CN113555456B - 一种柔性超薄晶硅电池及制备方法 - Google Patents

一种柔性超薄晶硅电池及制备方法 Download PDF

Info

Publication number
CN113555456B
CN113555456B CN202110734449.0A CN202110734449A CN113555456B CN 113555456 B CN113555456 B CN 113555456B CN 202110734449 A CN202110734449 A CN 202110734449A CN 113555456 B CN113555456 B CN 113555456B
Authority
CN
China
Prior art keywords
film
thickness
sin
sio
nanometers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110734449.0A
Other languages
English (en)
Other versions
CN113555456A (zh
Inventor
严文生
臧月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202110734449.0A priority Critical patent/CN113555456B/zh
Publication of CN113555456A publication Critical patent/CN113555456A/zh
Application granted granted Critical
Publication of CN113555456B publication Critical patent/CN113555456B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种柔性超薄晶硅电池及制备方法,本发明从上到下依次包括第一SiNx薄膜、SiO2钝化薄膜、p型单晶硅片、Al2O3薄膜、第二SiNx薄膜和不锈钢衬底;所述的p型单晶硅片上表面织构化,且p型单晶硅形成n+发射极,得到p‑n结,p型单晶硅片背面采用激光打孔,并在孔内形成p+局部背表面场,并设置金属触点;p型单晶硅片上表面设有选择性发射结,发射结上设有金属电极;本发明的晶硅厚度在20‑40微米范围内,相对于已有报道电池结构,本电池在转换效率上具有显著提升。

Description

一种柔性超薄晶硅电池及制备方法
技术领域
本发明涉及太阳能电池技术领域,具体涉及了一种具有柔性特征的、厚度在20-40微米范围内的超薄晶硅电池及备方法。对于由于晶硅厚度显著薄化造成的转换效率损失,从光学和电学两方面提出了有效解决解决方案,实现了晶硅太阳能电池转换效率比现有技术和报道的显著提高。
背景技术
近些年来,太阳能电池的市场化正在得到快速推广。在各种材料的光伏电池中,晶硅电池一直占据了光伏市场的主导地位,市场额95%以上。当前,产业晶硅电池典型厚度为170-180微米。该厚度的电池不具有柔性特征。一方面,不具备柔性特性的晶硅电池限制了其应用范围。另一方面,硅材料占据了电池成本的60%之高。因此,发展柔性功能、薄化晶硅电池具有独特的优势和意义,既扩大了应用范围,又能显著降低成本。截至目前,柔性薄晶硅电池包括自支撑和衬底两种。在目前的技术报道中,一方面,还未到有关晶硅厚度在20-40微米范围内、衬底上的高效超薄晶硅电池制备报道。另一方面,目前已有报道中的薄晶硅电池结构简单,理论上难以达到高的转换效率。此外,一些报道在前表面陷光采用了成本昂贵的电子束曝光制备掩模版,该方法不适用于商业电池路线。
发明内容
本发明针对现有技术的不足,提出了一种柔性超薄晶硅电池及制备方法。
本发明一种柔性超薄晶硅电池,从上到下依次包括第一SiNx薄膜、SiO2钝化薄膜、p型单晶硅片、Al2O3薄膜、第二SiNx薄膜和不锈钢衬底;所述的p型单晶硅片上表面织构化,且p型单晶硅形成n+发射极,得到p-n结,其中n+发射极的掺杂浓度为1.0±0.2×1018/cm3,p型单晶硅片背面采用激光打孔,并在孔内形成p+局部背表面场,并设置铝金属触点;p型单晶硅片上表面设有发射结,发射结上设有金属电极;所述的第一SiNx薄膜厚度为60-75纳米、SiO2钝化薄膜厚度为8-10纳米、p型单晶硅片厚度为25-50微米、Al2O3薄膜厚度为8-10纳米、第二SiNx薄膜厚度为30-40纳米,不锈钢衬底厚度为1.5-2毫米。
作为优选,还包括第一SiOx薄膜和第二SiOx薄膜;其中第一SiOx薄膜设置在第一SiNx薄膜上方;第二SiOx薄膜设置在第二SiNx薄膜下方,所述的第一SiOx薄膜厚度为40-45纳米,第二SiOx薄膜厚度为100-250纳米。
本发明一种柔性超薄晶硅电池的制备方法,该方法具体包括以下步骤:
步骤一:在厚度为20-40微米掺杂浓度为(2.0±0.2)×1016/cm3的p型单晶硅片背面依次制备Al2O3薄膜和SiNx薄膜;其中Al2O3薄膜厚度为8-10纳米,SiNx薄膜厚度为30-40纳米;
步骤二:对步骤一得到的p型单晶硅片背面采用激光打孔,并在孔内形成p+局部背表面场,并设置金属触点;
步骤三:对步骤二得到的p型单晶硅片粘接在1.5-2mm厚的柔性不锈钢衬底上;
步骤四:将步骤三得到的产物上表面进行织构化,形成了特征尺寸为1-2um的随机分布的金字塔;
步骤五:在步骤四得到的产物上形成n+发射极,得到p-n结,其中n+发射极的掺杂浓度为(1.0±0.2)×1018/cm3
步骤六:在步骤五得到的产物上表面从下到上依次制备了SiO2钝化薄膜、SiNx薄膜;其中SiNx薄膜厚度为60-75纳米、SiO2钝化薄膜厚度为8-10纳米;
步骤七:采用局部激光掺杂在步骤六得到的产物上表面形成局域选择性发射结,局域选择性发射结的宽度为200um,片电阻为55±8/sq;并在选择性发射结上设置金属电极。
作为优选,步骤一中SiNx薄膜下方再制备一层SiOx薄膜,厚度为100-250纳米。
作为优选,步骤六中SiNx薄膜上方再制备一层SiOx薄膜,厚度为40-45纳米。
作为优选,所述的制备Al2O3薄膜采用原子层沉积法制。
作为优选,所述的p型单晶硅片通过外延法得到。
作为优选,所述的制备SiNx薄膜采用PECVD法。
作为优选,所述的前表面进行织构化,为在温度为82-85℃的NaOH溶液中处理。
作为优选,所述的SiO2钝化薄膜、SiNx和SiOx薄膜采用采用PECVD法制备。
本发明相对于与现有技术具有的效果:本发明制备并获得更高转换效率的柔性超薄晶硅电池。与典型的超薄电池结构相比,本发明的晶硅厚度在20-40微米范围内、不锈钢衬底上、结构先进的超薄晶硅电池制备。相对于已有报道电池结构,本电池在转换效率上具有显著提升。本发明的电池结构采用了前、后表面设计,一方面可以得到更高的光在晶硅中的吸收,从而导致提高的短路电流密度。另一方面,由于前、后表面采用了更加先进的钝化,即,前表面采用了SiO2薄膜,后表面采用了Al2O3薄膜,其受益是开路电压的增高。从填充因子角度来说,目前的铜/镍合金前电极,有利于获得更高的填充因子。这三个参量的提升,直接导致了电池转换效率的提高受益。
附图说明
图1为本发明的结构示意图;
图2为本发明的不锈钢衬底上柔性薄晶硅电池截面扫描电镜图;
图3为参考电池和本发明硅电池的J-V测量结果。
具体实施方式
实施例一:如图1所示;
步骤一:在厚度为20微米掺杂浓度为1.8×1016/cm3的p型单晶硅片背面依次制备Al2O3薄膜和SiNx薄膜;其中Al2O3薄膜厚度为8纳米,SiNx薄膜厚度为30纳米;所述的p型单晶硅片通过外延法得到;其中Al2O3薄膜采用原子层沉积法制,SiNx薄膜采用PECVD法;
步骤二:对步骤一得到的p型单晶硅片背面采用激光打孔,并在孔内形成p+局部背表面场,并设置金属铝触点;
步骤三:对步骤二得到的p型单晶硅片粘接在1.5mm厚的柔性不锈钢衬底上;
步骤四:将步骤三得到的产物上表面在温度为82-85℃的NaOH溶液中处理,使得上表面织构化,形成了特征尺寸为1-2um的随机分布的金字塔;
步骤五:在步骤四得到的产物上形成n+发射极,得到p-n结,其中n+发射极的掺杂浓度为0.8×1018/cm3
步骤六:在步骤五得到的产物上表面从下到上依次制备了SiO2钝化薄膜、SiNx薄膜;其中SiNx薄膜厚度为60纳米、SiO2钝化薄膜厚度为8纳米;其中SiO2钝化薄膜、SiNx和SiOx薄膜采用采用PECVD法制备。
步骤七:采用局部激光掺杂在步骤六得到的产物上表面形成局域选择性发射结,局域选择性发射结的宽度为200um,片电阻为55/sq;并在选择性发射结上设置金属电极。
参考电池和实施例一薄化晶硅电池的光伏参数测量比较(电池激活面积1cm2),如表1所示:
表1
统计标准厚度和实施例一薄化晶硅电池的光伏参数测量比较(各100片电池),如表2所示:
表2
如图2所示,为不锈钢衬底上柔性薄晶硅电池截面扫描电镜图;如图3所示,为参考电池和实施例一硅电池的J-V测量结果。
实施例二:
步骤一:在厚度为30微米掺杂浓度为2×1016/cm3的p型单晶硅片背面依次制备Al2O3薄膜、SiNx薄膜和SiOx薄膜;其中Al2O3薄膜厚度为9纳米,SiNx薄膜厚度为35纳米,SiOx薄膜厚度为100纳米;
步骤二:对步骤一得到的p型单晶硅片背面采用激光打孔,并在孔内形成p+局部背表面场,并设置金属触点;
步骤三:对步骤二得到的p型单晶硅片粘接在1.8mm厚的柔性不锈钢衬底上;
步骤四:将步骤三得到的产物上表面进行织构化,形成了特征尺寸为1-2um的随机分布的金字塔;
步骤五:在步骤四得到的产物上形成n+发射极,得到p-n结,其中n+发射极的掺杂浓度为1×1018/cm3
步骤六:在步骤五得到的产物上表面从下到上依次制备了SiO2钝化薄膜、SiNx薄膜;其中SiNx薄膜厚度为65纳米、SiO2钝化薄膜厚度为9纳米;
步骤七:采用局部激光掺杂在步骤六得到的产物上表面形成局域选择性发射结,局域选择性发射结的宽度为200um,片电阻为47/sq;并在选择性发射结上设置金属电极。
实施例三:
步骤一:在厚度为40微米掺杂浓度为2.2×1016/cm3的p型单晶硅片背面依次制备Al2O3薄膜、SiNx薄膜和SiOx薄膜;其中Al2O3薄膜厚度为10纳米,SiNx薄膜厚度为40纳米,SiOx薄膜厚度为180纳米;
步骤二:对步骤一得到的p型单晶硅片背面采用激光打孔,并在孔内形成p+局部背表面场,并设置金属铝触点;
步骤三:对步骤二得到的p型单晶硅片粘接在2mm厚的柔性不锈钢衬底上;
步骤四:将步骤三得到的产物上表面进行织构化,形成了特征尺寸为1-2um的随机分布的金字塔;
步骤五:在步骤四得到的产物上形成n+发射极,得到p-n结,其中n+发射极的掺杂浓度为1.2×1018/cm3
步骤六:在步骤五得到的产物上表面从下到上依次制备了SiO2钝化薄膜、SiNx薄膜和SiOx薄膜;其中SiNx薄膜厚度为75纳米、SiO2钝化薄膜厚度为10纳米,SiOx薄膜厚度为42纳米;
步骤七:采用局部激光掺杂在步骤六得到的产物上表面形成局域选择性发射结,局域选择性发射结的宽度为200um,片电阻为63/sq;并在选择性发射结上设置金属电极。

Claims (8)

1.一种柔性超薄晶硅电池的制备方法,其特征在于:所述柔性超薄晶硅电池从上到下依次包括第一SiNx薄膜、SiO2钝化薄膜、p型单晶硅片、Al2O3薄膜、第二SiNx薄膜和不锈钢衬底;所述的p型单晶硅片上表面织构化,且p型单晶硅形成n+发射极,得到p-n结,其中n+发射极的掺杂浓度为(1.0±0.2)×1018/cm3,p型单晶硅片背面采用激光打孔,并在孔内形成p+局部背表面场,并设置金属触点;p型单晶硅片上表面设有选择性发射结,发射结上设有金属电极;所述的第一SiNx薄膜厚度为60-75纳米、SiO2钝化薄膜厚度为8-10纳米、p型单晶硅片厚度为20-40微米、Al2O3薄膜厚度为8-10纳米、第二SiNx薄膜厚度为30-40纳米,不锈钢衬底厚度为1.5-2毫米;其制备方法具体包括以下步骤:
步骤一:在厚度为20-40微米掺杂浓度为(2.0±0.2)×1016/cm3的p型单晶硅片背面依次制备Al2O3薄膜和SiNx薄膜;其中Al2O3薄膜厚度为8-10纳米,SiNx薄膜厚度为30-40纳米;所述的p型单晶硅片通过外延法得到;
步骤二:对步骤一得到的p型单晶硅片背面采用激光打孔,并在孔内形成p+局部背表面场,并设置金属触点;
步骤三:对步骤二得到的p型单晶硅片粘接在1.5-2mm厚的柔性不锈钢衬底上;
步骤四:将步骤三得到的产物上表面进行织构化,形成了特征尺寸为1-2um的随机分布的金字塔;
步骤五:在步骤四得到的产物上形成n+发射极,得到p-n结,其中n+发射极的掺杂浓度为(1.0±0.2)×1018/cm3
步骤六:在步骤五得到的产物上表面从下到上依次制备了SiO2钝化薄膜、SiNx薄膜;其中SiNx薄膜厚度为60-75纳米、SiO2钝化薄膜厚度为8-10纳米;
步骤七:采用局部激光掺杂在步骤六得到的产物上表面形成局域选择性发射结,局域选择性发射结的宽度为200um,片电阻为55±8/sq;并在选择性发射结上设置金属电极。
2.根据权利要求1所述的一种柔性超薄晶硅电池的制备方法,其特征在于:还包括第一SiOx薄膜和第二SiOx薄膜;其中第一SiOx薄膜设置在第一SiNx薄膜上方;第二SiOx薄膜设置在第二SiNx薄膜下方,所述的第一SiOx薄膜厚度为40-45纳米,第二SiOx薄膜厚度为100-250纳米。
3.根据权利要求1所述的一种柔性超薄晶硅电池的制备方法,其特征在于:所述的SiO2钝化薄膜、SiNx和SiOx薄膜采用采用PECVD法制备。
4.根据权利要求1所述的一种柔性超薄晶硅电池的制备方法,其特征在于:步骤一中SiNx薄膜下方再制备一层SiOx薄膜。
5.根据权利要求1所述的一种柔性超薄晶硅电池的制备方法,其特征在于:步骤六中SiNx薄膜上方再制备一层SiOx薄膜。
6.根据权利要求1所述的一种柔性超薄晶硅电池的制备方法,其特征在于:所述的制备Al2O3薄膜采用原子层沉积法制。
7.根据权利要求1所述的一种柔性超薄晶硅电池的制备方法,其特征在于:所述的制备SiNx薄膜采用PECVD法。
8.根据权利要求1所述的一种柔性超薄晶硅电池的制备方法,其特征在于:所述的上表面进行织构化,为在温度为82-85℃的NaOH溶液中处理。
CN202110734449.0A 2021-06-30 2021-06-30 一种柔性超薄晶硅电池及制备方法 Active CN113555456B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110734449.0A CN113555456B (zh) 2021-06-30 2021-06-30 一种柔性超薄晶硅电池及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110734449.0A CN113555456B (zh) 2021-06-30 2021-06-30 一种柔性超薄晶硅电池及制备方法

Publications (2)

Publication Number Publication Date
CN113555456A CN113555456A (zh) 2021-10-26
CN113555456B true CN113555456B (zh) 2024-08-30

Family

ID=78131142

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110734449.0A Active CN113555456B (zh) 2021-06-30 2021-06-30 一种柔性超薄晶硅电池及制备方法

Country Status (1)

Country Link
CN (1) CN113555456B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286537A (zh) * 2007-04-09 2008-10-15 信越化学工业株式会社 单晶硅太阳能电池的制造方法及单晶硅太阳能电池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069356A1 (ja) * 2004-01-15 2005-07-28 Japan Science And Technology Agency 単結晶薄膜の製造方法及びその単結晶薄膜デバイス
TW201210058A (en) * 2010-05-12 2012-03-01 Applied Materials Inc Method of manufacturing crystalline silicon solar cells using epitaxial deposition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286537A (zh) * 2007-04-09 2008-10-15 信越化学工业株式会社 单晶硅太阳能电池的制造方法及单晶硅太阳能电池

Also Published As

Publication number Publication date
CN113555456A (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
JP5160381B2 (ja) 太陽電池の裏面電界層形成用アルミニウムペースト
Wang et al. Development of a 16.8% efficient 18-μm silicon solar cell on steel
TWI553889B (zh) 具有效且有效率之設計的背接觸太陽能電池及相對應之圖案化方法
JP4767110B2 (ja) 太陽電池、および太陽電池の製造方法
RU2571444C2 (ru) Солнечный элемент и модуль солнечного элемента
US9705017B2 (en) Nanostructured silicon based solar cells and methods to produce nanostructured silicon based solar cells
JPWO2013186945A1 (ja) 太陽電池およびその製造方法
JP2013513964A (ja) 裏面接点・ヘテロ接合太陽電池
US20240014333A1 (en) Photovoltaic cell and photovoltaic module
WO2011155372A1 (ja) 太陽電池
JP2013048126A (ja) 光起電力装置およびその製造方法
TW200952051A (en) Backside electrode layer and fabricating method thereof
TW200826310A (en) Thin-film solar module
CN113555456B (zh) 一种柔性超薄晶硅电池及制备方法
JPWO2012017517A1 (ja) 太陽電池セル
CN116936658A (zh) 背接触太阳能电池及光伏组件
Schmiga et al. Large-area n-type silicon solar cells with printed contacts and aluminium-alloyed rear emitter
CN108231954B (zh) 一种太阳能电池的制备方法
JPH0823114A (ja) 太陽電池
CN113571592B (zh) 一种薄化晶硅电池及制备方法
TWI812265B (zh) 熱載子太陽能電池及疊層太陽能電池
CN115101620B (zh) 一种p型hbc电池结构及其制备方法
JP2011018748A (ja) 太陽電池セルの製造方法
CN118522807A (zh) 一种背接触太阳能电池及其制备方法和光伏组件
CN113130708A (zh) 一种单晶电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant