CN113564552A - 一种电磁分离式镀膜装置及方法 - Google Patents
一种电磁分离式镀膜装置及方法 Download PDFInfo
- Publication number
- CN113564552A CN113564552A CN202110864919.5A CN202110864919A CN113564552A CN 113564552 A CN113564552 A CN 113564552A CN 202110864919 A CN202110864919 A CN 202110864919A CN 113564552 A CN113564552 A CN 113564552A
- Authority
- CN
- China
- Prior art keywords
- vacuum cavity
- power supply
- main vacuum
- separation type
- coating device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
- C23C14/352—Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
- C23C14/022—Cleaning or etching treatments by means of bombardment with energetic particles or radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3435—Applying energy to the substrate during sputtering
- C23C14/345—Applying energy to the substrate during sputtering using substrate bias
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3485—Sputtering using pulsed power to the target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
- C23C14/354—Introduction of auxiliary energy into the plasma
- C23C14/358—Inductive energy
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32321—Discharge generated by other radiation
- H01J37/3233—Discharge generated by other radiation using charged particles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32532—Electrodes
- H01J37/32568—Relative arrangement or disposition of electrodes; moving means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3266—Magnetic control means
- H01J37/32669—Particular magnets or magnet arrangements for controlling the discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3402—Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
- H01J37/3405—Magnetron sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3438—Electrodes other than cathode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3464—Operating strategies
- H01J37/3467—Pulsed operation, e.g. HIPIMS
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明公开了一种电磁分离式镀膜装置,属于真空镀膜技术领域,包括主真空腔体,所述主真空腔体的前后两侧均开设有真空腔体门,前后两个所述真空腔门体的正中位置均设置有一组磁控溅射靶,两组所述磁控溅射靶对称设置;所述主真空腔体的左右两侧外壁上对称设有两组离子源,每组所述离子源的两侧分别对称设有两组磁感线圈;所述主真空腔体的顶部连接有真空泵组,所述主真空腔体内底部安装有工件架,所述工件架用于安装待沉积样件;所述主真空腔体内还安装有辅助阳极。本发明还公开一种电磁分离式镀膜方法,本发明能够有效提高三维空间等离子体密度、增加离子能量、获得性能优异薄膜。
Description
技术领域
本发明涉及真空镀膜技术领域,具体地涉及一种电磁分离式镀膜装置及方法。
背景技术
真空镀膜技术是一种材料表面处理技术,常用于装饰、光学、电性、机械及腐蚀方面。真空镀膜技术包括真空蒸发镀膜、真空溅射镀膜、真空离子镀膜、真空卷绕镀膜、化学气相沉积CVD技术、离子注入与离子辅助沉积技术等,多种镀膜技术出现是为了满足不同的应用需求及提高镀得薄膜的性能,尤其对于薄膜的性能要求日益提高,这就要求需要进步改进镀膜技术。
中国专利申请CN108048795A公开了一种机械零件表面镀层镀膜工艺处理,无需切割或雕刻即能够在零件表面形成图案。专利ZL20161090681.6公开了一种磁极辅助的非平衡磁控溅射系统,该系统提高了镀膜的结构可控性和镀膜厚度的均一性。中国专利ZL200910074779.0公开了一种闭合场非平衡磁控溅射制备铬铝氮薄膜的方法,有效提高了高铬钨锰钢表面的硬度、强度和耐磨性能。中国专利ZL201310729760.1公开了一种高功率脉冲磁控溅射激发/阳极层离子源辅助的磁控溅射镀膜装置,极大地提高了薄膜的结合力和强度。
现有技术中,高功率脉冲磁控溅射虽然离化率和离子能量较高,但是沉积效率低;磁控溅射则存在沉积高,但是离化率和离子能量低,难以获得致密的薄膜,且靶空易中毒,工艺范围小的问题。
因此,提供一种新型的电磁分离式镀膜装置,以解决现有技术所存在的上述缺点,成为现在亟待解决的技术问题。
发明内容
本发明的目的是提供一种电磁分离式镀膜装置及方法,以解决上述现有技术存在的问题,能够有效提高三维空间等离子体密度、增加离子能量、获得性能优异薄膜。
为实现上述目的,本发明提供了如下方案:本发明提供一种电磁分离式镀膜装置,包括主真空腔体,所述主真空腔体的前后两侧均开设有真空腔体门,前后两个所述真空腔门体的正中位置均设置有一组磁控溅射靶,两组所述磁控溅射靶对称设置;所述主真空腔体的左右两侧外壁上对称设有两组离子源,每组所述离子源的两侧分别对称设有两组磁感线圈;所述主真空腔体的顶部连接有真空泵组,所述主真空腔体内底部安装有工件架,所述工件架用于安装待沉积样件;所述主真空腔体内还安装有辅助阳极。
优选的,所述主真空腔体为750mmx6750mmx850mm的长方体腔体。
优选的,所述辅助阳极采用阳极杆,所述主真空腔体内四个角处均安装有所述阳极杆。
优选的,所述阳极杆连接有可调正偏压电源,所述可调正偏压电源的电压为0-500V。
优选的,所述真空腔门体采用蚌式侧开门。
优选的,所述离子源连接有可调电源,所述可调电源的电压为0-2000V、频率为20KHz,所述可调电源能够提供直流对称脉冲电源,所述直流对称脉冲电源的电源波形为正弦波或矩形波。
优选的,每个所述离子源两侧相对的所述电磁线圈均由一组直流/直流对称脉冲电源供电,所述直流/直流对称脉冲电源的电源波形为正弦波或矩形波。
优选的,所述磁控溅射靶安装于所述真空腔体门背离所述主真空腔体的一侧,所述磁控溅射靶连接有20KW微脉冲磁控溅射电源,脉冲占空比<50%。
优选的,所述工件架采用行星公转装置。
本发明还公开一种电磁分离式镀膜方法,包括以下步骤:
步骤一、将被沉积样件清洗干净,安装在工件架上,对主真空腔体进行抽真空;
步骤二、设置工件架的转速,主真空腔体内充入氩气至设定压力;
步骤三、打开与离子源相连的可调电源,打开电磁线圈电源;
步骤四、使加在被沉积样件上的偏压电源保持设定电压,氩离子对被沉积样件轰击清洗;
步骤五、打开磁控溅射靶的电源,Ti金属离子注入沉积设定时间;
步骤六、调整偏压,沉积金属Ti;
步骤七、通入氮气,沉积氮化钛;
步骤八、关闭电磁分离式镀膜装置,冲入氮气,待主真空腔体内降到设定温度,再充入空气,打开主真空腔体,取出被沉积样件。
本发明相对于现有技术取得了以下技术效果:
本发明电磁分离式镀膜装置是一种电磁分离式磁控溅射/离子源复合沉积系统,由磁控溅射或离子源激发的等离子体在电磁线圈产生的磁场的约束下飞向被沉积样件,在被沉积样件上生长成薄膜;在等离子体飞向被沉积样件的过程中,电子被辅助阳极吸收,正离子沿着磁感线螺旋加速行进,实现电子和离子的分离,而电磁线圈分别形成相反的闭合磁场,且磁场随时间成周期反转,翻转磁场导致等离子体震荡,进一步加速中性粒子离化。正电场和震荡磁场的共同作用下,等离子体中的电子和离子发生分离,增加了与中性粒子的碰撞几率,由此提高了离化率和离子的能量,提高等离子密度约5倍以上,有效提高了三维空间等离子体密度,增加了离子能量,最终在沉积过程中获得性能优异的薄膜。同时,减少反应性气体用量,抑制靶中毒。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中电磁分离式镀膜装置的结构示意图;
图2为本发明高功率微脉冲磁控溅射电源波形示意图;
图3为本发明中随供电波形变化的磁场翻转震荡示意图;
图中:1-主真空腔体,2-真空腔门体,3-磁控溅射靶,4-离子源,5-磁感线圈,6-真空泵组,7-工件架,8-阳极杆。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种电磁分离式镀膜装置及方法,以解决现有技术存在的问题,能够有效提高三维空间等离子体密度、增加离子能量、获得性能优异薄膜。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1-3所示,本实施例提供一种电磁分离式镀膜装置,包括主真空腔体1,主真空腔体1内的四个夹角处均设有阳极杆8,作为辅助阳极;主真空腔体1内安装有真空泵组6和工件架7,真空泵组6位于主真空腔体1顶部;主真空腔体1四个侧壁中相对的两个侧壁构成侧壁组,其中一个侧壁组中的两个侧壁上均安装有真空腔门体2,两个真空腔门体2背离主真空腔体1的侧面上均安装有磁控溅射靶3,两个磁控溅射靶3对称设置;另一个侧壁组中的两个侧壁上均安装有离子源4,两套离子源4对称设置;离子源4所在侧壁上还安装有两组磁感线圈5,安装于同一侧壁上的两组磁感线圈5相对于安装在该侧壁上的离子源4对称设置。
在本实施例中,真空腔门体2为蚌式侧开门,或者根据工作需要选择其它结构的侧开门。
在本实施例中,磁控溅射靶3与20KW微脉冲磁控溅射电源相连接,脉冲占空比<50%。
在本实施例中,离子源4是长180mm×宽600mm的矩形离子源,离子源磁场N,狭缝磁场强度400~600高斯;离子源4与电压0-2000V、频率20KHz的可调电源相连接,该可调电源提供直流对称脉冲电源,电源波形可以为正弦波、矩形波等。
在本实施例中,磁感线圈5的线圈为5000安匝,尺寸为360mm×600mm;磁感线圈5与电流0-100A的高功率直流脉冲电源相连接。
在本实施例中,阳极杆8与电压0-500V可调正偏压电源相连接,阳极杆8的直径为60mm、长度为750mm。
在本实施例中,主真空腔体1为长方体形腔体,其尺寸为:长750mm×宽750mm×850mm。
在本实施例中,磁控溅射靶3为长175mm×宽600mm的矩形磁控靶,磁场方向为SNNSNNS排列,距离分别为6mm、24mm、6mm、6mm、24mm、6mm。
在本实施例中,真空泵组6采用FF250-2000分子泵+18L/min机械泵,满足40min抽到真空2×10-3Pa。
在本实施例中,工件架7设置在主真空腔体1底部,为行星公转装置;具体地,工件架7可以通过转轴等转动机构转动安装于主真空腔体1内底部,所述工件架7上设置有多个工位,工位上转动安装有托盘,被沉积样件能够安装在托盘上,当工件架7在公转的时候,各个工位上的托盘亦能够自转,从而带动被沉积样件自转;其中,工件架7可以连接有驱动电机等驱动机构,通过驱动机构带动工件架7以及托盘转动。或者,工件架7亦可以根据工作需要选择其它结构的工件架。
本实施例中还公开一种基于上述电磁分离式镀膜装置的镀膜方法,包括以下步骤:
将被沉积样件清洗干净,安装在工件架7上,抽真空至2×10-3Pa;设置工件架7的转速为2圈/min,主真空腔体1内充入氩气至压力0.5Pa,打开与离子源4相连的可调电源,设置电压1500V。阳极偏压+300V,频率10KHz;电磁场电流80A;加在被沉积样件上的偏压电源保持-500V电压,氩离子轰击清洗20min。
在清洗过程中,测量有阳极偏压无磁场的等离子密度、有磁场无阳极偏压的等离子密度以及有阳极有电磁场的等离子密度,等离子密度分别比只有电磁线圈、只有阳极及没有电磁线圈和阳极场的提高了2倍以上、2.2倍以上及5倍以上。
保持上述条件不变,打开高功率微脉冲磁控溅射电(磁控溅射Ti靶),电压650V,脉冲长度2000ms,占空比45%,Ti金属离子注入沉积10min。
偏压调整至-60V,沉积金属Ti,时间30min。
通入氮气,氮气流量约为氩气流量的5%,沉积氮化钛120min。
然后关闭系统,冲入氮气,待主真空腔体1内温度降低至50℃。再充入空气,打开主真空腔体1,取出被沉积样件。
肉眼检视被沉积样件为金黄色,通常传统的磁控溅射制备金黄色氮化钛时,氮气流量要占氩气流量的15%以上,因此,本实施例有效减低了反应气体的使用量,获得的薄膜硬度35GPa,高于传统溅射的27GPa。
如图3所示,本实施例镀膜过程中,离子源4产生的等离子体被磁感线圈5产生的磁场约束压缩的同时,该等离子体中的电子被邻近的阳极杆8吸收,减少了正负电荷的中和,提高了气体离化率和等离子能量及密度。离子源的磁感线圈5由一组直流/直流脉冲供电,电源波形可以为正弦波、矩形波等,实现电磁场的周期反转。一方面,离子源形成的等离子体被磁场约束压缩的同时,其等离子体中的电子被邻近的阳极杆8吸收,减少了正负电荷的中和,提高了空间离化率和等离子能量及密度;另一方面,磁控溅射的用磁场与周期翻转的震荡电磁场形成闭合,不闭合的等离子体震荡,等离子体中的电子被阳极杆8吸收,消除了正负电荷的中和,提高了气体离化率和等离子能量及密度。
离子源4产生的等离子体中,一方面,带负电的电子等被阳极杆8加速并吸收,增加了电子与中性粒子碰撞的几率,减少了等离子体中正负带电离子中和的可能性;另一方面,带正电的离子沿着磁力线运动,在换向磁场的震荡下,加速与中性离子碰撞。所以,在正电场和震荡磁场的共同作用下,等离子体中的电子和离子发生分离,增加了与中性粒子的碰撞几率,由此提高了离化率和离子的能量,提高等离子密度约5倍以上,减少反应性气体用量,抑制靶中毒。
本发明中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。
Claims (10)
1.一种电磁分离式镀膜装置,其特征在于,包括主真空腔体,所述主真空腔体的前后两侧均开设有真空腔体门,前后两个所述真空腔门体的正中位置均设置有一组磁控溅射靶,两组所述磁控溅射靶对称设置;所述主真空腔体的左右两侧外壁上对称设有两组离子源,每组所述离子源的两侧分别对称设有两组磁感线圈;所述主真空腔体的顶部连接有真空泵组,所述主真空腔体内底部安装有工件架,所述工件架用于安装待沉积样件;所述主真空腔体内还安装有辅助阳极。
2.根据权利要求1所述的电磁分离式镀膜装置,其特征在于:所述主真空腔体为750mmx6750mmx850mm的长方体腔体。
3.根据权利要求2所述的电磁分离式镀膜装置,其特征在于:所述辅助阳极采用阳极杆,所述主真空腔体内四个角处均安装有所述阳极杆。
4.根据权利要求3所述的电磁分离式镀膜装置,其特征在于:所述阳极杆连接有可调正偏压电源,所述可调正偏压电源的电压为0-500V。
5.根据权利要求1所述的电磁分离式镀膜装置,其特征在于:所述真空腔门体采用蚌式侧开门。
6.根据权利要求1所述的电磁分离式镀膜装置,其特征在于:所述离子源连接有可调电源,所述可调电源的电压为0-2000V、频率为20KHz,所述可调电源能够提供直流对称脉冲电源,所述直流对称脉冲电源的电源波形为正弦波或矩形波。
7.根据权利要求6所述的电磁分离式镀膜装置,其特征在于:每个所述离子源两侧相对的所述电磁线圈均由一组直流/直流对称脉冲电源供电,所述直流/直流对称脉冲电源的电源波形为正弦波或矩形波。
8.根据权利要求1所述的电磁分离式镀膜装置,其特征在于:所述磁控溅射靶安装于所述真空腔体门背离所述主真空腔体的一侧,所述磁控溅射靶连接有20KW微脉冲磁控溅射电源,脉冲占空比<50%。
9.根据权利要求1所述的电磁分离式镀膜装置,其特征在于:所述工件架采用行星公转装置。
10.一种电磁分离式镀膜方法,其特征在于,包括以下步骤:
步骤一、将被沉积样件清洗干净,安装在工件架上,对主真空腔体进行抽真空;
步骤二、设置工件架的转速,主真空腔体内充入氩气至设定压力;
步骤三、打开与离子源相连的可调电源,打开电磁线圈电源;
步骤四、使加在被沉积样件上的偏压电源保持设定电压,氩离子对被沉积样件轰击清洗;
步骤五、打开磁控溅射靶的电源,Ti金属离子注入沉积设定时间;
步骤六、调整偏压,沉积金属Ti;
步骤七、通入氮气,沉积氮化钛;
步骤八、关闭电磁分离式镀膜装置,冲入氮气,待主真空腔体内降到设定温度,再充入空气,打开主真空腔体,取出被沉积样件。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110864919.5A CN113564552A (zh) | 2021-07-29 | 2021-07-29 | 一种电磁分离式镀膜装置及方法 |
US17/704,994 US20230032184A1 (en) | 2021-07-29 | 2022-03-25 | Electromagnetic separation type coating device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110864919.5A CN113564552A (zh) | 2021-07-29 | 2021-07-29 | 一种电磁分离式镀膜装置及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113564552A true CN113564552A (zh) | 2021-10-29 |
Family
ID=78169080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110864919.5A Pending CN113564552A (zh) | 2021-07-29 | 2021-07-29 | 一种电磁分离式镀膜装置及方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20230032184A1 (zh) |
CN (1) | CN113564552A (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080011600A1 (en) * | 2006-07-14 | 2008-01-17 | Makoto Nagashima | Dual hexagonal shaped plasma source |
CN103668095A (zh) * | 2013-12-26 | 2014-03-26 | 广东工业大学 | 一种高功率脉冲等离子体增强复合磁控溅射沉积装置及其使用方法 |
CN105220122A (zh) * | 2015-10-27 | 2016-01-06 | 中国科学院兰州化学物理研究所 | 具高功率脉冲离子源的磁控溅射装置 |
CN110295352A (zh) * | 2018-03-23 | 2019-10-01 | 东北林业大学 | 电-磁场协同增强高功率脉冲磁控溅射沉积装置及方法 |
CN111411337A (zh) * | 2020-03-31 | 2020-07-14 | 中国科学院兰州化学物理研究所 | 一种励磁调制阳极辅助磁控溅射离子镀膜系统 |
CN111455336A (zh) * | 2020-04-30 | 2020-07-28 | 苏州艾钛科纳米科技有限公司 | 电磁场增强的磁控溅射装置及制备类金刚石涂层的方法 |
CN213142170U (zh) * | 2020-05-29 | 2021-05-07 | 星弧涂层新材料科技(苏州)股份有限公司 | 磁控溅射和离子束集成式镀膜设备 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3611492A1 (de) * | 1986-04-05 | 1987-10-22 | Leybold Heraeus Gmbh & Co Kg | Verfahren und vorrichtung zum beschichten von werkzeugen fuer die zerspanungs- und umformtechnik mit hartstoffschichten |
JPH02243761A (ja) * | 1989-03-15 | 1990-09-27 | Ulvac Corp | マグネトロンスパッタリング源用電磁石の制御方法 |
US5824607A (en) * | 1997-02-06 | 1998-10-20 | Applied Materials, Inc. | Plasma confinement for an inductively coupled plasma reactor |
US6500676B1 (en) * | 2001-08-20 | 2002-12-31 | Honeywell International Inc. | Methods and apparatus for depositing magnetic films |
US7262555B2 (en) * | 2005-03-17 | 2007-08-28 | Micron Technology, Inc. | Method and system for discretely controllable plasma processing |
ES2543579T3 (es) * | 2012-02-15 | 2015-08-20 | Ihi Hauzer Techno Coating B.V. | Componentes de cojinete y cojinetes aislados frente a corriente |
CN202705450U (zh) * | 2012-05-02 | 2013-01-30 | 福建泰兴特纸有限公司 | 镀膜静电消除装置 |
US10367110B2 (en) * | 2015-12-09 | 2019-07-30 | First Solar, Inc. | Photovoltaic devices and method of manufacturing |
JP7094154B2 (ja) * | 2018-06-13 | 2022-07-01 | 東京エレクトロン株式会社 | 成膜装置および成膜方法 |
KR20210111893A (ko) * | 2019-02-01 | 2021-09-13 | 램 리써치 코포레이션 | 가스 처리 및 펄싱을 사용한 이온 빔 에칭 |
CN110923650B (zh) * | 2019-12-04 | 2022-06-07 | 北京大学深圳研究生院 | 一种dlc涂层及其制备方法 |
-
2021
- 2021-07-29 CN CN202110864919.5A patent/CN113564552A/zh active Pending
-
2022
- 2022-03-25 US US17/704,994 patent/US20230032184A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080011600A1 (en) * | 2006-07-14 | 2008-01-17 | Makoto Nagashima | Dual hexagonal shaped plasma source |
CN103668095A (zh) * | 2013-12-26 | 2014-03-26 | 广东工业大学 | 一种高功率脉冲等离子体增强复合磁控溅射沉积装置及其使用方法 |
CN105220122A (zh) * | 2015-10-27 | 2016-01-06 | 中国科学院兰州化学物理研究所 | 具高功率脉冲离子源的磁控溅射装置 |
CN110295352A (zh) * | 2018-03-23 | 2019-10-01 | 东北林业大学 | 电-磁场协同增强高功率脉冲磁控溅射沉积装置及方法 |
CN111411337A (zh) * | 2020-03-31 | 2020-07-14 | 中国科学院兰州化学物理研究所 | 一种励磁调制阳极辅助磁控溅射离子镀膜系统 |
CN111455336A (zh) * | 2020-04-30 | 2020-07-28 | 苏州艾钛科纳米科技有限公司 | 电磁场增强的磁控溅射装置及制备类金刚石涂层的方法 |
CN213142170U (zh) * | 2020-05-29 | 2021-05-07 | 星弧涂层新材料科技(苏州)股份有限公司 | 磁控溅射和离子束集成式镀膜设备 |
Also Published As
Publication number | Publication date |
---|---|
US20230032184A1 (en) | 2023-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9812299B2 (en) | Apparatus and method for pretreating and coating bodies | |
EP1404889B1 (en) | Method and apparatus for plasma generation | |
EP2157205B1 (en) | A high-power pulsed magnetron sputtering process as well as a high-power electrical energy source | |
WO2007129021A1 (en) | High power impulse magnetron sputtering vapour deposition | |
WO2009079358A1 (en) | Very low pressure high power impulse triggered magnetron sputtering | |
CN105200381B (zh) | 阳极场辅磁控溅射镀膜装置 | |
CN109778136A (zh) | 采用热电子等离子体技术制备类金刚石涂层的方法 | |
CN110098044B (zh) | 一种钕铁硼磁体表面防护的复合改性方法 | |
WO2007038368A1 (en) | Reactive dual magnetron sputtering device with synchronised gas supply | |
CN213203180U (zh) | 溅射镀膜设备 | |
Gudmundsson et al. | High power impulse magnetron sputtering | |
CN109576652A (zh) | 一种电弧离子镀膜装置 | |
CN113564552A (zh) | 一种电磁分离式镀膜装置及方法 | |
CN103911592B (zh) | 一种磁控溅射装置及方法 | |
EP2729955B1 (en) | Apparatus and method for the pretreatment and/or for the coating of an article in a vacuum chamber with a hipims power source | |
CN205152320U (zh) | 阳极场辅磁控溅射镀膜装置 | |
CN205710902U (zh) | 增强型磁控溅射卷绕镀膜设备 | |
CN105970181B (zh) | 增强型磁控溅射卷绕镀膜设备及方法 | |
CN221720910U (zh) | 磁控溅射设备 | |
CN216808951U (zh) | 一种非平衡磁控溅射镀钽装置 | |
EP2422352B1 (en) | Rf-plasma glow discharge sputtering | |
CN117604477A (zh) | 磁控溅射设备及磁控溅射方法 | |
CN118086850A (zh) | 一种扰动电磁场磁过滤电弧复合磁控溅射镀膜系统 | |
CN117203364A (zh) | 用于膜的沉积的脉冲dc功率 | |
PL239275B1 (pl) | Sposób nanoszenia metodą magnetronową na podłoża ultracienkich powłok funkcyjnych o zwiększonej odporności fizycznej i chemicznej oraz podłoża z powłokami funkcyjnymi otrzymane tym sposobem |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |