极电荷时,采用的编码式控制方法。
在图1中为纳米孔编号(a~i),分别以0表示纳米孔带负电荷,1表示纳米孔带正点,组合为二进制码,如图1中所示状态000000110;在释放和重新捕获过程中,如图2所示,操控编码式纳米机器人的编码为000110000。
对于被捕获的纳米机器人,可以改变捕获其的两个纳米孔的纳米金电极的相对所带电荷大小,使纳米机器人在电泳力和电渗力和的作用下,沿着其被捕获的两个纳米孔之间受到控制地运动。通过在微纳米颗粒上进一步绑定待测分子,该纳米机器人可以实现对待测分子的精准操控。
以上显示和描述了本发明的基本原理、主要特征和优点。本领域的技术人员应该了解本发明不受上述具体实施例的限制,上述具体实施例和说明书中的描述只是为了进一步说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护的范围由权利要求书及其等效物界定。
Claims (5)
1.一种编码式纳米机器人的控制方法,其特征在于:包括捕获纳米机器人和释放纳米机器人;
所述捕获纳米机器人,步骤为:在基底(1)的两端加上外加电压,控制需要纳米机器人进入的纳米孔带正电荷,所述基底(1)上其余纳米孔均带负电荷;使得带正电荷的两个纳米孔可以分别捕获所述纳米机器人上的两条脱氧核糖核酸链,完成对纳米机器人的捕获;
所述释放纳米机器人,步骤为:对于被捕获的纳米机器人,在纳米孔施加反向的电场使其释放脱氧核糖核酸链。
2.根据权利要求1所述的编码式纳米机器人的控制方法,其特征在于:对所述基底(1)上的所有纳米孔(2)编号,使用编码控制所述纳米孔(2)上的纳米电极的电荷,分别以0表示纳米孔带负电荷,1表示纳米孔带正电,组合为二进制码。
3.根据权利要求2所述的编码式纳米机器人的控制方法,其特征在于:所述被捕获的纳米机器人的步骤为:切换所述纳米孔(2)所带电荷与电场反向,使所述脱氧核糖核酸链(4)从所述纳米孔(2)中释放,再反转电场方向,使所述纳米机器人上的两条脱氧核糖核酸链(4)被另外两个带有与当前电场相反的电荷的纳米孔(2)捕获,使纳米机器人在两孔之间定向精准移动。
4.一种编码式纳米机器的制作方法,其特征在于:编码式纳米机器人的制作方法包括如下步骤:
S1、将微纳米颗粒依次在APTES混合液中反应20分钟,之后在含有0.2%的PDITC的次亚苯基二异硫氰酸盐溶液中反应2小时,最后将微纳米颗粒加入0.3µM 的STV溶液,静置两小时;其中,所述APTES混合液中,包含去离子水、APTES和无水乙醇,所述去离子水、APTES和无水乙醇混合比例为:2:2:6;
S2、采用PCR扩增技术合成末端含有生物素biotin的脱氧核糖核酸链;具体方法为:将脱氧核糖核酸链在94℃环境下变性 5 min;在94℃变性 0.5 min,57℃复性 0.5 min,72℃延伸 1 min设定下PCR循环共 35 次;最后72℃延伸8 min;4℃终止反应;
S3、将S1中的微纳米颗粒与S2中所配制的脱氧核糖核酸溶液混合,在 4℃环境下孵育24 h ,使连接在微纳米颗粒上的STV与连接在 DNA 上的生物素绑定。
5.根据权利要求4所述的编码式纳米机器的制作方法,其特征在于:纳米机器人行走基底的制作方法包括如下步骤:
A1:通过涂胶、曝光、显影、刻蚀等操作加工碳基薄膜,完成基底芯片的加工;
A2:在基底上选择一个正方形区域,所述正方形区域边长小于两条所述脱氧核糖核酸链的长度之和;使得所述微纳米颗粒在正方形区域内运动时,所述脱氧核糖核酸链均不会移出纳米孔;在所述正方形区域选取均匀等距分布的圆形电极孔,并制作引线用于与外接电压源相连;
A3:在上述圆形电极孔中心处加工仅可容单条脱氧核糖核酸链穿过的纳米孔;
A4:在基底芯片上镀上用于防止电极氧化和芯片绝缘的防护层。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110700953.9A CN113580099B (zh) | 2021-06-21 | 2021-06-21 | 一种编码式纳米机器及其控制、制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110700953.9A CN113580099B (zh) | 2021-06-21 | 2021-06-21 | 一种编码式纳米机器及其控制、制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113580099A CN113580099A (zh) | 2021-11-02 |
CN113580099B true CN113580099B (zh) | 2022-10-14 |
Family
ID=78244503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110700953.9A Active CN113580099B (zh) | 2021-06-21 | 2021-06-21 | 一种编码式纳米机器及其控制、制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113580099B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230358782A1 (en) * | 2021-11-08 | 2023-11-09 | Versitech Limited | Nano robotic system for high throughput single cell dna sequencing |
CN114906800B (zh) * | 2022-04-06 | 2024-07-09 | 东南大学 | 一种履带式纳米小车及其控制、制备方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9709559B2 (en) * | 2000-06-21 | 2017-07-18 | Bioarray Solutions, Ltd. | Multianalyte molecular analysis using application-specific random particle arrays |
AU2003260294A1 (en) * | 2002-09-13 | 2004-04-30 | Hvidovre Hospital | Method of rapid detection of mutations and nucleotide polymorphisms using chemometrics |
CN101744645B (zh) * | 2008-12-17 | 2012-09-05 | 中国科学院生物物理研究所 | 纳米生物机器人及其应用 |
EP2614156B1 (en) * | 2010-09-07 | 2018-08-01 | The Regents of The University of California | Control of dna movement in a nanopore at one nucleotide precision by a processive enzyme |
US10883140B2 (en) * | 2016-04-21 | 2021-01-05 | President And Fellows Of Harvard College | Method and system of nanopore-based information encoding |
CN108531592B (zh) * | 2018-04-13 | 2021-01-29 | 中国科学院化学研究所 | 一种dna编码技术与纳米孔技术联用的癌症标志物检测方法 |
CN111077185B (zh) * | 2019-12-02 | 2022-05-17 | 东南大学 | 多自由度自组装纳米机器人及其制作控制方法 |
-
2021
- 2021-06-21 CN CN202110700953.9A patent/CN113580099B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN113580099A (zh) | 2021-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113580099B (zh) | 一种编码式纳米机器及其控制、制备方法 | |
US11440003B2 (en) | Electronic label-free DNA and genome sequencing | |
JP7166586B2 (ja) | 生体分子センサーおよび方法 | |
CN111077185B (zh) | 多自由度自组装纳米机器人及其制作控制方法 | |
Salem et al. | Receptor‐mediated self‐assembly of multi‐component magnetic nanowires | |
US20190094175A1 (en) | Molecular sensors and related methods | |
US8106428B2 (en) | Nano-scale bridge biosensors | |
US20120211467A1 (en) | Nanomotor-based patterning of surface microstructures | |
US9290806B2 (en) | Fabricating self-formed nanometer pore array at wafer scale for DNA sequencing | |
Jin et al. | Self-powered illuminating glucose sensor | |
Reiss et al. | DNA-directed assembly of anisotropic nanoparticles on lithographically defined surfaces and in solution | |
Kamahori et al. | DNA detection by an extended-gate FET sensor with a high-frequency voltage superimposed onto a reference electrode | |
US8673626B2 (en) | Biosensor for analyzing quantitatively analyte with a predetermined size and larger than, and manufacturing method thereof | |
CN108147364A (zh) | Dna导电薄膜的制备方法及其产品和应用 | |
US20100144556A1 (en) | Motor proteins propelling nano-scale devices and systems | |
KR20210143276A (ko) | 조정가능한 나노필러 및 나노갭 전극 구조체들 및 그 방법들 | |
Lyonnais et al. | A three-branched DNA template for carbon nanotube self-assembly into nanodevice configuration | |
CN114906800B (zh) | 一种履带式纳米小车及其控制、制备方法 | |
Keren et al. | Sequence‐Specific Molecular Lithography Towards DNA‐Templated Electronics | |
Weigel-Jech et al. | DNA as template for nanobonding and novel nanoelectronic components | |
CN113671167B (zh) | 生物电子器件及其制备方法和可控转化方法 | |
Yamamura et al. | Inorganic Bioconjugates of Gold Clusters and Nanoparticles-Brief History and Recent Development | |
Lee et al. | Biological-and Chemical-Mediated Self-Assembly of Artificial Micro-and Nanostructures | |
US10714568B2 (en) | Method for producing a flat free contacting surface for semiconductor nanostructures | |
CN113957132A (zh) | 一种基于固态纳米孔的非过孔dna测序方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Si Wei Inventor after: Zhu Zhendong Inventor after: Yuan Runyi Inventor after: Sha Jing* Inventor after: Chen Yunfei Inventor before: Si Wei Inventor before: Zhu Zhendong Inventor before: Yuan Runyi Inventor before: Sha Jing Inventor before: Chen Yunfei |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |