CN113567933A - 一种毫米波雷达信号频率测量设备及方法 - Google Patents

一种毫米波雷达信号频率测量设备及方法 Download PDF

Info

Publication number
CN113567933A
CN113567933A CN202110847882.5A CN202110847882A CN113567933A CN 113567933 A CN113567933 A CN 113567933A CN 202110847882 A CN202110847882 A CN 202110847882A CN 113567933 A CN113567933 A CN 113567933A
Authority
CN
China
Prior art keywords
frequency
signal
unit
millimeter wave
wave radar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110847882.5A
Other languages
English (en)
Other versions
CN113567933B (zh
Inventor
杨刘杰
钱建良
章建华
费予恺
苏以潜
李一新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Michuan Technology Shanghai Co ltd
Original Assignee
Michuan Technology Shanghai Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michuan Technology Shanghai Co ltd filed Critical Michuan Technology Shanghai Co ltd
Priority to CN202110847882.5A priority Critical patent/CN113567933B/zh
Publication of CN113567933A publication Critical patent/CN113567933A/zh
Application granted granted Critical
Publication of CN113567933B publication Critical patent/CN113567933B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/282Transmitters

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种毫米波雷达信号频率测量设备,混频器接收被测毫米波雷达的发射信号,将发射信号与自身的混频信号经混频处理后的中频信号发送给AD采样单元;中央处理器设定混频器的混频信号的工作频率,同时将中频信号发送给后端处理装置;第一计算单元,用于当混频信号逐渐增大至第一混频信号工作频率时,此时显示单元开始显示时域的正弦波信号,计算此时的中频信号的频率,获得被测毫米波雷达的第一组可能发射频率;第二计算单元,用于混频信号在第一混频信号工作频率上增大一偏差频率时,计算此时的中频信号的频率,获得被测毫米波雷达的第二组可能发射频率。本发明可以降低成本、填补高频测试仪器的空缺,为中小微企业研发毫米波雷达提供测试技术支持。

Description

一种毫米波雷达信号频率测量设备及方法
技术领域
本发明涉及毫米波雷达测试技术,具体涉及一种毫米波雷达信号频率测量设备及方法。
背景技术
调频连续波(FMCW)雷达的原型验证和测试面临着许多挑战,在开发阶段,需要通过一些验证和确认测试,来确保FMCW雷达能够提供预期的功能。其中掌握其发射频率核心测试方法对于开发出性能优异、质量可靠的产品具有重要价值。
目前,毫米波雷达的频率测试设备主要是国外供应商,国外供应商的测试设备大多可以对毫米波雷达的发射机、接收机进行全方面的性能评估,能够对多目标进行距离、速度、角度等方面的测试,而大量的国内企业有时候只需要测试毫米波雷达的发射频率,并不需要对其发射机、接收机等进行全面的测试,目前缺乏相应的测试设备及方法。
另外,目前车载毫米波雷达应用主要集中在24GHz及77GHz,一般的国产的频率计测量范围可达到24G,但能测量24GHz以上频率的设备需要借助于高端的频谱分析仪进行测量。
发明内容
为了解决上述现有技术中存在的问题,本申请提供一种毫米波雷达信号频率测量设备和测量方法,不仅可以降低成本,还可以填补高频测试仪器的空缺,为中小微企业研发毫米波雷达提供测试技术设备支持。
本发明采取的技术方案如下:
一种毫米波雷达信号频率测量设备,包括前端处理装置、后端处理装置;
所述前端处理装置包括混频器、AD采样单元、存储器、中央处理器,
所述混频器接收被测毫米波雷达的发射信号,将该发射信号与其自身的混频信号,经混频处理成中频信号后发送给所述AD采样单元;
所述AD采样单元将上述中频信号送入所述存储器,同时发送给所述中央处理器;
所述中央处理器用于设定混频器的混频信号的工作频率,同时通过通讯接口将上述中频信号发送给所述后端处理装置;
所述混频器、AD采样单元、存储器、中央处理器四个设备之间通过有线或无线连接,并通过网络协议进行通讯;
所述后端处理装置包括绘图单元、显示单元、第一计算单元、第二计算单元、频率确定单元,
所述绘图单元接收中央处理器发送来的中频信号,按顺序依次以图形的方式表示出来,横轴为采样时间,纵轴为AD采样单元对中频信号采样获得的采样电压值;
所述显示单元用于将绘图单元绘制的图形进行显示(显示单元在中频信号的频率处于采样带宽范围10MHz内时才显示图形);
所述第一计算单元,用于当所述混频信号以设定步长从起始工作频率逐渐增大至第一混频信号工作频率扫描时,显示单元开始显示时域的正弦波信号,计算此时的中频信号的频率,获得被测毫米波雷达发射信号的第一组可能发射频率;
所述第二计算单元,用于所述混频信号在第一混频信号工作频率上增大一个偏差频率并再次扫描时,再计算此时的中频信号的频率,获得被测毫米波雷达的发射信号的第二组可能发射频率;
所述频率确定单元,用于比较第一组可能发射频率和第二组可能发射频率,选出两组可能发射频率相同的数值,则该相同的数值即为被测毫米波雷达的实际发射频率;
所述绘图单元、显示单元、第一计算单元、第二计算单元、频率确定单元之间通过有线或无线连接,并通过网络协议进行通讯。
一种毫米波雷达信号频率测量方法,包括以下步骤:
a、中央处理器设定好混频器的混频信号s2的起始工作频率f0,以及工作频率发生变化的步长△f;中央处理器通过依次增加混频信号s2的频率变化步长来调整混频器的混频信号的工作频率;
b、被测毫米波雷达工作于连续波发射模式,以一固定频率fx发射毫米波信号s1(该信号s1频率fx未知,正是需要测试计算出的数值),该信号s1与混频器的混频信号s2,经混频处理成中频信号s后,发送给AD采样单元,其中,s的频率记为fs,fs=fx-(f0+n△f),n表示步长的个数;
c、AD采样单元对当前的中频信号s进行采样,并将采样后的中频信号送入绘图单元,绘图单元将接收到的中频信号按顺序依次以图形的方式表示出来,横轴为采样时间,纵轴为AD采样单元对中频信号采样获得的采样电压值;
当中频信号的频率不在采样带宽范围10MHz内时,显示单元不显示图形(通过显示单元观察绘图单元的绘图结果,若无法观测到采样的时域的正弦波信号,说明中频信号的频率不在采样带宽范围内);
当显示单元上能观测到时域的正弦波信号,此时混频信号s2的工作频率为第一混频信号工作频率fs2;(fs2表示在起始工作频率f0的基础上,改变了若干个步长△f后的频率,即fs2=f0+n△f)
d、第一计算单元对步骤c中的中频信号s(能观测到时域的正弦波时)进行FFT(快速傅里叶变换)运算,获得此刻中频信号s的频域信号X(S),计算方法如下:
Figure BDA0003181379470000031
其中
Figure BDA0003181379470000032
其中,x(s)是指中频信号s的离散傅里叶变换后的频谱,N表示傅里叶变换的点数,j是指虚数单位,k表示傅里叶变换的第k个频谱;
提取频域信号X(s)的峰值点位置,即是中频信号s的频率fs
由于此时混频信号的工作频率fs2已知,可推导出被测毫米波雷达的第一组可能发射频率:fs2+fs,fs2-fs,即被测毫米波雷达的发射频率要么为fs2+fs,或者为fs2-fs
e、中央处理器再次调整混频器的混频信号的工作频率为fs2',其中,fs2'=第一混频信号工作频率fs2+偏差频率Δfs2(即上文所述的增大一个偏差频率),再次按照步骤c的方式混频处理、采样;
f、第二计算单元对步骤e中的中频信号s(能观测到时域的正弦波时)进行FFT运算,可同理得出被测毫米波雷达的第二组可能发射频率:(fs2+Δfs2)+fs',(fs2+Δfs2)-fs',即被测毫米波雷达的发射频率要么为(fs2+Δfs2)+fs',或者为(fs2+Δfs2)-fs';其中,fs'为步骤e中此刻的中频信号s的频率,其计算方法与步骤d相同;
g、由于被测毫米波雷达的发射频率未变,因此第一组可能发射频率中的一数据和第二组可能发射频率中的一数据必然相同;
若fs2+fs=(fs2+Δfs2)+fs',则被测毫米波雷达的发射频率fs1=fs2+fs=(fs2+Δfs2)+fs';
若fs2-fs=(fs2+Δfs2)-fs',则被测毫米波雷达的发射频率fs1=fs2-fs=(fs2+Δfs2)-fs'。
进一步的,所述步长△f=0.1GHz。
进一步的,所述偏差频率Δfs2取值0.01GHz。
本发明的有益效果:
本发明通过设置混频器、中央处理器、第一计算单元、第二计算单元等,通过网线使其与被测毫米波雷达连接在同一个局域网内,各设备之间通过网络协议进行通讯,使得被测毫米波雷达的频率测试更加的方便,成本也大大降低。另外,依靠第一计算单元、第二计算单元等,根据连续两次的频谱分析计算得出被测毫米波雷达的实际发射频率,方法快速、准确。
本发明首先通过频率的扫描找出发射频率的大致工作频率范围,然后通过1次的变频操作即可准确的测量出被测信号的发射频率。
本发明具有的优点是:所述的测频方法是将空域的77GHz毫米波通过接收机下变频为10MHz范围内的采样信号,通过CPU对10MHz的频率信号进行采样,低频信号的采样对CPU的运算速度等硬件要求不高,这样就可以以低成本的处理器进行信号采样处理。大大降低中小企业对频率测试的资金压力。
采用的是2048点的采样,采样频率是20MHz,所以能够分辨的频率分辨率为20M/2048≈10KHz,相对于G赫兹的工作频率,误差为10-6~10-7,测量精度可满足雷达性能测试测量的需求。
附图说明
图1为本发明中的毫米波雷达信号频率测量设备框架示意图;
图2为本发明中的混频器工作示意图;
图3为本发明中的毫米波雷达信号频率测量方法流程图;
具体实施方式
为使本实施方式的目的、技术方案和优点更加清楚,下面将结合本实施方式中的附图,对本实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本申请一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
参考图1和图2,一种毫米波雷达信号频率测量设备,包括前端处理装置、后端处理装置;
所述前端处理装置包括混频器、AD采样单元、存储器、中央处理器,
所述混频器接收被测毫米波雷达的发射信号,将该发射信号与其自身的混频信号,经混频处理成中频信号后发送给所述AD采样单元;
所述AD采样单元将上述中频信号送入所述存储器,同时发送给所述中央处理器;
所述中央处理器用于设定混频器的混频信号的工作频率,同时通过通讯接口将上述中频信号发送给所述后端处理装置;
所述混频器、AD采样单元、存储器、中央处理器四个设备之间通过有线或无线连接,并通过网络协议进行通讯;
所述后端处理装置包括绘图单元、显示单元、第一计算单元、第二计算单元、频率确定单元,
所述绘图单元接收中央处理器发送来的中频信号,按顺序依次以图形的方式表示出来,横轴为采样时间,纵轴为AD采样单元对中频信号采样获得的采样电压值;
所述显示单元用于将绘图单元绘制的图形进行显示(显示单元在中频信号的频率处于采样带宽范围10MHz内时才显示图形);
所述第一计算单元,用于当所述混频信号以0.1GHz的步长从起始工作频率逐渐增大至第一混频信号工作频率扫描时,显示单元开始显示时域的正弦波信号,计算此时的中频信号的频率,获得被测毫米波雷达发射信号的第一组可能发射频率;
所述第二计算单元,用于所述混频信号在第一混频信号工作频率上增大一个偏差频率再次扫描时,再计算此时的中频信号的频率,获得被测毫米波雷达的发射信号的第二组可能发射频率;
所述频率确定单元,用于比较第一组可能发射频率和第二组可能发射频率,选出两组可能发射频率相同的数值,则该相同的数值即为被测毫米波雷达的实际发射频率;
所述绘图单元、显示单元、第一计算单元、第二计算单元、频率确定单元之间通过有线或无线连接,并通过网络协议进行通讯。
如图3所示,一种毫米波雷达信号频率测量方法,包括以下步骤:
a、中央处理器设定好混频器的混频信号s2的起始工作频率f0,以及工作频率发生变化的步长△f;中央处理器通过依次增加混频信号s2的频率变化步长来调整混频器的混频信号的工作频率;
b、被测毫米波雷达工作于连续波发射模式,以一固定频率fx发射毫米波信号s1(该信号s1频率fx未知,正是我们需要测试计算出的数值),该信号s1与混频器的混频信号s2,经混频处理成中频信号s后,发送给AD采样单元,其中,s的频率记为fs,fs=fx-(f0+n△f),n表示步长的个数;
c、AD采样单元对当前的中频信号s进行采样,并将采样后的中频信号送入绘图单元,绘图单元将接收到的中频信号按顺序依次以图形的方式表示出来,横轴为采样时间,纵轴为AD采样单元对中频信号采样获得的采样电压值;
当中频信号的频率不在采样带宽范围10M内时,显示单元不显示图形(通过显示单元观察绘图单元的绘图结果,若无法观测到采样的时域的正弦波信号,说明中频信号的频率不在采样带宽范围内);
当显示单元上能观测到时域的正弦波信号,此时混频信号s2的工作频率为第一混频信号工作频率fs2;(fs2表示在起始工作频率f0的基础上,改变了若干个步长△f后的频率,即fs2=f0+n△f)
d、第一计算单元对步骤c中的中频信号s(能观测到时域的正弦波时)进行FFT(快速傅里叶变换)运算,获得此刻中频信号s的频域信号X(S),计算方法如下:
Figure BDA0003181379470000071
其中
Figure BDA0003181379470000072
其中,x(s)是指中频信号s的离散傅里叶变换后的频谱,N表示傅里叶变换的点数,j是指虚数单位,k表示傅里叶变换的第k个频谱;
提取频域信号X(s)的峰值点位置,即是中频信号s的频率fs
由于此时混频信号的工作频率fs2已知,可推导出被测毫米波雷达的第一组可能发射频率:fs2+fs,fs2-fs,即被测毫米波雷达的发射频率要么为fs2+fs,或者为fs2-fs
e、中央处理器再次调整混频器的混频信号的工作频率为fs2',其中,fs2'=第一混频信号工作频率fs2+偏差频率Δfs2(即上文所述的增大一个偏差频率),再次按照步骤c的方式混频处理、采样;
f、第二计算单元对步骤e中的中频信号s(能观测到时域的正弦波时)进行FFT运算,可同理得出被测毫米波雷达的第二组可能发射频率:(fs2+Δfs2)+fs',(fs2+Δfs2)-fs',即被测毫米波雷达的发射频率要么为(fs2+Δfs2)+fs',或者为(fs2+Δfs2)-fs';其中,fs'为步骤e中此刻的中频信号s的频率,其计算方法与步骤d相同;
g、由于被测毫米波雷达的发射频率未变,因此第一组可能发射频率中的一数据和第二组可能发射频率中的一数据必然相同;
若fs2+fs=(fs2+Δfs2)+fs',则被测毫米波雷达的发射频率fs1=fs2+fs=(fs2+Δfs2)+fs';
若fs2-fs=(fs2+Δfs2)-fs',则被测毫米波雷达的发射频率fs1=fs2-fs=(fs2+Δfs2)-fs'。
举例说明,设定步长△f=0.1GHz,偏差频率Δfs2取值0.01GHz。
中央处理器设定混频器的混频信号s2的起始工作频率为76GHz;第一次测试时设fs2=77.01GHz,中频信号的频率fs=0.01GHz,推导被测毫米波雷达的发射频率为77GHz或77.02GHz;
第二次测试时设fs2'=77.01GHz+0.01GHz,中频信号的频率fs'=0.02GHz,推导被测毫米波雷达的发射频率为77GHz或77.04GHz;
根据被测毫米波雷达的发射频率不变,两次测试结果应相等,故确定被测毫米波雷达的实际发射频率为77GHz。

Claims (4)

1.一种毫米波雷达信号频率测量设备,其特征在于,包括前端处理装置、后端处理装置;
所述前端处理装置包括混频器、AD采样单元、存储器、中央处理器,
所述混频器接收被测毫米波雷达的发射信号,将该发射信号与其自身的混频信号,经混频处理成中频信号后发送给所述AD采样单元;
所述AD采样单元将上述中频信号送入所述存储器,同时发送给所述中央处理器;
所述中央处理器用于设定混频器的混频信号的工作频率,同时通过通讯接口将上述中频信号发送给所述后端处理装置;
所述混频器、AD采样单元、存储器、中央处理器四个设备之间通过有线或无线连接,并通过网络协议进行通讯;
所述后端处理装置包括绘图单元、显示单元、第一计算单元、第二计算单元、频率确定单元,
所述绘图单元接收中央处理器发送来的中频信号,按顺序依次以图形的方式表示出来,横轴为采样时间,纵轴为AD采样单元对中频信号采样获得的采样电压值;
所述显示单元用于将绘图单元绘制的图形进行显示;
所述第一计算单元,用于当所述混频信号以设定步长从起始工作频率逐渐增大至第一混频信号工作频率扫描时,显示单元开始显示时域的正弦波信号,计算此时的中频信号的频率,获得被测毫米波雷达发射信号的第一组可能发射频率;
所述第二计算单元,用于所述混频信号在第一混频信号工作频率上增大一个偏差频率并再次扫描时,再计算此时的中频信号的频率,获得被测毫米波雷达的发射信号的第二组可能发射频率;
所述频率确定单元,用于比较第一组可能发射频率和第二组可能发射频率,选出两组可能发射频率相同的数值,则该相同的数值即为被测毫米波雷达的实际发射频率;
所述绘图单元、显示单元、第一计算单元、第二计算单元、频率确定单元之间通过有线或无线连接,并通过网络协议进行通讯。
2.一种毫米波雷达信号频率测量方法,其特征在于,包括以下步骤:
a、中央处理器设定好混频器的混频信号s2的起始工作频率f0,以及工作频率发生变化的步长△f;中央处理器通过依次增加混频信号s2的频率变化步长来调整混频器的混频信号的工作频率;
b、被测毫米波雷达工作于连续波发射模式,以一固定频率fx发射毫米波信号s1,该信号s1与混频器的混频信号s2,经混频处理成中频信号s后,发送给AD采样单元,其中,s的频率记为fs,fs=fx-(f0+n△f),n表示步长的个数;
c、AD采样单元对当前的中频信号s进行采样,并将采样后的中频信号送入绘图单元,绘图单元将接收到的中频信号按顺序依次以图形的方式表示出来,横轴为采样时间,纵轴为AD采样单元对中频信号采样获得的采样电压值;
当中频信号的频率不在采样带宽范围10MHz内时,显示单元不显示图形;
当显示单元上能观测到时域的正弦波信号,此时混频信号s2的工作频率为第一混频信号工作频率fs2
d、第一计算单元对步骤c中的中频信号s进行FFT运算,获得此刻中频信号s的频域信号X(S),计算方法如下:
Figure FDA0003181379460000021
其中
Figure FDA0003181379460000022
其中,x(s)是指中频信号s的离散傅里叶变换后的频谱,N表示傅里叶变换的点数,j是指虚数单位,k表示傅里叶变换的第k个频谱;
提取频域信号X(s)的峰值点位置,即是中频信号s的频率fs
由于此时混频信号的工作频率fs2已知,可推导出被测毫米波雷达的第一组可能发射频率:fs2+fs,fs2-fs,即被测毫米波雷达的发射频率要么为fs2+fs,或者为fs2-fs
e、中央处理器再次调整混频器的混频信号的工作频率为fs2',其中,fs2'=第一混频信号工作频率fs2+偏差频率Δfs2,再次按照步骤c的方式混频处理、采样;
f、第二计算单元对步骤e中的中频信号s进行FFT运算,可同理得出被测毫米波雷达的第二组可能发射频率:(fs2+Δfs2)+fs',(fs2+Δfs2)-fs',即被测毫米波雷达的发射频率要么为(fs2+Δfs2)+fs',或者为(fs2+Δfs2)-fs';其中,fs'为步骤e中此刻的中频信号s的频率,其计算方法与步骤d相同;
g、由于被测毫米波雷达的发射频率未变,因此第一组可能发射频率中的一数据和第二组可能发射频率中的一数据必然相同;
若fs2+fs=(fs2+Δfs2)+fs',则被测毫米波雷达的发射频率fs1=fs2+fs=(fs2+Δfs2)+fs';
若fs2-fs=(fs2+Δfs2)-fs',则被测毫米波雷达的发射频率fs1=fs2-fs=(fs2+Δfs2)-fs'。
3.如权利要求2所述的一种毫米波雷达信号频率测量方法,其特征在于,所述步长△f=0.1GHz。
4.如权利要求2所述的一种毫米波雷达信号频率测量方法,其特征在于,所述偏差频率Δfs2取值0.01GHz。
CN202110847882.5A 2021-07-27 2021-07-27 一种毫米波雷达信号频率测量设备及方法 Active CN113567933B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110847882.5A CN113567933B (zh) 2021-07-27 2021-07-27 一种毫米波雷达信号频率测量设备及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110847882.5A CN113567933B (zh) 2021-07-27 2021-07-27 一种毫米波雷达信号频率测量设备及方法

Publications (2)

Publication Number Publication Date
CN113567933A true CN113567933A (zh) 2021-10-29
CN113567933B CN113567933B (zh) 2023-03-03

Family

ID=78167669

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110847882.5A Active CN113567933B (zh) 2021-07-27 2021-07-27 一种毫米波雷达信号频率测量设备及方法

Country Status (1)

Country Link
CN (1) CN113567933B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325391A (ja) * 2003-04-28 2004-11-18 Mitsubishi Electric Corp 電波レーダ装置及びビート信号周波数検出方法
CN109387813A (zh) * 2018-08-31 2019-02-26 中国电子科技集团公司第二十九研究所 一种基于宽带雷达信号接收的高精度频率测量方法
CN109490624A (zh) * 2018-10-19 2019-03-19 陕西长岭电子科技有限责任公司 脉冲信号频率测量器
CN110677216A (zh) * 2019-09-29 2020-01-10 华南理工大学 面向电子对抗的数字射频前端及射频信号频率检测方法
CN112838862A (zh) * 2021-01-08 2021-05-25 东南大学 一种基于全数字锁相环的宽带射频信号频率检测与跟踪装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325391A (ja) * 2003-04-28 2004-11-18 Mitsubishi Electric Corp 電波レーダ装置及びビート信号周波数検出方法
CN109387813A (zh) * 2018-08-31 2019-02-26 中国电子科技集团公司第二十九研究所 一种基于宽带雷达信号接收的高精度频率测量方法
CN109490624A (zh) * 2018-10-19 2019-03-19 陕西长岭电子科技有限责任公司 脉冲信号频率测量器
CN110677216A (zh) * 2019-09-29 2020-01-10 华南理工大学 面向电子对抗的数字射频前端及射频信号频率检测方法
CN112838862A (zh) * 2021-01-08 2021-05-25 东南大学 一种基于全数字锁相环的宽带射频信号频率检测与跟踪装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
侯盼卫: "基于FFT的高精度FMCW雷达频率估计算法", 《山西电子技术》 *
钟仁海: "一种24GHz雷达中频信号频率的测量方法研究", 《电子信息-科技风》 *

Also Published As

Publication number Publication date
CN113567933B (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
US10042029B2 (en) Calibration of test instrument over extended operating range
CN108107413B (zh) 一种雷达目标模拟器校准系统
US8461850B2 (en) Time-domain measurements in a test and measurement instrument
US9998240B2 (en) Electric field intensity distribution measurement device and electric field intensity distribution measurement method
CN107085204B (zh) 一种相控阵雷达接收多通道灵敏度测试方法
WO2011098021A1 (zh) 驻波检测方法、驻波检测装置及基站
KR102063468B1 (ko) 능동형 레이더 모의 타겟 장치
CN105607051A (zh) 用于测定fmcw测距装置与目标之间距离的方法
EP3051709B1 (en) De-embedding cable effect for waveform monitoring for arbitrary waveform and function generator
WO2023109375A1 (zh) 信号增强方法、装置、opa激光雷达及存储介质
CN114217301B (zh) 一种高精度边坡监测雷达目标检测及测距方法
CN105024770B (zh) 非相参fmcw自差式接收机灵敏度的定量测试
CN110261830B (zh) 一种针对雷达回波模拟器的性能校准器
CN113567933B (zh) 一种毫米波雷达信号频率测量设备及方法
US10958362B1 (en) Method and system for determining group delay between periodic radio frequency (RF) signals
CN110531298B (zh) 特高频局部放电传感器性能改进检测方法及系统
CN110109089B (zh) 一种线性调频连续波探测系统距离测量精度的改进方法
CN107104699B (zh) 一种分数域中低运算复杂度的最优阶数搜索的装置和方法
CN114545078A (zh) 中频信号处理系统及处理方法
CN114487597A (zh) 一种czt频率估计方法
US10735036B1 (en) Method for measuring frequency offset between an RF transmitter and a test receiver
Dao et al. Research on Improved Algorithm of Frequency Estimation Based on Complex Modulation.
CN116430124B (zh) 保险杠材料复介电常数的测试方法、装置、设备及介质
CN116299246B (zh) 一种合成孔径雷达系统内定标精度评定方法
CN115219971B (zh) 一种示波器波形检查方法、装置、设备、存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant