CN113552150A - 一种用于尿素检测及电解氧化的镍基催化剂 - Google Patents

一种用于尿素检测及电解氧化的镍基催化剂 Download PDF

Info

Publication number
CN113552150A
CN113552150A CN202110822227.4A CN202110822227A CN113552150A CN 113552150 A CN113552150 A CN 113552150A CN 202110822227 A CN202110822227 A CN 202110822227A CN 113552150 A CN113552150 A CN 113552150A
Authority
CN
China
Prior art keywords
nickel
based catalyst
urea
catalyst
dicyandiamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110822227.4A
Other languages
English (en)
Inventor
常兴华
金胜明
王海东
赵占红
苏晓川
胡东
陈雨沫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202110822227.4A priority Critical patent/CN113552150A/zh
Publication of CN113552150A publication Critical patent/CN113552150A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • G01N23/2005Preparation of powder samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种用于尿素检测及电解氧化的镍基催化剂,所述镍基催化剂通过将双氰胺和镍盐混合后,高温反应制得。所述镍基催化剂是一种镍纳米颗粒嵌入氮掺杂的竹节碳纳米管的镍基催化剂。本发明制备过程简单,成本较低,适合大规模的生产,且制备的镍基催化剂催化活性好。

Description

一种用于尿素检测及电解氧化的镍基催化剂
技术领域
本发明涉及化学材料技术领域,涉及一种用于尿素检测及电解氧化的镍基催化剂,具体来说,涉及一种镍基催化剂及其制备方法和应用。
背景技术
化工厂生产排除的工业废水、农业生产造成的废水以及城市废水中均含有大量的尿素,未经任何处理直接排放则会造成水体污染,影响自然界的水体循环,对土壤和人类健康造成伤害。对含氮成分的污水采用合理办法进行净化处理,在环境和工业领域有重大意义。
传统的尿素处理方式包括水解、吸附、生物降解和化学氧化等,但这些方法所需设备的高成本以及过度能量消耗限制了其大规模应用。相较之下,将尿素氧化的反应(UOR)直接转化为电响应,能够很好避免上述问题;电响应运行简单,且产物稳定、无毒(CO2,N2和H2);更重要的是,除贵金属对尿素的氧化过程具有高活性外,部分过渡金属也可以有效地实现碱性条件下的尿素电氧化反应,很大程度上降低了催化剂的成本。研究表明:与其他金属催化剂相比,镍基催化剂具有更高的UOR活性,且三价镍(Ni3+)被证实为活性中心,因此,当前阳极催化剂的研究重点主要集中于镍基金属。
制备的镍基金属材料,首先存在的就是电流密度较小的问题,由于UOR发生在电极的三相界面上,因此催化剂的结构和形貌对其电化学性能有重要的影响;现有研究表明:低维纳米结构具有暴露的晶体表面和高比表面积,以提供更多反应活性位点,能提高尿素氧化的性能。纯的金属镍催化剂催化尿素氧化往往具有材料稳定性差的缺点,难以长时间的进行电氧化过程,在催化剂材料制备过程中,使用导电性好、比表面积大、好的化学稳定性的支撑材料能提高催化剂的耐久性和催化活性,例如:石墨烯,碳纳米管等能有效的提高金属催化剂的催化活性并且能减少金属的载量。
目前,大量的镍基纳米材料被制备出来,这些材料能有效的提高尿素氧化的催化活性,应用前景较好。但是除了性能良好之外,在材料合成中仍有一些问题亟待解决,例如制备过程繁琐,成本较高,不适合大规模的生产等等,这些都限制了催化剂在催化尿素氧化方面的实际应用。
针对相关技术中的问题,目前尚未提出有效的解决方案。
发明内容
针对相关技术中的上述技术问题,本发明提出一种用于尿素检测及电解氧化的镍基催化剂,其制备过程简单,成本较低,适合大规模的生产,且制备的镍基催化剂催化活性好。
为实现上述技术目的,本发明的技术方案是这样实现的:
一方面,本发明提供一种镍基催化剂,其特征在于,其为镍纳米颗粒嵌入氮掺杂的竹节碳纳米管的镍基催化剂。
进一步地,所述镍纳米颗粒位于所述竹节碳纳米管的末端。
进一步地,所述镍基催化剂的X-射线衍射图具有包括衍射角2θ在:26.2°、44.5°、51.8°、76.3°的衍射峰。
进一步地,所述镍基催化剂具有基本上如图3所示的X射线粉末衍射图。
进一步地,所述镍基催化剂的形貌具有基本上如图1所示的扫描电镜图。所述镍基催化剂结构是直径为40~200nm的纳米管,催化剂中镍纳米颗粒的平均粒径50nm。
一方面,本发明提供一种镍基催化剂的制备方法,步骤为:双氰胺和镍盐混合后,在高温作用下,双氰胺先热解,同时镍盐受热转变为金属单质,镍盐不仅作为热解催化剂将含碳有机物在高温下催化热解,也作为生长催化剂使得热解产生的碳原子沉积于催化剂表面,随后逐层生长为碳管,直至催化剂颗粒失活。
进一步地,所述镍盐为无机镍盐,进一步地,所述无机镍盐选自硝酸镍。
进一步地,所述镍盐中Ni与双氰胺中N的摩尔比为1:9~1:21。进一步地,所述Ni:N的摩尔比优选为1:14、1:9、1:21。
进一步地,所述高温反应在惰性气氛中进行。进一步地,所述惰性气氛为氩气气氛。
进一步地,所述高温反应的具体过程为:将双氰胺、镍盐混合后,在氩气气氛中,以5~20℃/min的升温速率加热到700~900℃,保持1~5小时。
进一步地,所述高温反应的具体过程为:将双氰胺、镍盐混合后,在氩气气氛中,以10℃/min的升温速率加热到700~900℃,保持2小时。
另一方面,本发明提供一种镍基催化剂在制备用于尿素检测及电解氧化废水中尿素的镍基催化剂中的应用。
本发明的有益效果:
本发明提供一种镍基催化剂及其制备方法和应用,解决现有技术中尿素氧化催化剂存在的氧化活性低、结构稳定性差、合成条件复杂等问题,实现采用简易的催化热分解法合成具有高催化氧化活性、良好耐久性的镍基催化剂。
本发明通过将硝酸镍作为镍源和生长催化剂,双氰胺作为碳源和氮源,混合后,在氩气氛围中经过高温(800℃)煅烧即可得到镍纳米颗粒嵌入氮掺杂的碳纳米管(Ni-NCNT)的镍基催化剂。所述镍基催化剂中,碳纳米管的表现形式为一维中空管材料,镍纳米粒子嵌入碳纳米管,构成复合材料。其中的碳纳米管具有良好的导电性且机械稳定,有利于电子传输并有独特的催化性能;通过将镍纳米粒子嵌入碳纳米管后形成的复合材料,可以在持续氧化条件下增强材料的稳定性和耐腐蚀性。
本发明制备的复合材料中,镍纳米颗粒位于CNTs的顶端,避免金属镍的团聚,并有利于活性位点的充分暴露,实验结果表明:适当的氮掺入有利于促进金属Ni电化学转化为活性Ni3+
相比纯镍的电催化剂,由于N掺杂促进了活性Ni3+的转化,本发明制备的镍基催化剂对尿素的氧化效果大大提升;通过将镍负载在碳纳米管上赋予催化剂更优的尿素氧化性能;具有良好的稳定性;在催化过程中,由于镍复合碳载体后,加速氧化电解的反应动力学。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1本发明较优实施例制备的镍基催化剂的扫描电镜图
图2图1所述的镍基催化剂的透射电镜图
图3本发明制备的镍基催化剂的X-射线粉末衍射图
图4为催化剂在1mol KOH的电解液中LSV曲线,图中1.38V与1.4V处为金属Ni氧化为Ni3+的氧化峰,负载在氮掺杂的碳纳米管(NCNT)上的镍基催化剂比纯镍催化剂的氧化峰电流强度大,且氧化峰电位更小,说明N掺杂促进了活性物种Ni3+的转化,这将大大提升尿素的氧化效果。
图5为催化剂在含有0.33M尿素的1mol KOH中LSV曲线,加入尿素后氧化电流明显变大,说明合成的镍基催化剂均有良好的催化氧化效果,对比纯镍催化剂,负载在碳纳米管上后赋予催化剂更优的UOR性能。
图6为催化剂在含有0.33M尿素的1mol KOH中电流密度为10mA/cm-2时的恒电流曲线,经过15小时的氧化电解后,相比于纯镍,在NCNT保护下Ni-NCNT电解电压未发生明显升高,说明具有良好的稳定性。
图7为0.45V电压催化剂的交流阻抗曲线,镍复合碳载体后阻抗减小,电子转移能力提高,有利于加速氧化电解的反应动力学。
图8为每隔30s向电解液中添加0.1mM尿素的计时电流曲线,每次加入尿素溶液后氧化电流会迅速升高。
图9为计时电流曲线中电解液的尿素浓度与氧化产生的电流密度的线性拟合曲线,根据拟合曲线斜率可知催化剂检测和氧化尿素时的灵敏度为131.53uA/mM·cm2,表明合成的催化剂不仅可以用于处理污水,还可以用于水体中微量尿素成分的检测。
图10为实施例1制备的镍基催化剂的扫描电镜图
图11为实施例2制备的镍基催化剂的扫描电镜图
图12为实施例3制备的镍基催化剂的扫描电镜图
图13为实施例4制备的镍基催化剂的扫描电镜图
图14为实施例1~4制备的镍基催化剂的UOR性能对比图。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
为了方便理解本发明的上述技术方案,以下通过具体使用方式上对本发明的上述技术方案进行详细说明。
实施例1
一种镍基催化剂的制备方法,步骤为:将双氰胺、镍盐混合后,在氩气气氛中,以10℃/min的升温速率加热到700℃,保持2小时反应制得;
所述镍盐中Ni与双氰胺中N的摩尔比为1:14。
所述镍盐选自:硝酸镍。
实施例2
一种镍基催化剂的制备方法,步骤为:将双氰胺、镍盐混合后,在氩气气氛中,以10℃/min的升温速率加热到800℃,保持2小时反应制得。所述镍盐中Ni与双氰胺中N的摩尔比为1:9。
所述镍盐选自:硝酸镍。
实施例3
一种镍基催化剂的制备方法,步骤为:将双氰胺、镍盐混合后,在氩气气氛中,以10℃/min的升温速率加热到800℃,保持2小时反应制得。
所述镍盐中Ni与双氰胺中N的摩尔比为1:21。
所述镍盐选自:硝酸镍。
实施例4
一种镍基催化剂的制备方法,步骤为:将双氰胺、镍盐混合后,在氩气气氛中,以10℃/min的升温速率加热到900℃,保持2小时反应制得。
所述镍盐中Ni与双氰胺中N的摩尔比为1:9。
所述镍盐选自:硝酸镍。
对比例
试验过程同实施例1,区别在于,将双氰胺替换为葡萄糖;制备得到纯镍的催化剂。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种镍基催化剂,其特征在于,其为镍纳米颗粒嵌入氮掺杂的竹节碳纳米管的镍基催化剂。
2.根据权利要求1所述的镍基催化剂,其特征在于,所述镍纳米颗粒位于所述竹节碳纳米管的末端。
3.根据权利要求1所述的镍基催化剂,其特征在于,所述镍基催化剂的X-射线衍射图具有包括衍射角2θ在:26.2°、44.5°、51.8°、76.3°的衍射峰。
4.根据权利要求1所述的镍基催化剂,其特征在于,所述镍基催化剂具有基本上如图3所示的X射线粉末衍射图。
5.根据权利要求1所述的镍基催化剂,其特征在于,所述镍基催化剂的形貌具有基本上如图1所示的扫描电镜图。
6.一种镍基催化剂的制备方法,其特征在于,步骤为:双氰胺和镍盐混合后,高温反应制得。
7.根据权利要求6所述镍基催化剂的制备方法,其特征在于,所述镍盐选自:硝酸镍。
8.根据权利要求6所述镍基催化剂的制备方法,其特征在于,所述镍盐中Ni与双氰胺中N的摩尔比为1:9~1:21。
9.根据权利要求6所述镍基催化剂的制备方法,其特征在于,所述高温反应的具体过程为:将双氰胺、镍盐混合后,在惰性气体气氛中,以5~20℃/min的升温速率加热到700~900℃,保持1~5小时。
10.一种权利要求1所述镍基催化剂在制备用于尿素检测及电解氧化废水中尿素的催化剂中的应用。
CN202110822227.4A 2021-07-20 2021-07-20 一种用于尿素检测及电解氧化的镍基催化剂 Pending CN113552150A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110822227.4A CN113552150A (zh) 2021-07-20 2021-07-20 一种用于尿素检测及电解氧化的镍基催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110822227.4A CN113552150A (zh) 2021-07-20 2021-07-20 一种用于尿素检测及电解氧化的镍基催化剂

Publications (1)

Publication Number Publication Date
CN113552150A true CN113552150A (zh) 2021-10-26

Family

ID=78132248

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110822227.4A Pending CN113552150A (zh) 2021-07-20 2021-07-20 一种用于尿素检测及电解氧化的镍基催化剂

Country Status (1)

Country Link
CN (1) CN113552150A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101066758A (zh) * 2007-05-25 2007-11-07 上海第二工业大学 高氮掺杂竹节状碳纳米管材料及合成方法
CN104944410A (zh) * 2015-06-01 2015-09-30 北京理工大学 一种合成钴纳米粒子与竹节状氮掺杂碳纳米管复合材料的方法
CN105107540A (zh) * 2015-09-06 2015-12-02 太原理工大学 氮掺杂碳纳米管包覆镍铁的电解水析氧催化材料及应用
CN106442689A (zh) * 2016-09-29 2017-02-22 青岛大学 基于氧化镍‑碳纳米管的多巴胺传感器的制备与应用
CN111211300A (zh) * 2020-01-10 2020-05-29 南昌大学 金属镍/氮掺杂碳纳米管及其锂硫电池复合正极材料
CN111777058A (zh) * 2020-05-20 2020-10-16 中国科学技术大学 一种碳纳米管的制备及其在锂离子电池中的应用
JP2020201144A (ja) * 2019-06-11 2020-12-17 国立大学法人信州大学 尿素濃度測定方法および尿素濃度測定装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101066758A (zh) * 2007-05-25 2007-11-07 上海第二工业大学 高氮掺杂竹节状碳纳米管材料及合成方法
CN104944410A (zh) * 2015-06-01 2015-09-30 北京理工大学 一种合成钴纳米粒子与竹节状氮掺杂碳纳米管复合材料的方法
CN105107540A (zh) * 2015-09-06 2015-12-02 太原理工大学 氮掺杂碳纳米管包覆镍铁的电解水析氧催化材料及应用
CN106442689A (zh) * 2016-09-29 2017-02-22 青岛大学 基于氧化镍‑碳纳米管的多巴胺传感器的制备与应用
JP2020201144A (ja) * 2019-06-11 2020-12-17 国立大学法人信州大学 尿素濃度測定方法および尿素濃度測定装置
CN111211300A (zh) * 2020-01-10 2020-05-29 南昌大学 金属镍/氮掺杂碳纳米管及其锂硫电池复合正极材料
CN111777058A (zh) * 2020-05-20 2020-10-16 中国科学技术大学 一种碳纳米管的制备及其在锂离子电池中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
周兆飞等: "镍基/功能性碳纳米管对尿素电氧化的", 《化学工业与工程》 *
李建树: "镍基催化剂的制备及尿素电氧化行为的研究", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》 *

Similar Documents

Publication Publication Date Title
Niu et al. Highly stable nitrogen-doped carbon nanotubes derived from carbon dots and metal-organic frameworks toward excellent efficient electrocatalyst for oxygen reduction reaction
Mandegarzad et al. MOF-derived Cu-Pd/nanoporous carbon composite as an efficient catalyst for hydrogen evolution reaction: A comparison between hydrothermal and electrochemical synthesis
Wan et al. Well-dispersed CoS 2 nano-octahedra grown on a carbon fibre network as efficient electrocatalysts for hydrogen evolution reaction
CN108502859B (zh) 一种复合电极的光化学制备方法
CN113788516B (zh) 一种过渡金属碳酸盐纳米材料在电催化还原硝酸盐反应中的应用
Wei et al. Economical, green and rapid synthesis of CDs-Cu2O/CuO nanotube from the biomass waste reed as sensitive sensing platform for the electrochemical detection of hydrazine
Liu et al. Manganese dioxide coated graphene nanoribbons supported palladium nanoparticles as an efficient catalyst for ethanol electrooxidation in alkaline media
CN108660473A (zh) 一种基于MXene与过渡金属碳化物复合纳米结构的电解海水制氢催化剂及其合成方法
Abbas et al. Decorated carbon nanofibers with mixed nickel− manganese carbides for methanol electro-oxidation in alkaline solution
Yang et al. Fabrication of sandwich structured C/NiO/TiO2 nanotube arrays for enhanced electrocatalytic activity towards hydrogen evolution
CN113881965B (zh) 一种以生物质碳源为模板负载金属纳米颗粒催化剂及其制备方法和应用
CN111282588A (zh) 一种电解水析氢催化剂及其制备方法与应用
Xian et al. α-FeOOH nanowires loaded on carbon paper anodes improve the performance of microbial fuel cells
Salarizadeh et al. Ternary transition metal chalcogenides decorated on rGO as an efficient nanocatalyst towards urea electro-oxidation reaction for biofuel cell application
Wang et al. Hierarchical molybdenum carbide/N-doped carbon as efficient electrocatalyst for hydrogen evolution reaction in alkaline solution
CN110629243B (zh) 一种桑葚状NiS/Ni复合纳米颗粒及其制备方法和应用
CN113036165A (zh) 一种氮硫掺杂的缺陷化碳纳米管及其制备方法
Hameed et al. Fabrication of electrospun nickel sulphide nanoparticles onto carbon nanofibers for efficient urea electro-oxidation in alkaline medium
Liu et al. Porous coordination polymer-derived ultrasmall CoP encapsulated in nitrogen-doped carbon for efficient hydrogen evolution in both acidic and basic media
CN113755858B (zh) 多孔碳载金属钼化合物的制备及析氢应用
Yan et al. Ru nanoparticles supported on Co-embedded N-doped carbon nanotubes as efficient electrocatalysts for hydrogen evolution in basic media
Cao et al. Graphitic carbon wrapped Co on Zn, Co, N-codoped 3D tremella-like carbon with abundant nanocages for high-performance oxygen reduction
CN113737218A (zh) 铜基石墨烯气凝胶复合催化剂、气体扩散电极和应用
Song et al. Biochar-supported Fe3C nanoparticles with enhanced interfacial contact as high-performance binder-free anode material for microbial fuel cells
CN107694586A (zh) 一种石墨烯缠绕碳化钼/碳微球电催化剂及其制备方法以及在酸性条件下电解水制氢中应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211026

RJ01 Rejection of invention patent application after publication