CN113556168B - 一种针对多智能反射面的码分多址传输方法 - Google Patents

一种针对多智能反射面的码分多址传输方法 Download PDF

Info

Publication number
CN113556168B
CN113556168B CN202110813106.3A CN202110813106A CN113556168B CN 113556168 B CN113556168 B CN 113556168B CN 202110813106 A CN202110813106 A CN 202110813106A CN 113556168 B CN113556168 B CN 113556168B
Authority
CN
China
Prior art keywords
irs
multipath
time
signal
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110813106.3A
Other languages
English (en)
Other versions
CN113556168A (zh
Inventor
肖悦
马滕
雷霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110813106.3A priority Critical patent/CN113556168B/zh
Publication of CN113556168A publication Critical patent/CN113556168A/zh
Application granted granted Critical
Publication of CN113556168B publication Critical patent/CN113556168B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2628Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using code-division multiple access [CDMA] or spread spectrum multiple access [SSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0857Joint weighting using maximum ratio combining techniques, e.g. signal-to- interference ratio [SIR], received signal strenght indication [RSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2691Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation involving interference determination or cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2695Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with channel estimation, e.g. determination of delay spread, derivative or peak tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Noise Elimination (AREA)

Abstract

本发明属于移动通信技术领域,涉及一种针对多智能反射面的码分多址传输方法。该方案利用智能反射面可变反射系数的特性,为每个反射面配置一个时变的反射系数序列作为扩频码,对多径信号进行扩频,并利用码分多址的原理对不同反射面反射的信号进行标记,从而接收机可根据不同的扩频码对多径信号进行识别,实现多径信号的分离与合并。本发明克服了传统的基于智能反射面的无线通信系统在有多径时延影响下信道容量急剧恶化的问题,并且具有较高的信道估计精度,具备更高的实用性。

Description

一种针对多智能反射面的码分多址传输方法
技术领域
本发明属于移动通信技术领域,具体涉及一种针对多智能反射面的码分多址传输方法。
背景技术
IRS(Intelligent Reflecting Surface,智能反射表面)以可对无线电传播环境进行动态配置的特性,在数据传输、网络资源优化、定位等方面有着广泛的应用前景,是新一代无线通信系统的热点研究对象。具体而言,IRS由可对入射电磁波的幅度、相位、甚至极化方式进行实时调整的反射单元组成,通过在平面上集成大量低成本的反射单元,智能化地重构无线传播环境。由于材料的二维特性,IRS可灵活地安装于墙体、地面、天花板等建筑物表面,并与现有无线通信系统良好兼容。尽管IRS具备如此优良的特性,部署多块IRS辅助进行数据传输时,来自不同IRS的信号往往具有不同的时延,带来码间干扰的问题,从而影响通信质量;同时,在信道估计以及定位等场景下,也需对多径信号的时延等信息进行区分和提取。当前IRS的研究工作尚主要着眼于单个IRS的通信性能,以及对IRS系数的优化,缺乏针对上述问题的研究。
传统的多径分离方案常采用基于扩频的码分多址技术,利用扩频码字的自相关特性,通过滑动相关分离出多径,并进一步可以通过延时加权相加以合并多径信号。然而上述传统方案不能直接应用于多个IRS的通信系统,若发射机发送一个扩频信号,接收机虽然可以分离出多径,但无法将多径信号与多个IRS进行匹配,限制了其在信道估计以及定位等场景中的应用。
发明内容
IRS可时变的反射系数为解决上述问题提供了可能:利用码分多址的思想,为每个IRS配置不同的时变反射系数序列作为扩频码,则用户可以利用接收信号与某一个IRS的扩频码进行滑动相关运算,即可在分离出多径信号的同时区分不同的IRS。本发明利用IRS可变反射系数的能力,对来自不同IRS的信号进行分离与合并。
为更好地对本发明进行说明,先介绍本发明技术方案所用到的术语和系统结构。
BS:Base Station,基站。
CDMA:Code Division Multiple Access,码分多址。
CRLB:Cramér–Rao Lower Bound,克拉美罗下界。
DFT:Discrete Fourier Transform,离散傅里叶变换。
IRS:Intelligent Reflecting Surface,智能反射面,可以根据不同的偏置电压动态地改变自身电磁特性,从而优化无线信号的幅度、相位甚至极化方式。
MIRS-CDMA:Multiple Intelligent Reflecting Surfaces Assisted IndoorPositioning,多智能反射面辅助的码分多址。
MSE:Mean Squared Error,均方误差。
SNR:Signal-to-Noise Ratio,信噪比。
UE:User-End,用户端。
图1所示为本发明MIRS-CDMA系统示意图:
在MIRS-CDMA系统中,假定基站与用户天线数均为1,IRS单元数以及IRS的个数分别为N和K,每个IRS具有一个如下的时变反射系数向量对自身进行标识:
Figure GDA0004123372300000021
式中φk可根据信道信息进行调整,实现反射波束的重构;
Figure GDA0004123372300000022
用于扩频,以实现码分多址,可以进一步表示为
Figure GDA0004123372300000023
其中θk[n]=θk(nTc),
Figure GDA0004123372300000024
为周期为G的离散时间序列,Tc为码片长度,Π(t)为矩形脉冲函数,定义为
Figure GDA0004123372300000025
当θk[n]为0和π二元取值时,
Figure GDA0004123372300000026
可以构建m序列;此外,Zadoff-Chu(ZC)序列和DFT序列可分别由下式进行构建:
Figure GDA0004123372300000031
考虑基站发射信号为
Figure GDA0004123372300000032
其中sm为数字调制符号,Ts=GTc为符号长度,由此可知发射信号经过IRS反射后,频谱扩大为原来的G倍,因此G也被称作扩频增益。
本发明假设独立平坦的瑞利衰落信道,并用H0
Figure GDA0004123372300000033
Figure GDA0004123372300000034
分别表示BS-UE、BS-IRSk以及IRSk-UE的信道,其中
Figure GDA0004123372300000035
hk与gk中的每个元素独立同分布于
Figure GDA0004123372300000036
以及
Figure GDA0004123372300000037
不失一般性地,假设BS与IRS同步,并设BS-UE链路的信号到达时刻为t0,由第k个IRS的第l个单元反射的信号(相对于BS-UE链路)时延为τkl。则t时刻用户的接收信号可表示为
Figure GDA0004123372300000038
其中
Figure GDA0004123372300000039
为单边带功率谱密度为N0的高斯白噪声。
本发明采用的技术方案为:
一种针对多智能反射面的码分多址传输方法,包括天线数为1的发送端Tx与接收端Rx,M个单元数为N的智能反射面IRS,用H0
Figure GDA00041233723000000310
Figure GDA00041233723000000311
分别表示Tx-RX、Tx-IRSk以及IRSk-Rx的信道系数,传输方法包括:
发送端:
S1、发射基带信号为
Figure GDA00041233723000000312
其中sm为数字调制符号,Ts为符号长度;Π(t)为矩形脉冲函数,定义为
Figure GDA0004123372300000041
S2、Tx对发送数据逐帧进行发送,并在每帧前后添加长度为
Figure GDA0004123372300000042
的训练符号s,以便收端进行信道估计,其中
Figure GDA0004123372300000043
为整数集;
智能反射面:
S3、每个IRS设置一个如下的时变反射系数向量对自身进行标识:
Figure GDA0004123372300000044
式中φk根据信道信息进行调整,实现反射波束的重构;
Figure GDA0004123372300000045
用于扩频,以实现码分多址,进一步表示为
Figure GDA0004123372300000046
其中θk[n]=θk(nTc),为周期为G的离散时间序列,
Figure GDA0004123372300000047
Tc=Ts/G为码片长度;
当θk[n]为0和π二元取值时,
Figure GDA0004123372300000048
可用于构建m序列;此外,Zadoff-Chu(ZC)序列和DFT序列分别由下式进行构建:
Figure GDA0004123372300000049
Figure GDA00041233723000000410
Tx与IRS同步,并令Tx-RX链路的信号到达时刻为t0,由第k个IRS的第l个单元反射的信号相对于Tx-RX链路时延为τkl,因此经过IRS反射后,t时刻到达收端的信号r(t)为
Figure GDA00041233723000000411
其中
Figure GDA00041233723000000412
为单边带功率谱密度为N0的高斯白噪声;
接收端:
S4、采用相关检测法对多径信号进行识别,令最大多径时延不超过训练符号长度Tp,并令s=1,发送起始时刻为0,因此[t0,t0+Tp]时间区间内的接收信号简化为
Figure GDA00041233723000000413
S41、对于TX-RX链路,用接收信号的样本均值作为H0的估计,即
Figure GDA0004123372300000051
S42、对于第k个IRS反射的信号,令
Figure GDA0004123372300000052
并用滑动相关进行检测,即
Figure GDA0004123372300000053
其中argmax返回前N个局部最大值点;
S43、根据
Figure GDA0004123372300000054
得到如下所示Hkl的估计:
Figure GDA0004123372300000055
S5、计算各支路加权系数,并对采样输出进行延时加权合并,具体为:
S51、计算各支路加权系数,在最大比合并中,加权系数正比于信号幅度,反比于干扰加噪声的功率,令TX-RX与TX-IRSkl-RX链路的加权系数为α0与αkl,对于多径时延趋于0的场景,有
Figure GDA0004123372300000056
式中Hk=∑lHkl;用S4得到的信道系数的估计值
Figure GDA0004123372300000057
代替真实值H,即可得出相应的支路加权系数;
类似地,对于不同IRS之间的相对多径时延超过一个符号长度Ts的场景,加权系数为
Figure GDA0004123372300000058
S52、获得各支路的采样输出,对于第m个传输符号sm,令其起始时刻为tm,则TX-RX与TX-IRSkl-RX链路的采样输出分别为
Figure GDA0004123372300000059
Figure GDA0004123372300000061
S53、合并输出结果为
Figure GDA0004123372300000062
收端对合并输出后的信号进行最大似然判决,即可恢复出原始数据。
本发明的有益效果为:
本发明提出了一种针对多智能反射面的码分多址传输方案。该方案利用智能反射面可变反射系数的特性,为每个反射面配置一个时变的反射系数序列作为扩频码,对多径信号进行扩频,并利用码分多址的原理对不同反射面反射的信号进行标记,从而接收机可根据不同的扩频码对多径信号进行识别,实现多径信号的分离与合并。本发明克服了传统的基于智能反射面的无线通信系统在有多径时延影响下信道容量急剧恶化的问题,并且具有较高的信道估计精度,具备更高的实用性。
附图说明
图1:本发明提出的智能反射面码分多址系统示意图;
图2:多径时延趋于零时的信道估计精度。
图3:多径时延不为零时的信道估计精度。
图4:多径时延趋于零时的遍历信道容量。
图5:多径时延大于一个符号长度时的遍历信道容量。
具体实施方式
在发明内容部分已经对本发明的技术方案进行了详细描述,下面结合附图和仿真示例说明本发明的实用性。
在图2-5仿真示例中,除非特殊说明,均采用扩频增益$G=839$的序列,信道衰减配置为
Figure GDA0004123372300000063
dB,SNR定义为Tc/N0
图2给出了多径时延趋于零时所提方案的MSE随SNR的性能曲线,其中2(a)与采用DFT序列的系统性能进行了比较,仿真参数配置为N=64和K=4;2(b)比较了K=2和4,N=256情况下列的系统性能;图中的符号ε表示对应的CRLB。从图2(a)中可以看出,采用ZC序列的系统具有平台效应,而DFT序列的性能接近于CRLB。这是由于ZC序列不满足零均值和零互相关特性,因此存在多径干扰;尽管DFT序列满足上述性质,然而其自相关函数并不是狄拉克δ函数,因此无法应用于存在多径时延的场景。同时,图2(a)的结果表明,系统的MSE性能在低SNR下靠近CRLB,在高SNR下靠近渐近线。此外,结合图2(a)和2(b)可知,当采用不完美的扩频信号时,增加反射面单元数或反射面块数会提高估计误差。
图3给出了存在多径时延场景时,所提信道估计方法在N=64和K=2条件下,经过标准化之后的理论性能界,其中图3(b)将
Figure GDA0004123372300000071
降低为-40dB。同时,由于DFT序列不再适用,图3只给出了ZC序列的仿真。从图中可以看出,本发明所提的估计方法在高信噪比下具有良好的估计精度(略大于或小于10%)。此外,随着链路平均功率的降低,对信道估计精度也会相应降低。
图4给出了多径时延为0时的遍历信道容量曲线,并与不采用CDMA的系统性能进行对比,其中参数设置为N=64和K=4,图4(a)中扩频增益设置为839,图4(b)中设置为127。图4的结果表明,本发明所提方案的信道容量有明显的提升,且采用ZC序列作为扩频码的系统性能与理想扩频码非常接近。
图5给出了多径时延超过一个符号长度时的遍历信道容量曲线,参数配置与图4一致,并与K=2的情况进行比较。图5的结果表明,遍历容量随着SNR的提升而增加,但是增长速率逐渐降低,这是由于ZC序列不完美的均值和相关特性导致的多径残余干扰。同时,若不采用CDMA,多径干扰将严重影响系统传输性能,使得容量接近于0。
可见,本发明提出的智能反射面码分多址方案具有较高的信道估计精度,并且克服了传统的基于IRS的无线通信系统在有多径时延影响下信道容量急剧恶化的问题,具备更高的实用性。

Claims (1)

1.一种针对多智能反射面的码分多址传输方法,包括天线数为1的发送端Tx与接收端Rx,M个单元数为N的智能反射面IRS,用H0
Figure FDA0004123372290000011
Figure FDA0004123372290000012
分别表示Tx-RX、Tx-IRSk以及IRSk-Rx的信道系数,其特征在于,所述传输方法包括:
发送端:
S1、发射基带信号为
Figure FDA0004123372290000013
其中sm为数字调制符号,Ts为符号长度;Π(t)为矩形脉冲函数,定义为
Figure FDA0004123372290000014
S2、Tx对发送数据逐帧进行发送,并在每帧前后添加长度为Tp=PTs的训练符号s,
Figure FDA00041233722900000112
其中
Figure FDA00041233722900000113
为整数集;
S3、每个IRS设置一个如下的时变反射系数向量对自身进行标识:
Figure FDA0004123372290000015
式中φk根据信道信息进行调整,实现反射波束的重构;
Figure FDA0004123372290000016
用于扩频,以实现码分多址,进一步表示为
Figure FDA0004123372290000017
其中θk[n]=θk(nTc),为周期为G的离散时间序列,
Figure FDA0004123372290000018
Tc=Ts/G为码片长度;
当θk[n]为0和π二元取值时,
Figure FDA0004123372290000019
用于构建m序列;此外,Zadoff-Chu(ZC)序列和DFT序列分别由下式进行构建:
Figure FDA00041233722900000110
Figure FDA00041233722900000111
Tx与IRS同步,并令Tx-RX链路的信号到达时刻为t0,由第k个IRS的第l个单元反射的信号相对于Tx-RX链路时延为τkl,因此经过IRS反射后,t时刻到达接收端的信号r(t)为
Figure FDA0004123372290000021
其中
Figure FDA0004123372290000028
为单边带功率谱密度为N0的高斯白噪声;
接收端:
S4、采用相关检测法对多径信号进行识别,令最大多径时延不超过训练符号长度Tp,并令s=1,发送起始时刻为0,因此[t0,t0+Tp]时间区间内的接收信号简化为
Figure FDA0004123372290000022
S41、对于TX-RX链路,用接收信号的样本均值作为H0的估计,即
Figure FDA0004123372290000023
S42、对于第k个IRS反射的信号,令
Figure FDA0004123372290000024
并用滑动相关进行检测,即
Figure FDA0004123372290000025
其中argmax返回前N个局部最大值点;
S43、根据
Figure FDA0004123372290000026
得到如下所示Hkl的估计:
Figure FDA0004123372290000027
S5、计算各支路加权系数,并对采样输出进行延时加权合并,具体为:
S51、计算各支路加权系数,在最大比合并中,加权系数正比于信号幅度,反比于干扰加噪声的功率,令TX-RX与TX-IRSkl-RX链路的加权系数为α0与αkl,对于多径时延趋于0的场景,有
Figure FDA0004123372290000031
式中Hk=∑lHkl;用S4得到的信道系数的估计值
Figure FDA0004123372290000032
代替真实值H,即可得出相应的支路加权系数;
同理对于不同IRS之间的相对多径时延超过一个符号长度Ts的场景,加权系数为
Figure FDA0004123372290000033
S52、获得各支路的采样输出,对于第m个传输符号sm,令其起始时刻为tm,则TX-RX与TX-IRSkl-RX链路的采样输出分别为
Figure FDA0004123372290000034
Figure FDA0004123372290000035
S53、合并输出结果为
Figure FDA0004123372290000036
接收端对合并输出后的信号进行最大似然判决,恢复出原始数据。
CN202110813106.3A 2021-07-19 2021-07-19 一种针对多智能反射面的码分多址传输方法 Active CN113556168B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110813106.3A CN113556168B (zh) 2021-07-19 2021-07-19 一种针对多智能反射面的码分多址传输方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110813106.3A CN113556168B (zh) 2021-07-19 2021-07-19 一种针对多智能反射面的码分多址传输方法

Publications (2)

Publication Number Publication Date
CN113556168A CN113556168A (zh) 2021-10-26
CN113556168B true CN113556168B (zh) 2023-04-28

Family

ID=78132015

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110813106.3A Active CN113556168B (zh) 2021-07-19 2021-07-19 一种针对多智能反射面的码分多址传输方法

Country Status (1)

Country Link
CN (1) CN113556168B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115865597A (zh) * 2022-11-24 2023-03-28 浙江香农通信科技有限公司 一种空间移位键控反射调制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105429706A (zh) * 2015-12-15 2016-03-23 广东顺德中山大学卡内基梅隆大学国际联合研究院 基于aes加密交织的混沌码分多址可见光通信系统
CN112564758A (zh) * 2020-11-25 2021-03-26 东南大学 一种采用分布式智能反射面辅助的宽带无线传输方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6823170B1 (en) * 2000-07-26 2004-11-23 Ericsson Inc. Satellite communications system using multiple earth stations
DE602006001400D1 (de) * 2006-05-12 2008-07-17 Ntt Docomo Inc Verfahren, Vorrichtung und System zur Wiederverwendung von Ressourcen in einem Telekommunikationsnetzwerk mit Verstärkern
US9219593B2 (en) * 2011-08-22 2015-12-22 Lg Electronics Inc. Device-to-device data transmission method in wireless access system supporting device-to-device communication, and apparatus therefor
KR101600494B1 (ko) * 2012-11-09 2016-03-07 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보를 피드백하는 방법 및 이를 위한 장치
US9806849B2 (en) * 2014-12-05 2017-10-31 Lg Electronics Inc. Method and apparatus for feeding partial CQI back by terminal in wireless communication system
CN104660390B (zh) * 2015-02-10 2017-11-14 西南交通大学 一种cdma结合aco‑ofdm的光多载波码分多址系统通信方法
CN110830097B (zh) * 2019-11-05 2021-05-04 西南交通大学 一种基于反射面的主被动互惠共生传输通信系统
EP4115539A4 (en) * 2020-03-03 2023-11-08 ZTE Corporation METHOD FOR MODULATING SIGNALS THROUGH REFLECTIVE SURFACES
CN112235026B (zh) * 2020-11-06 2021-08-27 郑州大学 一种mimo-ofdma太赫兹通信系统的混合波束设计方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105429706A (zh) * 2015-12-15 2016-03-23 广东顺德中山大学卡内基梅隆大学国际联合研究院 基于aes加密交织的混沌码分多址可见光通信系统
CN112564758A (zh) * 2020-11-25 2021-03-26 东南大学 一种采用分布式智能反射面辅助的宽带无线传输方法

Also Published As

Publication number Publication date
CN113556168A (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
KR101381953B1 (ko) 무선 네트워크에서의 통신을 위한 방법 및 시스템
KR100663525B1 (ko) 공간-시간 빔 형성을 위한 간섭전력 측정 장치 및 방법
KR100891267B1 (ko) 무선통신시스템을 위한 훈련 시퀀스
US7280605B2 (en) Orthogonal frequency division multiplexing (OFDM) receiver used in wireless local area network system and symbol timing synchronization method therefor
US10484207B2 (en) Method and apparatus for channel estimation in wireless communication system
US7839962B2 (en) Method for synchronising a signal frame of a signal transmitted from a transmitter to a receiver of a telecommunication system
US7660230B2 (en) M-ARY orthogonal coded/balanced UWB transmitted reference systems
JPH04323926A (ja) 直接スペクトラム拡散信号用受信機
WO2006033403A1 (ja) マルチアンテナ無線通信システムのシンボルタイミング検出方法
JP5596091B2 (ja) 改善された周波数オフセット推定機
CN113556168B (zh) 一种针对多智能反射面的码分多址传输方法
RU2177207C2 (ru) Приемник мобильной системы связи и способ приема в мобильной системе связи
Glisic et al. Communication over multipath fading channels: A time-frequency perspective
EP1206049B1 (en) Method for obtaining a transmission gain function
CN103259757A (zh) 一种有效的mimo-ofdm系统的时间与频率同步新方法
Yao et al. Low-complexity timing synchronization for decode-and-forward cooperative communication systems with multiple relays
CN113824527A (zh) 一种智能反射表面辅助单载波信号循环移位的通信方法
Manzoor et al. Novel SNR estimation technique in Wireless OFDM systems
Staudinger et al. The 5g localization waveform ranging accuracy over time-dispersive channels–an evaluation
Hamila et al. A highly efficient generalized Teager-Kaiser-based technique for LOS estimation in WCDMA mobile positioning
Byrley et al. Extended logarithmic frequency domain rulers for joint radar-communications
WO2024195125A1 (ja) 電波到来角推定装置、電波到来角推定方法、制御回路および記憶媒体
Wu et al. An Adaptive UWB Synchronization Algorithm based on The IEEE 802.15. 4-2020 Protocol
CA2265208C (en) Diversity antenna system
Cagley et al. Implementation of the Alamouti OSTBC to a distributed set of single-antenna wireless nodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant