CN113552167A - 一种浅层套管换热器土壤热响应测试系统及方法 - Google Patents

一种浅层套管换热器土壤热响应测试系统及方法 Download PDF

Info

Publication number
CN113552167A
CN113552167A CN202110800250.3A CN202110800250A CN113552167A CN 113552167 A CN113552167 A CN 113552167A CN 202110800250 A CN202110800250 A CN 202110800250A CN 113552167 A CN113552167 A CN 113552167A
Authority
CN
China
Prior art keywords
heat exchanger
thermal response
test
pipe
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110800250.3A
Other languages
English (en)
Other versions
CN113552167B (zh
Inventor
汤昌福
汪宏志
张明根
胥翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Exploration And Research Institute Of Anhui Coalfield Geology Bureau
Third Exploration Team Of Anhui Coalfield Geology Bureau
Original Assignee
Exploration And Research Institute Of Anhui Coalfield Geology Bureau
Third Exploration Team Of Anhui Coalfield Geology Bureau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exploration And Research Institute Of Anhui Coalfield Geology Bureau, Third Exploration Team Of Anhui Coalfield Geology Bureau filed Critical Exploration And Research Institute Of Anhui Coalfield Geology Bureau
Priority to CN202110800250.3A priority Critical patent/CN113552167B/zh
Publication of CN113552167A publication Critical patent/CN113552167A/zh
Application granted granted Critical
Publication of CN113552167B publication Critical patent/CN113552167B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

本发明适用于土壤源热泵技术领域,提供了一种浅层套管换热器土壤热响应测试系统及方法,该系统,包括:套管组件,埋设于地层;回填材料,填充于所述套管组件和地层之间;热源装置,通过测试管道与所述套管组件连接;所述测试管道包括给液管和回液管,其中所述给液管上安装有循环水泵和温度传感器,所述回液管上安装有流量传感器和温度传感器。本发明实施例提出的浅层套管换热器土壤热响应测试系统及方法建立了浅层套管换热器土壤热响应测试分析技术,并解决了测试能耗偏大、钻孔内回填材料热阻计算误差偏大的问题。

Description

一种浅层套管换热器土壤热响应测试系统及方法
技术领域
本发明属于土壤源热泵技术领域,尤其涉及一种浅层套管换热器土壤热响应测试系统及方法。
背景技术
土壤源热泵技术是一项节能环保的技术。土壤源热泵利用地下浅层土壤体作为热源,利用地下换热器与浅层土壤进行热交换,相对于地表空气,浅层土壤体具有冬暖夏凉的优点,与常规空气源热泵相比,土壤源热泵系统能效得到大大提升。土壤源热泵地下换热器包括U型埋管换热器和套管换热器,与U型埋管换热器相比,套管换热器性能更优。
土壤热物性参数是地下换热器设计的重要基础参数,其精确性不仅关系到系统的可靠性,还关系到项目的经济性。目前土壤热物性参数大都需要通过现场热响应测试技术获取,Mogensen最早在1983年提出U型埋管换热器热响应测试技术。我国2009年颁布的设计规范《地源热泵系统技术规程》,要求在工程设计前进行土壤热响应试验,以此作为设计的基本依据。在恒定加热或取热条件下,流体以一定流量在地埋管换热器中循环流动,记录的进出口流体温度和流量,持续测试时间48~72小时。在开展U型埋管换热器土壤热响应测试获取现场测试数据后,进一步可以基于无限长线热源理论反演计算,获取土壤导热系数和钻孔内热阻,为U型埋管换热器设计提供数据支撑。根据无限长线热源理论,地埋管换热器进出口流体平均温度满足:
Figure BDA0003162007680000011
通过上式可以获得土壤导热系数和钻孔内热阻。
目前对于U型地埋管换热器,已经建立了一套成熟并在工程实践中获得广泛应用的测试分析技术,目前大部分热响应测试方面的研究也是针对U型地埋管换热器开展的。相比较而言,套管换热器热响应测试分析方面研究比较少,尚未建立起一套成熟有效的热响应测试分析技术。在实践中,有时直接借鉴U型埋管换热器测试分析上式进行计算,然而,相关文献研究表明,当流量较小时,采用上式计算的钻孔内热阻误差较大。因此在很多测试中,都采用了较高的流量,造成水泵和加热器能耗过高。
发明内容
本发明实施例的目的在于提供一种浅层套管换热器土壤热响应测试系统及方法,旨在解决背景技术提出的问题。
本发明实施例是这样实现的,一种浅层套管换热器土壤热响应测试系统,包括:
套管组件,埋设于地层;
回填材料,填充于所述套管组件和地层之间;
热源装置,通过测试管道与所述套管组件连接;
所述测试管道包括给液管和回液管,其中所述给液管上安装有循环水泵和温度传感器,所述回液管上安装有流量传感器和温度传感器。
优选的,所述套管组件的埋设深度小于200米。
优选的,所述套管组件包括内管和外管,其中内管插设在外管中。
优选的,所述热源装置的加热功率可以调节。
优选的,所述循环水泵采用变频控制。
优选的,所述浅层套管换热器土壤热响应测试系统的设置方法为:
1)循环水泵采用变频控制,根据具体测试项目进行设置,首先采用下述公式计算流量:
Figure BDA0003162007680000031
Figure BDA0003162007680000032
Figure BDA0003162007680000033
其中μ为流体粘度;rpii为套管换热器内管内径;rpio为套管换热器内管外径;rpoi为套管换热器外管内径;ρ为流体密度;cf为流体体积热容;H为套管换热器深度;
然后将循环水泵流量Wf设置为Wf1、Wf2、Wf3中最大值;
2)热源装置加热功率可以调节,加热功率Q为:Q=4cfWf
一种浅层套管换热器土壤热响应测试方法,包括以下步骤:
1)测试钻孔施工,安装套管换热器结束后,将套管换热器内充满水,静置1天时间,至施工对地下温度场影响消失;
2)热响应测试系统安装,设定循环水泵流量Wf,循环水泵流量在测试中保持恒定;进行无功循环测试,持续4~5小时,直至进出口流体温度达到平衡,获取初始地温T0,所述无功循环即不开加热器;
3)设定热源加热器功率为Q,开始加热测试,连续测试且时间大于48小时,结束热响应测试,测试过程中加热器功率保持恒定。测试时连续记录套管换热器进水温度Tfin、出水温度Tfout、水循环流量Wf;
4)计算进出口流体平均温度
Figure BDA0003162007680000034
计算换热器加热平均功率
Figure BDA0003162007680000035
水循环流量Wf平均流量
Figure BDA0003162007680000041
5)在对数时间坐标下观察进出口平均温度Tfm曲线形状,确定直线拟合起始时间ts,且要求ts大于等于10小时。去除时间ts之前的数据,利用剩下的数据在对数时间坐标下进行直线拟合,获得直线斜率a和截据b;
6)计算导热系数和钻孔内热阻
Figure BDA0003162007680000042
Figure BDA0003162007680000043
计算回填材料热阻Rg=Rb-Rf2c-Rpo
本发明实施例提出的浅层套管换热器土壤热响应测试系统及方法建立了浅层套管换热器土壤热响应测试分析技术,并解决了测试能耗偏大、钻孔内回填材料热阻计算误差偏大的问题。
附图说明
图1为本发明实施例提供的一种浅层套管换热器土壤热响应测试系统的结构图;
图2为本发明应用示例1中流体进口温度Tfin和流体出口温度Tfout曲线;
图3为本发明应用示例1中流体进出口平均温度曲线;
图4为本发明应用示例2中流体进口温度Tfin和流体出口温度Tfout曲线;
图5为本发明应用示例2中流体进出口平均温度曲线。
附图中:1、热源装置;2、流量传感器;3、内管;4、外管、5、回弹材料;6、地层;7、温度传感器;8、循环水泵;9、测试管道。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
以下结合具体实施例对本发明的具体实现进行详细描述。
如图1所示,在本发明的一个实施例中,一种浅层套管换热器土壤热响应测试系统,包括:
套管组件,埋设于地层6;
回填材料5,填充于所述套管组件和地层6之间;
热源装置1,通过测试管道9与所述套管组件连接;
所述测试管道9包括给液管和回液管,其中所述给液管上安装有循环水泵8和温度传感器7,所述回液管上安装有流量传感器2和温度传感器7。
在本实施例的一种情况中,所述套管组件的埋设深度小于200米。
在本实施例的一种情况中,所述套管组件包括内管3和外管4,其中内管3插设在外管4中。
在本实施例的一种情况中,所述浅层套管换热器土壤热响应测试系统的设置方法为:
1)循环水泵8采用变频控制,根据具体测试项目进行设置,首先采用下述公式计算流量:
Figure BDA0003162007680000051
Figure BDA0003162007680000052
Figure BDA0003162007680000053
其中μ为流体粘度;rpii为套管换热器内管内径;rpio为套管换热器内管外径;rpoi为套管换热器外管内径;ρ为流体密度;cf为流体体积热容;H为套管换热器深度。
然后将循环水泵流量Wf设置为Wf1、Wf2、Wf3中最大值。
2)热源装置加热功率可以调节,加热功率Q为:Q=4cfWf (5)。
本实施例在实际运行中,由给液管和回液管上的温度传感器7分别对进水温度和出水温度进行测定,由流量传感器2对系统流量进行测定。
当测试到达稳态(t>10h)时,热响应测试的流体进出口平均温度Tfm满足:
Figure BDA0003162007680000061
其中,R12为内管流体和外管流体之间的热阻,包括内管流体与内管壁之间对流热阻Rf1c,内管管壁热阻Rpi和外管流体与内管外管壁之间的对流Rf2c,即R12=Rf1c+Rpo+Rf2c
Rb为钻孔内热阻,包括外管流体与外管内管壁之间的热阻Rf2c、外管壁热阻Rpo和回填材料热阻Rg,即Rb=Rf2c+Rpo+Rg (7)。
各热阻计算参考如下:
内管管壁热阻Rpi满足
Figure BDA0003162007680000062
外管管壁热阻Rpo满足
Figure BDA0003162007680000063
流体和管壁之间的对流热阻Rfc满足
Figure BDA0003162007680000064
Nu=4.364,Re≤2300
Nu为努塞尔数,满足
Figure BDA0003162007680000065
Figure BDA0003162007680000071
式中Re为雷诺数,Pr为普兰特数
Figure BDA0003162007680000072
对于内管流体对流换热热阻Rfc1,de满足de=2rpii
摩擦系数f满足
Figure BDA0003162007680000073
进一步的,根据热响应测试的流体进出口平均温度Tfm的公式可以得知,流体平均温度Tfm与对数时间成线性关系,通过直线拟合可以获取导热系数λs和钻孔内热阻Rb,即
Figure BDA0003162007680000074
Figure BDA0003162007680000075
其中,a为直线斜率,b为直线截距。
再进一步的,可以计算回填材料热阻Rg
Rg=Rb-Rf2c-Rpo (10)。
另外,热响应测试计算获取回填材料热阻Rg,后期进行套管换热器设计时,根据具体设计工况的循环流体流量(设计工况与测试工况通常不一致)按Rb=Rf2c+Rpo+Rg计算钻孔内热阻Rb。
在本发明的一个实施例中,一种浅层套管换热器土壤热响应测试方法,包括以下步骤:
1)测试钻孔施工,安装套管换热器结束后,将套管换热器内充满水,静置1天时间,至施工对地下温度场影响消失;
2)热响应测试系统安装,设定循环水泵流量Wf,循环水泵流量在测试中保持恒定;进行无功循环测试,持续4~5小时,直至进出口流体温度达到平衡,获取初始地温T0,所述无功循环即不开加热器;
3)设定热源加热器功率为Q,开始加热测试,连续测试且时间大于48小时,结束热响应测试,测试过程中加热器功率保持恒定。测试时连续记录套管换热器进水温度Tfin、出水温度Tfout、水循环流量Wf;
4)计算进出口流体平均温度
Figure BDA0003162007680000081
计算换热器加热平均功率
Figure BDA0003162007680000082
水循环流量Wf平均流量
Figure BDA0003162007680000083
5)在对数时间坐标下观察进出口平均温度Tfm曲线形状,确定直线拟合起始时间ts,且要求ts大于等于10小时。去除时间ts之前的数据,利用剩下的数据在对数时间坐标下进行直线拟合,获得直线斜率a和截据b;
6)计算导热系数和钻孔内热阻
Figure BDA0003162007680000084
Figure BDA0003162007680000085
计算回填材料热阻Rg=Rb-Rf2c-Rpo (16)。
应用示例1
某地源热泵项目前期进行了热响应测试,各参数如表1所示:
Figure BDA0003162007680000086
Figure BDA0003162007680000091
表1套管换热器土壤热响应测试参数
具体步骤为:
1)钻孔施工,进行套管换热器安装,套管换热器内充满水;施工结束后,静置1天时间;
2)安装热响应测试系统;
3)水泵循环流量设置,根据(2)-(4),计算得到流量Wf1=0.25m3/h,Wf2=1.17m3/h,Wf3=0.69m3/h,最终取水泵循环流量为Wf=1.17m3/h;
4)进行无功循环测试,连续测试至进出流体温度、出口流体温度稳定,其平均温度即为土壤初始温度,T0=18.2℃;
5)根据式(5)设置热源的加热功率为Q=5.5kW,开始连续测试,共测试72小时,测试过程水循环流量和加热功率保持稳定,记录的温度曲线如图2所示;
6)计算测试过程的加热平均功率为
Figure BDA0003162007680000092
计算流体进出口平均温度为
Figure BDA0003162007680000093
得到流体进出口平均温度曲线如图3所示;
7)去除测试前10小时数据,剩余数据在对数时间坐标下进行直线拟合,获得直线斜率a=1.2538和截据b=12.725;
8)根据式(14)计算土壤导热系数λs=2.32W/(m.K);
9)计算内管流体和外管流体之间的热阻为R12=0.1527m.K/W;根据式(15)计算钻孔内热阻Rb=0.08361m.K/W;
10)计算回填材料热阻为:Rg=0.05923m.K/W。
如果采用传统式(1)计算回填材料热阻Rg=0.0856m.K/W,相对误差高达47.3%。
此外,还对测试时间分别为48小时和60小时现场测试进行了计算,计算结果如表2所示。与测试72小时相比,测试48小时计算的土壤导热系数相差不到2%,回填材料热阻相差不到3%。
Figure BDA0003162007680000101
表2不同测试时间热响应测试计算结果
应用示例2
对应用示例1中现场测试,加大循环流体流量和加热功率进行了测试,水泵循环流量为Wf=2.35m3/h,根据式(5)设置热源的加热功率为Q=11kW。共测试48小时,测试过程水循环流量和加热功率保持稳定,记录的温度曲线如图4所示。
其热响应测试计算过程为:
1)计算测试过程的加热平均功率为
Figure BDA0003162007680000111
2)计算流体进出口平均温度为
Figure BDA0003162007680000112
得到流体进出口平均温度曲线如图5所示,
3)去除测试前10小时数据,剩余数据在对数时间坐标下进行直线拟合,获得直线斜率a=2.5444和截据b=4.7810;
4)根据式(14)计算土壤导热系数λs=2.29W/(m.K);
5)计算内管流体和外管流体之间的热阻为R12=0.1163m.K/W;根据式(15)计算钻孔内热阻Rb=0.06787m.K/W;
6)计算回填材料热阻为:Rg=0.05602m.K/W。
如果采用传统式(1)计算回填材料热阻Rg=0.06459m.K/W,相对误差为15.3%。
不同循环流体流量测试计算结果对比如表2,小流量测试结果与大流量相比,土壤导热系数相对误差不到1%,回填材料热阻相对误差不到3%。
Figure BDA0003162007680000113
表3不同测试流量热响应测试计算结果
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种浅层套管换热器土壤热响应测试系统,其特征在于,包括:
套管组件,埋设于地层;
回填材料,填充于所述套管组件和地层之间;
热源装置,通过测试管道与所述套管组件连接;
所述测试管道包括给液管和回液管,其中所述给液管上安装有循环水泵和温度传感器,所述回液管上安装有流量传感器和温度传感器。
2.根据权利要求1所述的浅层套管换热器土壤热响应测试系统,其特征在于,所述套管组件的埋设深度小于200米。
3.根据权利要求2所述的浅层套管换热器土壤热响应测试系统,其特征在于,所述套管组件包括内管和外管,其中内管插设在外管中。
4.根据权利要求3所述的浅层套管换热器土壤热响应测试系统,其特征在于,所述热源装置的加热功率可以调节。
5.根据权利要求4所述的浅层套管换热器土壤热响应测试系统,其特征在于,所述循环水泵采用变频控制。
6.根据权利要求5所述的浅层套管换热器土壤热响应测试系统,其特征在于,所述浅层套管换热器土壤热响应测试系统的设置方法为:
1)循环水泵采用变频控制,根据具体测试项目进行设置,首先采用下述公式计算流量:
Figure FDA0003162007670000011
Figure FDA0003162007670000012
Figure FDA0003162007670000013
其中μ为流体粘度;rpii为套管换热器内管内径;rpio为套管换热器内管外径;rpoi为套管换热器外管内径;ρ为流体密度;cf为流体体积热容;H为套管换热器深度;
然后将循环水泵流量Wf设置为Wf1、Wf2、Wf3中最大值;
2)热源装置加热功率可以调节,加热功率Q为:Q=4cfWf
7.一种浅层套管换热器土壤热响应测试系统,其特征在于,包括以下步骤:
1)测试钻孔施工,安装套管换热器结束后,将套管换热器内充满水,静置1天时间,至施工对地下温度场影响消失;
2)热响应测试系统安装,设定循环水泵流量Wf,循环水泵流量在测试中保持恒定;进行无功循环测试,持续4~5小时,直至进出口流体温度达到平衡,获取初始地温T0,所述无功循环即不开加热器;
3)设定热源加热器功率为Q,开始加热测试,连续测试且时间大于48小时,结束热响应测试,测试过程中加热器功率保持恒定。测试时连续记录套管换热器进水温度Tfin、出水温度Tfout、水循环流量Wf;
4)计算进出口流体平均温度
Figure FDA0003162007670000021
计算换热器加热平均功率
Figure FDA0003162007670000022
水循环流量Wf平均流量
Figure FDA0003162007670000023
5)在对数时间坐标下观察进出口平均温度Tfm曲线形状,确定直线拟合起始时间ts,且要求ts大于等于10小时。去除时间ts之前的数据,利用剩下的数据在对数时间坐标下进行直线拟合,获得直线斜率a和截据b;
6)计算导热系数和钻孔内热阻
Figure FDA0003162007670000024
Figure FDA0003162007670000031
计算回填材料热阻Rg=Rb-Rf2c-Rpo
CN202110800250.3A 2021-07-14 2021-07-14 一种浅层套管换热器土壤热响应测试系统及方法 Active CN113552167B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110800250.3A CN113552167B (zh) 2021-07-14 2021-07-14 一种浅层套管换热器土壤热响应测试系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110800250.3A CN113552167B (zh) 2021-07-14 2021-07-14 一种浅层套管换热器土壤热响应测试系统及方法

Publications (2)

Publication Number Publication Date
CN113552167A true CN113552167A (zh) 2021-10-26
CN113552167B CN113552167B (zh) 2023-05-30

Family

ID=78103190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110800250.3A Active CN113552167B (zh) 2021-07-14 2021-07-14 一种浅层套管换热器土壤热响应测试系统及方法

Country Status (1)

Country Link
CN (1) CN113552167B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114813827A (zh) * 2022-04-25 2022-07-29 河海大学 一种确定含水层热物性参数的微热试验装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288638A (zh) * 2011-07-07 2011-12-21 三江学院 一种基于plc的地源热泵热响应测试系统
JP2013108658A (ja) * 2011-11-18 2013-06-06 Ohbayashi Corp 二重管構造の地中熱交換器
CN109946103A (zh) * 2019-04-23 2019-06-28 山东建筑大学 一种基于中深层地埋管换热器的地热参数测试系统及方法
CN110455099A (zh) * 2019-07-29 2019-11-15 东南大学 一种桩基埋管地源热泵套管式换热器
US20200011573A1 (en) * 2018-07-04 2020-01-09 Peter Samuel Winston Graham Geothermal system operable between heat recovery and heat storage modes
CN111428346A (zh) * 2020-03-03 2020-07-17 西安交通大学 一种综合考虑换热-阻力-经济因素的无干扰地岩热换热器设计方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288638A (zh) * 2011-07-07 2011-12-21 三江学院 一种基于plc的地源热泵热响应测试系统
JP2013108658A (ja) * 2011-11-18 2013-06-06 Ohbayashi Corp 二重管構造の地中熱交換器
US20200011573A1 (en) * 2018-07-04 2020-01-09 Peter Samuel Winston Graham Geothermal system operable between heat recovery and heat storage modes
CN109946103A (zh) * 2019-04-23 2019-06-28 山东建筑大学 一种基于中深层地埋管换热器的地热参数测试系统及方法
CN110455099A (zh) * 2019-07-29 2019-11-15 东南大学 一种桩基埋管地源热泵套管式换热器
CN111428346A (zh) * 2020-03-03 2020-07-17 西安交通大学 一种综合考虑换热-阻力-经济因素的无干扰地岩热换热器设计方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114813827A (zh) * 2022-04-25 2022-07-29 河海大学 一种确定含水层热物性参数的微热试验装置及方法

Also Published As

Publication number Publication date
CN113552167B (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
Pu et al. Simulation study on the thermal performance of vertical U-tube heat exchangers for ground source heat pump system
CN107907564B (zh) 一种岩土热物性参数与竖直地埋管换热器热阻的确定方法
CN109086560B (zh) 变工况下地源热泵竖直单u型地埋管流体温度分布预测方法
CN106770439A (zh) 岩土层分层导热系数测试方法
Li et al. Heat transfer of a horizontal spiral heat exchanger under groundwater advection
Pärisch et al. Short-term experiments with borehole heat exchangers and model validation in TRNSYS
CN111539130B (zh) 中深层地埋管地热换热器钻孔深度的设计计算方法
CN201166615Y (zh) 一种地源热泵地埋管换热量测试仪
Yu et al. A simplified model for measuring thermal properties of deep ground soil
CN101105467A (zh) 土壤导热系数测定装置及其方法
Huang et al. Performance evaluation of coaxial borehole heat exchangers considering ground non-uniformity based on analytical solutions
CN111400893A (zh) 一种套管式地埋管换热器流体温度场分析方法
CN113552167A (zh) 一种浅层套管换热器土壤热响应测试系统及方法
Christodoulides et al. A practical method for computing the thermal properties of a Ground Heat Exchanger
CN206235584U (zh) 一种验证能量桩在地下水渗流条件下传热计算模型的实验系统
Bi et al. Parameter analysis of single U-tube GHE and dynamic simulation of underground temperature field round one year for GSHP
CN106354984B (zh) 桩基螺旋埋管在地下水渗流条件下的温度响应计算方法
CN106485016B (zh) 地下水渗流环境下桩埋管换热器的传热计算方法及其验证系统
Zheng et al. A thermal response method of calculating a soil's thermal properties when backfill material information is unavailable
CN113468743B (zh) 一种考虑地下水渗流的中深层地埋管流体温度场分析方法
CN102262102B (zh) 地源热泵用岩土体的热扩散率的确定方法
Lee et al. Thermal response performance of the heat exchanger of a standing column well based on the location of the return pipe
CN113704941B (zh) 一种深层套管换热器传热模型计算方法
Ma et al. Numerical Simulation of Soil Thermal Response Test with Thermal-dissipation Corrected Model
CN111581838B (zh) 一种针对u型地埋换热器的性能预测半解析方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant