CN113577039A - 鱼精蛋白压缩dna后被红细胞膜包裹构成的纳米颗粒的应用及其制备方法 - Google Patents

鱼精蛋白压缩dna后被红细胞膜包裹构成的纳米颗粒的应用及其制备方法 Download PDF

Info

Publication number
CN113577039A
CN113577039A CN202110747048.9A CN202110747048A CN113577039A CN 113577039 A CN113577039 A CN 113577039A CN 202110747048 A CN202110747048 A CN 202110747048A CN 113577039 A CN113577039 A CN 113577039A
Authority
CN
China
Prior art keywords
dna
protamine
nano
nanoparticles
pro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110747048.9A
Other languages
English (en)
Inventor
陈一杰
诸海燕
姜琦
陈梦纯
诸葛德力
饶大庞
王芳
卢晓声
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University
Original Assignee
Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University filed Critical Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University
Priority to CN202110747048.9A priority Critical patent/CN113577039A/zh
Publication of CN113577039A publication Critical patent/CN113577039A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5176Compounds of unknown constitution, e.g. material from plants or animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/02Antidotes

Abstract

本发明公开了鱼精蛋白压缩DNA后被红细胞膜包裹构成的纳米颗粒的应用及其制备方法,S1.获取DNA和鱼精蛋白,并使其超声结合获得纳米颗粒;S2.将红细胞膜通过挤压法包裹纳米颗粒获得目标物质。基于该制备方法获得的物质能够通过诱饵与DOX进行特异性结合的方式对DOX吸附和解毒。

Description

鱼精蛋白压缩DNA后被红细胞膜包裹构成的纳米颗粒的应用 及其制备方法
技术领域
本发明涉及生物医药技术领域,具体为鱼精蛋白压缩DNA后被红细胞膜包裹构成的纳米颗粒的应用及其制备方法。
背景技术
阿霉素(Doxorubicin,DOX)作为一种经典的化疗药物被广泛的应用到不同癌症类型的治疗。尽管DOX展现出良好的癌症治疗效果,但是它的毒副作用(包括心脏毒性、肝脏毒性和胃肠道反应)极大地限制了其进一步的临床应用。众所周知,DOX杀伤癌细胞的主要机理是与癌细胞中的双链DNA结合抑制细胞核内DNA复制,诱导细胞凋亡。另外,DOX能够特异性的插入到DNA双链的GC碱基对中,根据该特点,已经有研究将DOX插入到质粒等双链核酸中实现核酸与DOX的共递送。
鱼精蛋白(Protamine,Pro)是一种类似组蛋白的蛋白,富有氨基结构。有研究报道,Pro能压缩DNA、RNA等核酸结构,形成纳米级别的颗粒。基于此,本发明加入适当的Pro压缩合成的DNA片段形成大小均一的纳米颗粒。
虽然DOX对癌症治疗效果显著,但是对人体的伤害也十分明显。
现有的专利申请号为CN202010284531.3的发明专利公开了一种CREG蛋白用于预防或治疗阿霉素心肌损伤的医药用途,根据该专利文本的说明书可知,该发明是对损伤后的心肌进行及时的治疗,还是会在心肌和/或肝脏留下伤害,对于病人来说依旧存在较大的负担。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种鱼精蛋白压缩DNA后被红细胞膜包裹构成的纳米颗粒的应用及其制备方法,基于该制备方法获得的物质能够通过诱饵与DOX进行特异性结合的方式对DOX吸附和解毒。
为实现上述目的,本发明提供了如下技术方案:鱼精蛋白压缩DNA后被红细胞膜包裹构成的纳米颗粒在对阿霉素解毒中的应用。
还提供了鱼精蛋白压缩DNA后被红细胞膜包裹构成的纳米颗粒的制备方法,包括如下步骤
S1.获取DNA和载体,并使其结合获得纳米颗粒;
S2.将红细胞膜包裹纳米颗粒。
作为本发明的进一步改进,所述载体为鱼精蛋白。
作为本发明的进一步改进,S1中DNA和鱼精蛋白结合的方式包括将鱼精蛋白和DNA混合并超声20s。
作为本发明的进一步改进,所述鱼精蛋白和DNA结合时按照氮磷比N/P=2(mol/mol)进行混合。
作为本发明的进一步改进,步骤S1中的DNA的序列为630bp,GC含量为65%。
作为本发明的进一步改进,S2中红细胞膜包裹纳米颗粒的方式采用挤压法(Extrusion法)。
作为本发明的进一步改进,DNA∶鱼精蛋白∶红细胞膜的比例为6∶5∶150(w/w/w)。
本发明的有益效果,本方案将DNA与载体进行结合,同时外部包裹红细胞膜,一方面便于绕过免疫系统,能够借助靶向物质进入到需要进行保护的部位,到达目标位置能够被正常细胞吞噬后分散在细胞质中,能够在细胞质中作为诱饵,当DOX进入正常细胞中时,会与诱饵中DNA的GC碱基对进行结合,而非正常细胞,进而可以保护正常细胞不受侵害。该效果相比现有技术中的心肌受伤后进行治疗来说,具有更强的预防效果,能够避免正常细胞受到侵害,并且预防作用在诱饵数量的增加而增加。
附图说明
图1为本发明的红细胞膜收集产物图;
图2为本发明的目的DNA片段大小验证图;
图3为本发明的DNA与Protamine在不同N/P(氮磷比)情况下的包裹检测图;
图4为本发明的DNA/Protamine复合物的粒径与电位示意图;
图5为本发明的RBCM与DNA/Protamine复合物比例变化示意图;
图6为本发明的RBCM与DNA/Protamine复合物共定位示意图;
图7为本发明的纳米颗粒的粒径及电位示意图;
图8为本发明的心肌细胞存活率关系示意图;
图9为本发明的心肌细胞保护实验凋亡结果图-Western Blot检测;
图10为本发明的心肌细胞保护实验凋亡结果图-Flow cytometry检测;
图11为本发明的肝细胞存活率关系示意图;
图12为本发明的肝细胞保护实验凋亡结果图-Western Blot检测。
具体实施方式
下面将结合附图所给出的实施例对本发明做进一步的详述。
参照图1-12所示,
实施例1
鱼精蛋白压缩DNA后被红细胞膜包裹构成的纳米颗粒在对阿霉素解毒中的应用。
将这种鱼精蛋白结合DNA后形成“类染色体”的纳米级别物质,然后利用红细胞膜包裹构成纳米颗粒,将其应用在对阿霉素解毒中,能够对心肌和/或肝脏细胞进行保护,避免受到DOX侵害。事先布局好上述的纳米颗粒,在DOX靠近心肌和/或肝脏细胞时,能够让当做诱饵的纳米颗粒构成防线抵挡DOX,在DOX与纳米颗粒作用时,能够利用纳米颗粒中DNA的GC碱基对于DOX产生特异性结合,进而吸附DOX与心肌和/或肝脏细胞的毒素效果。在心肌和/或肝脏细胞等需要保护的位置事先布局大量的纳米颗粒,就能够起到非常好的防护作用。
借助红细胞膜的包裹,能够鱼精蛋白与DNA结合后的颗粒在递送过程中减少被免疫细胞清除,进而提高血液半衰期,同时也不会诱导免疫反应。
另外,本方案中采用的DNA载体为鱼精蛋白,利用鱼精蛋白能够压缩DNA,使其形成纳米级别的颗粒,其颗粒小,在作用中释放和扩散效果好。
相比现有技术中专利申请号为CN202010284531.3的发明专利公开的一种CREG蛋白用于预防或治疗阿霉素心肌损伤的医药用途来说,能够事先进行防护,避免心肌和/或肝脏细胞受损,而不是在心肌和/或肝脏细胞受损之后进行治疗,增加病人负担。
实施例2
红细胞膜(RBCM)的制备
红细胞来源于C57BL/6鼠,过程如下:3000-5000rpm离心15min去除白细胞血小板和血清得到红细胞。将250μL的纯红细胞加入950μL超纯水中,冰浴30-60min,加入20x PBS调渗透压至1x,混匀后,14000rpm离心10min,弃上清,加950μL超纯水重悬,再次冰浴,调渗透压,离心,以此循环直至上清无血红蛋白,并收集沉淀,如图1所示。收集的沉淀即为红细胞膜(Red Blood Cell Membrane,RBCM)。通过BCA法测定RBCM中膜蛋白的浓度。
实施例3
DNA制备
以绿色荧光蛋白质粒DNA为模板,设计前引物CGGCCACAAGTTCGTGAT以及后引物AATCCAGAGGTTGATTGTTCCA,拟获得的DNA序列约630bp,其序列为
CGGCCACAAGTTCGTGATCACCGGCGAGGGCATCGGCTACCCCTTCAAGGGCAAGCAGGCCATCAACCTGTGCGTGGTGGAGGGCGGCCCCTTGCCCTTCGCCGAGGACATCTTGTCCGCCGCCTTCATGTACGGCAACCGCGTGTTCACCGAGTACCCCCAGGACATCGTCGACTACTTCAAGAACTCCTGCCCCGCCGGCTACACCTGGGACCGCTCCTTCCTGTTCGAGGACGGCGCCGTGTGCATCTGCAACGCCGACATCACCGTGAGCGTGGAGGAGAACTGCATGTACCACGAGTCCAAGTTCTACGGCGTGAACTTCCCCGCCGACGGCCCCGTGATGAAGAAGATGACCGACAACTGGGAGCCCTCCTGCGAGAAGATCATCCCCGTGCCCAAGCAGGGCATCTTGAAGGGCGACGTGAGCATGTACCTGCTGCTGAAGGACGGTGGCCGCTTGCGCTGCCAGTTCGACACCGTGTACAAGGCCAAGTCCGTGCCCCGCAAGATGCCCGACTGGCACTTCATCCAGCACAAGCTGACCCGCGAGGACCGCAGCGACGCCAAGAACCAGAAGTGGCACCTGACCGAGCACGCCATCGCCTCCGGCTCCGCCTTGCCCTGAACGCGTCTGGAACAATCAACCTCTGGATT。随后,利用PCR仪扩增质粒DNA,纯化和分离扩增富集的DNA片段,并利用Nanodrop测定DNA浓度。通过琼脂糖凝胶验证DNA片段大小,参考图2。在图2中,左边条带为Marker,右边条带为目的DNA片段,其大小约在630bp左右,符合预期设计。
实施例4
DNA/Pro自组装形成纳米颗粒的比例筛选
分别按照Pro与DNA的不同氮磷比(N/P=0,0.5,1,1.5,2,2.5,3,mol/mol)将两者混合,超声20s形成DNA/Pro纳米颗粒待用。利用琼脂糖凝胶电泳方法检测Pro是否完全将DNA压缩包裹,参考图3。结果显示,当N/P在2时,Pro能将DNA完全包裹成纳米颗粒,使DNA片段无法呈游离状态而在电流作用下发生位移。随后,利用粒度电位仪测量DNA/Pro纳米颗粒的水力学尺寸大小和表面电位,参考图4。结果显示,该DNA/Pro纳米颗粒的粒径和电位分别为128nm和-50mV。
实施例5
红细胞膜(RBCM)完全包裹DNA/Pro纳米颗粒的比例筛选
首先,利用生物素化的前引物biotin-CGGCCACAAGTTCGTGAT以及后引物AATCCAGAGGTTGATTGTTCCA-biotin合成含有生物素的目标DNA片段(比作Bio-DNA),再按照N/P=2(mol/mol)的比例将Pro与Bio-DNA混合超声构建Bio-DNA/Pro纳米颗粒待用。将红细胞膜(RBCM)与Bio-DNA/Pro纳米颗粒按照膜蛋白和DNA的不同质量比(100∶1,25∶1,6.25∶1,1.56∶1)混合,再通过Extrusion方法(400nm孔径)获得粒径均一的RBCM@Bio-DNA/Pro纳米颗粒。在此基础上,加入一定量的链霉亲和素,通过粒度电位仪检测纳米颗粒粒径大小的变化,参考图5。结果显示,当RBCM与Bio-DNA/Pro纳米颗粒中膜蛋白与DNA质量比在25∶1是能完全包裹Bio-DNA/Pro纳米颗粒。当膜蛋白与DNA质量比小于25∶1时,一部分Bio-DNA/Pro纳米颗粒将处于游离状态,即加入链霉亲和素之后会发生团聚,粒径分布在较大尺寸处出现峰。在确定RBCM与DNA/Pro纳米颗粒为25∶1(w/w)时,进一步通过共聚焦扫描显微镜(CLSM)验证两者的共定位,参考图6。本发明利用DiD荧光染料标记RBCM,同时利用FAM标记的引物制备含有FAM标记的目的DNA片段。随后,按照N/P=2(mol/mol)的比例以及RBCM与DNA=25∶1(w/w)构建RBCM@DNA/Pro纳米颗粒。结果显示,代表RBCM位置的DiD信号与代表DNA/Pro纳米颗粒位置的FAM信号几乎完全重合,说明两者已经有效的结合到一起。
实施例6
RBCM@DNA/Pro纳米颗粒的表征
通过上述方法筛选出各组分之间的比例为DNA∶Pro∶RBCM=6∶5∶150(w/w/w)。对构建的RBCM@DNA/Pro纳米颗粒进行基本的物理化学表征,其水力学尺寸大小和表面电位分别为400nm和-39.4mV,如图7所示
实施例7
RBCM@DNA/Pro纳米颗粒吸附DOX保护细胞
将不同RBCM剂量的RBCM@DNA/Pro纳米颗粒加入到H9C2心肌细胞中孵育4h,随后加入IC50(50%Inhibitory Concentration)剂量DOX,24h后利用CCK-8试剂检测H9C2心肌细胞的存活率,其中设置单独DOX组和无任何处理的NC组(Negative Control)为实验对照组,如图8所示。结果表明,单独DOX组使得H9C2细胞的存活率下降至约50%。然而,随着RBCM@DNA/Pro纳米颗粒剂量的不断提高,H9C2细胞的存活率也逐渐上升直至完全保护细胞,说明RBCM@DNA/Pro纳米颗粒具有浓度依赖性的抗DOX细胞毒性的作用。为了进一步阐述RBCM@DNA/Pro纳米颗粒的保护机制,本发明选择三个重要的凋亡通路信号分子(包括Bax,Bcl-2,Caspase-3)进行Western Blot(WB)检测,如图9所示。结果表明,RBCM@DNA/Pro纳米颗粒保护后显著提高抗凋亡分子Bcl-2的表达,以及降低促凋亡分子Bax的表达。平行的,将不同实验处理组的H9C2细胞用胰酶消化成单细胞悬液,利用流式细胞术Annexin V法检测凋亡信号。参照图10,结果表明,RBCM@DNA/Pro纳米颗粒有效保护H9C2细胞,防止细胞凋亡。平行地,正常肝细胞的保护效果也通过细胞存活率实验参照图11,和WB检测参照图12,确认RBCM@DNA/Pro纳米颗粒的抗DOX细胞毒性效果。
上述主要名词的译名解释如下:
DOX 阿霉素
RBCM 红细胞膜
Pro 鱼精蛋白
FAM 羟基荧光素
DiD 细胞膜红色荧光探针
Bio-DNA 含有生物素的目标DNA片段
CLSM 共聚焦扫描显微镜
IC50 半抑制浓度
CCK-8 细胞增殖实验和细胞毒性实验
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.鱼精蛋白压缩DNA后被红细胞膜包裹构成的纳米颗粒在对阿霉素解毒中的应用。
2.鱼精蛋白压缩DNA后被红细胞膜包裹构成的纳米颗粒的制备方法,其特征在于,包括如下步骤
S1.获取DNA和载体,并使其结合获得纳米颗粒;
S2.将红细胞膜包裹纳米颗粒。
3.根据权利要求2所述的制备方法,其特征在于,所述载体为鱼精蛋白。
4.根据权利要求3所述的制备方法,其特征在于,S1中DNA和鱼精蛋白结合的方式包括将鱼精蛋白和DNA混合并超声20s。
5.根据权利要求3或4所述的制备方法,其特征在于,所述鱼精蛋白和DNA结合时按照氮磷比N/P=2(mol/mol)进行混合。
6.根据权利要求2或3或4所述的制备方法,其特征在于,步骤S1中的DNA的序列为630bp,GC含量为65%。
7.根据权利要求2或3或4所述的制备方法,其特征在于,S2中红细胞膜包裹纳米颗粒的方式采用挤压法(Extrusion法)。
8.根据权利要求3或4所述的制备方法,其特征在于,DNA∶鱼精蛋白∶红细胞膜的比例为6∶5∶150(w/w/w)。
CN202110747048.9A 2021-07-01 2021-07-01 鱼精蛋白压缩dna后被红细胞膜包裹构成的纳米颗粒的应用及其制备方法 Pending CN113577039A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110747048.9A CN113577039A (zh) 2021-07-01 2021-07-01 鱼精蛋白压缩dna后被红细胞膜包裹构成的纳米颗粒的应用及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110747048.9A CN113577039A (zh) 2021-07-01 2021-07-01 鱼精蛋白压缩dna后被红细胞膜包裹构成的纳米颗粒的应用及其制备方法

Publications (1)

Publication Number Publication Date
CN113577039A true CN113577039A (zh) 2021-11-02

Family

ID=78245749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110747048.9A Pending CN113577039A (zh) 2021-07-01 2021-07-01 鱼精蛋白压缩dna后被红细胞膜包裹构成的纳米颗粒的应用及其制备方法

Country Status (1)

Country Link
CN (1) CN113577039A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023274105A1 (zh) * 2021-07-01 2023-01-05 温州医科大学附属第二医院(温州医科大学附属育英儿童医院) 一种针对阿霉素心脏及系统毒性解毒的仿生纳米保护剂制备方法及应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187260A (en) * 1988-09-06 1993-02-16 Sharifa Karali Process for the preparation of a high purity protamine-DNA complex and process for use of same
WO1994018947A1 (en) * 1993-02-16 1994-09-01 Sharifa Karali High purity protamine-dna complex and use of same
WO2000036131A1 (de) * 1998-12-16 2000-06-22 november Aktiengesellschaft Gesellschaft für Molekulare Medizin Synthetisches nukleinsäure-partikel
US20110123637A1 (en) * 2008-05-26 2011-05-26 Universitat Zurich Protamine/rna nanoparticles for immunostimulation
WO2014057432A2 (en) * 2012-10-09 2014-04-17 Universita' Degli Studi Di Roma "La Sapienza" Multicomponent lipid nanoparticles and processes for the preparation thereof
US20180133154A1 (en) * 2015-05-22 2018-05-17 Jiangsu Keygen Biotech Corp.,Ltd Decoy nucleic acid cationic liposome carrier and preparation method thereof
CN108553650A (zh) * 2018-03-28 2018-09-21 暨南大学 一种仿生纳米红细胞基因载体及其制备方法与应用
US20180289797A1 (en) * 2015-10-21 2018-10-11 Biontech Ag Cytotoxic immunostimulating particles and uses thereof
CN112168973A (zh) * 2019-07-05 2021-01-05 中国科学院苏州纳米技术与纳米仿生研究所 核酸适配体递送载体,其制备方法及其应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187260A (en) * 1988-09-06 1993-02-16 Sharifa Karali Process for the preparation of a high purity protamine-DNA complex and process for use of same
WO1994018947A1 (en) * 1993-02-16 1994-09-01 Sharifa Karali High purity protamine-dna complex and use of same
WO2000036131A1 (de) * 1998-12-16 2000-06-22 november Aktiengesellschaft Gesellschaft für Molekulare Medizin Synthetisches nukleinsäure-partikel
US20110123637A1 (en) * 2008-05-26 2011-05-26 Universitat Zurich Protamine/rna nanoparticles for immunostimulation
WO2014057432A2 (en) * 2012-10-09 2014-04-17 Universita' Degli Studi Di Roma "La Sapienza" Multicomponent lipid nanoparticles and processes for the preparation thereof
US20180133154A1 (en) * 2015-05-22 2018-05-17 Jiangsu Keygen Biotech Corp.,Ltd Decoy nucleic acid cationic liposome carrier and preparation method thereof
US20180289797A1 (en) * 2015-10-21 2018-10-11 Biontech Ag Cytotoxic immunostimulating particles and uses thereof
CN108553650A (zh) * 2018-03-28 2018-09-21 暨南大学 一种仿生纳米红细胞基因载体及其制备方法与应用
CN112168973A (zh) * 2019-07-05 2021-01-05 中国科学院苏州纳米技术与纳米仿生研究所 核酸适配体递送载体,其制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RUIBO ZHAO等: "Nanomaterial-Based Organelles Protect Normal Cells against Chemotherapy-Induced Cytotoxicity", 《ADVANCED MATERIALS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023274105A1 (zh) * 2021-07-01 2023-01-05 温州医科大学附属第二医院(温州医科大学附属育英儿童医院) 一种针对阿霉素心脏及系统毒性解毒的仿生纳米保护剂制备方法及应用

Similar Documents

Publication Publication Date Title
Le et al. Potato virus X, a filamentous plant viral nanoparticle for doxorubicin delivery in cancer therapy
Li et al. Gram-scale synthesis of highly biocompatible and intravenous injectable hafnium oxide nanocrystal with enhanced radiotherapy efficacy for cancer theranostic
Yu et al. Tumor microenvironment-triggered fabrication of gold nanomachines for tumor-specific photoacoustic imaging and photothermal therapy
Wang et al. Selective targeting of tumor cells and tumor associated macrophages separately by twin-like core–shell nanoparticles for enhanced tumor-localized chemoimmunotherapy
Khan et al. Effects of naked gold nanoparticles on proinflammatory cytokines mRNA expression in rat liver and kidney
Zeng et al. Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo
Yap et al. Drug delivery of natural products through nanocarriers for effective breast cancer therapy: A comprehensive review of literature
Dong et al. A pH/enzyme-responsive tumor-specific delivery system for doxorubicin
Li et al. Co-delivery of doxorubicin and tumor-suppressing p53 gene using a POSS-based star-shaped polymer for cancer therapy
Joseph et al. Galactoxyloglucan-modified nanocarriers of doxorubicin for improved tumor-targeted drug delivery with minimal toxicity
Shen et al. Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: performance and mechanism
Son et al. Self-crosslinked human serum albumin nanocarriers for systemic delivery of polymerized siRNA to tumors
Fan et al. pH sensitive polymeric complex of cisplatin with hyaluronic acid exhibits tumor-targeted delivery and improved in vivo antitumor effect
Gorain et al. Dendrimer-based nanocarriers in lung Cancer therapy
JP2017525676A (ja) 疎水性薬物担体および抗菌剤としての使用のための両親媒性ペプチドナノ微粒子
WO2014155142A1 (en) Stable nanocomposition comprising doxorubicin, process for the preparation thereof, its use and pharmaceutical compositions containing it
Bourbour et al. Evaluation of anti-cancer and anti-metastatic effects of folate-PEGylated niosomes for co-delivery of letrozole and ascorbic acid on breast cancer cells
US20080206139A1 (en) Delivery system for diagnostic and therapeutic agents
Khan et al. Comparative evaluation of immunohistochemistry and real-time PCR for measuring proinflammatory cytokines gene expression in livers of rats treated with gold nanoparticles
Cao et al. A pH-dependent antibacterial peptide release nano-system blocks tumor growth in vivo without toxicity
Yin et al. Reduction-responsive polypeptide nanomedicines significantly inhibit progression of orthotopic osteosarcoma
Liu et al. Co-delivery of doxorubicin and siRNA by all-trans retinoic acid conjugated chitosan-based nanocarriers for multiple synergistic antitumor efficacy
CN113577039A (zh) 鱼精蛋白压缩dna后被红细胞膜包裹构成的纳米颗粒的应用及其制备方法
Geng et al. Growth-inhibitory effects of anthracycline-loaded bacterial magnetosomes against hepatic cancer in vitro and in vivo
Jana et al. Drug resistance-free cytotoxic nanodrugs in composites for cancer therapy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination