CN113552037A - 一种测试垃圾双孔隙度渗流参数的装置及方法 - Google Patents

一种测试垃圾双孔隙度渗流参数的装置及方法 Download PDF

Info

Publication number
CN113552037A
CN113552037A CN202110622611.XA CN202110622611A CN113552037A CN 113552037 A CN113552037 A CN 113552037A CN 202110622611 A CN202110622611 A CN 202110622611A CN 113552037 A CN113552037 A CN 113552037A
Authority
CN
China
Prior art keywords
water
garbage
seepage
region
small pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110622611.XA
Other languages
English (en)
Other versions
CN113552037B (zh
Inventor
胡杰
张晨晟
柯瀚
陈云敏
徐兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202110622611.XA priority Critical patent/CN113552037B/zh
Publication of CN113552037A publication Critical patent/CN113552037A/zh
Application granted granted Critical
Publication of CN113552037B publication Critical patent/CN113552037B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/0806Details, e.g. sample holders, mounting samples for testing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明公开了一种测试垃圾双孔隙度渗流参数的装置及方法,该方法通过饱和状态下定水头渗流试验获取垃圾整体渗流参数,巧妙地利用大、小孔隙区域持水能力的差异性,分阶段测试大、小孔隙区域渗流参数,通过重力下自由排水试验获取垃圾大孔隙区域渗流参数,通过不同气压下分级排水试验获取垃圾小孔隙区域渗流参数。所述测试装置包括装填结构、均匀布水结构、可调节供水供气结构、测量结构,通过物理测试的方式直接确定了双孔隙度模型中13个渗流参数的取值,仅大孔隙与小孔隙区域的界面交换系数k a 通过数值反演得到,减少了需要数值模拟的渗流参数数量,显著提升了双孔隙度模型用于垃圾填埋场渗流分析的可行性及实际使用价值。

Description

一种测试垃圾双孔隙度渗流参数的装置及方法
技术领域
本发明涉及测量领域,具体涉及一种测试垃圾双孔隙度渗流参数的装置及方法。
背景技术
我国城市及周边分布着2.8万余座生活垃圾填埋场,存量垃圾达60多亿吨。垃圾生化降解产生大量渗滤液和填埋气容易诱发填埋体滑坡、地下水土及大气污染等环境灾害,这些灾害的产生源头与液气在垃圾孔隙中的运移过程密切相关,因此准确认识生活垃圾的水气渗流特性是提高填埋场灾害防控水平的基础。
垃圾渗流定义为水(即渗滤液)和气(填埋气)在垃圾孔隙中的流动。和一般均质岩土体不同,生活垃圾组分多样,复杂的颗粒形状及不良的颗粒级配引起多尺寸孔隙并存。垃圾渗流影响因素包括垃圾的颗粒级配、孔隙比、含水率、水或者气本身的粘滞度等。渗滤液在垃圾堆体内的运移具有明显的不均质性,大孔隙区域为优势流,小孔隙区域为基质流,可以建立双孔隙度模型或单孔隙度模型分析垃圾堆体水气运移过程。传统单孔隙度渗流理论仅适用于均质岩土体,无法准确描述垃圾填埋场水气优势流行为。现有研究已经表明双孔隙度模型的精确度显著高于单孔隙度模型,例如Ke等(Analytical solution of leachateflow to vertical wells in municipal solid waste landfills using a dual-porosity model.[J]Engineering Geology,2018,239,27-40.)对上海某填埋场的竖井降水试验进行数值模拟,距离4.4m处的实测水位降深为1.66m,单孔隙度模型模拟计算水位降深(4.23m)远高于实测值,而双孔隙度模型模拟计算值(1.43m)与实测值较为接近(如图1所示)。
因此需要建立双孔隙度模型来获取渗流参数,双孔隙度模型将垃圾多孔介质分为大孔隙优势流区域及小孔隙基质流区域并赋予不同渗流参数,渗滤液分别在大孔隙区域和小孔隙区域运移,同时大孔隙区域和小孔隙区域之间由于存在水头差发生水分交换。相比于单孔隙度模型,双孔隙度模型虽能更加准确描述流体运移过程,但其计算所需渗流参数较多。单孔隙度模型在进行计算时需要的渗流参数为6个,而双孔隙度模型需要的渗流参数为14个。对于所述双孔隙度模型中的渗流参数的获得一般有物理试验和数值模拟两种方式。数值模拟是对现场或室内的垃圾水气运移试验结果进行反演,通过数值模拟这14个参数里的10余个使得计算结果与测试值相吻合。这也是当前学者们获得双孔隙度渗流参数最常用的方法,如Ke等(Analytical solution of leachate flow to vertical wells inmunicipal solid waste landfills using a dual-porosity model.[J]EngineeringGeology,2018,239,27-40.)和Liu等(Modeling the oxygen transport process underpreferential flow effect in landfill.[J]Environmental Science and PollutionResearch,2018,25,18559-18569.)进行的竖井降水及注气试验无法区分出大孔隙和小孔隙区域的渗流过程,导致在试验过程中是按照单孔隙模型(即把垃圾堆体视作一个整体)来测试数据,在完成试验以后通过数值模拟的方式把测试结果拆分成双孔隙度模型,分别得到大孔隙区域渗流参数和小孔隙区域渗流参数。如Ke等通过数值模拟竖井抽水试验确定其中3个关键参数:大孔隙区域体积占比wf、大孔隙区域饱和渗透系数kswf、小孔隙区域饱和渗透系数kswm,而剩余的模型参数取值也只是进行简单假定或借鉴已有结果,这种数值模拟方式难以保证渗流参数取值的真实性及准确性,也显著降低了双孔隙度渗流模型的可靠性。
物理试验相比于数值模拟具有更好的唯一性和可靠性,但是还没有通过物理试验直接确定双孔隙度模型中的渗流参数的测试装置及方法。目前文献中报道的物理试验无法区分出大孔隙和小孔隙区域的渗流过程,试验的直接测试结果仅仅只是大、小孔隙各自渗流参数的混合值,既不能代表大孔隙区域渗流参数,也不能代表小孔隙区域渗流参数。现有技术难以通过物理方式测试获取垃圾双孔隙度渗流参数取值,极大地限制了双孔隙度模型用于垃圾填埋场渗流分析的可行性及实际使用价值。
发明内容
为克服现有技术的不足,本发明所要解决的技术问题是提供一种测试垃圾双孔隙度渗流参数的装置及方法,巧妙地利用大、小孔隙区域持水能力的差异性,分阶段获得大、小孔隙区域渗流参数,分别根据自主设计的饱和状态下定水头渗流试验确定垃圾整体渗流参数、根据重力下自由排水试验确定大孔隙区域渗流参数,根据不同气压下分级排水试验确定小孔隙区域渗流参数,通过物理测试的方式直接确定了双孔隙度模型中13个渗流参数的取值,仅大孔隙与小孔隙区域的界面交换系数ka通过数值反演得到,减少了需要数值模拟的渗流参数数量,提高了双孔隙度渗流模型的精度和可靠度。
本发明所采用的技术方案如下:一种测试垃圾双孔隙度渗流参数的方法,所述的方法包括以下步骤:
(1-1)在垃圾双孔隙度渗流参数测试装置中,按指定孔隙比分层均匀填充垃圾,获得指定孔隙比的垃圾柱,直接测量所述垃圾柱的体积Vwaste
(1-2)进行饱和状态下定水头渗流试验,从底部通入气体排出所述垃圾柱孔隙中的空气,然后在所述测试装置顶部施加一定范围的负压;从所述测试装置底部对所述垃圾柱进行缓慢注水,当整个垃圾柱浸没在水中后即视为饱和状态,停止注水,直接测量得到饱和阶段累积注水量Vtotal;在所述垃圾柱一直处于饱和状态下,在不同水头下(所述水头均高于所述垃圾柱顶部),直接测量所述测试装置底部的出流速度vtotal以及相应水力梯度itotal;作为优选,所述一定范围负压为20~50kPa;
(1-3)在重力下进行自由排水试验,实时直接测量自由排水阶段初始时刻(饱和状态下)所述测试装置底部的出水流速vf0及其渗流梯度if0,自由排水阶段后续时刻(非饱和状态下)测得的所述出水流速vft、渗流梯度ift以及相应的大孔隙吸力,大孔隙体积含水量θwf,以及自由排水阶段累积出流量Vf
(1-4)进行不同气压下分级排水试验,对所述的垃圾柱分级增加气压,直接测量不同气压下所述测试装置底部的累计出流量Vm、出流速度vm,渗流梯度im,相应的小孔隙吸力以及小孔隙体积含水量θwm
作为优选,所述的孔隙比为所述垃圾柱中孔隙体积与其固体颗粒体积之比,反映了所述垃圾柱的密实程度,孔隙比可以通过现场垃圾实际测得;不同学者根据各自研究的实际情况对于垃圾的大小孔隙的划分界限不一样,一般以30-145μm为界,其中直径在此界限及以上的为大孔隙,直径在此界限以下为小孔隙。
作为优选,所述水头为计算点距基准面的高度,在本发明中指的是水位面距离所述垃圾柱底部的高度。所述水头的计算方法为:大孔隙水头hf=大孔隙吸力的负数/每米水头的压力,小孔隙水头hm=小孔隙吸力的负数/每米水头的压力;每米水头的压力10kPa/m。
作为优选,利用步骤(1-2)的测量结果,获得垃圾整体渗流参数,方法如下:
(3-1)通过式(1)获得垃圾整体饱和体积含水量θws
Figure BDA0003100091290000031
(3-2)根据测试装置底部的出流速度vtotal和相应水力梯度itotal的测量结果,通过式(2)获得整体饱和渗透系数ksw
Figure BDA0003100091290000032
作为优选,利用步骤(1-2)、(1-3)的测量结果,获得垃圾大孔隙区域渗流参数取值,方法如下:
(4-1)根据研究(Fellner等,2010,Modeling of leachate generation from MSWlandfills by a 2-dimensional 2-domain approach.Waste Management,30,2084-2095)表明:在饱和状态下认定所述大孔隙全部被水占据,因此定义大孔隙区域饱和体积含水量θwsf=1;同时在自由排水阶段认定大孔隙中的水可以全部渗流排出,因此定义大孔隙区域残余体积含水量θwrf=0;
(4-2)在自由排水阶段初始时刻,可认为大孔隙区域仍处于饱和状态,根据自由排水阶段初始时刻测得的所述出水流速vf0及其渗流梯度if0,通过式(3)计算得到大孔隙区域饱和渗透系数kswf
Figure BDA0003100091290000041
(4-3)通过式(4)计算得到大孔隙区域体积占比wf
Figure BDA0003100091290000042
(4-4)根据自由排水阶段获得的所述大孔隙体积含水量θwf和水头hf,通过式(5),采用最小二乘法(MATLAB软件)拟合得到大孔隙区域进气值的倒数αf及决定持水曲线斜率的孔隙尺寸分布参数nf
Figure BDA0003100091290000043
式中:θwf为大孔隙区域体积含水量,θwrf为大孔隙区域残余体积含水量,θwsf为大孔隙区域饱和体积含水量,Sewf为大孔隙区域有效饱和度,hf为大孔隙区域的水头(单位:m),αf为大孔隙区域进气值的倒数(单位:m-1),nf为大孔隙区域决定持水曲线斜率的孔隙尺寸分布参数,mf=1-1/nf
(4-5)在自由排水阶段后续时刻,大孔隙区域处于非饱和状态,根据自由排水阶段后续时刻测得的所述出水流速vft及其渗流梯度ift,计算得到大孔隙区域非饱和渗透系数kwf=vft/ift,通过式(6),采用最小二乘法(MATLAB软件)拟合得到大孔隙区域连通性参数lf
Figure BDA0003100091290000044
式中:kwf为大孔隙区域非饱和渗透系数(单位:m/s);lf为大孔隙区域连通性参数;
作为优选,利用步骤(1-4)的测量结果,获得垃圾小孔隙区域渗流参数,方法如下:
(5-1)通过式(7)计算得到小孔隙区域饱和渗透系数kswm
Figure BDA0003100091290000051
(5-2)通过式(8)计算得到小孔隙区域饱和体积含水量θwsm
Figure BDA0003100091290000052
(5-3)在最后一次施加气压排水后所述垃圾柱处于残余含水量状态,对所述垃圾柱烘干,直接测量得到小孔隙区域残余体积含水量θwrm取值;
(5-4)根据分级排水阶段获得的所述小孔隙体积含水量θwm和水头hm,通过式(9),采用最小二乘法(MATLAB软件)拟合得到小孔隙区域进气值的倒数αm及决定持水曲线斜率的孔隙尺寸分布参数nm
Figure BDA0003100091290000053
式中:θwm为小孔隙区域体积含水量,θwrm为小孔隙区域残余体积含水量,θwsm为小孔隙区域饱和体积含水量,Sewm为小孔隙区域有效饱和度,hm为小孔隙区域的水头(单位:m),αm为小孔隙区域进气值的倒数(单位:m-1),nm为小孔隙区域决定持水曲线斜率的孔隙尺寸分布参数,mm=1-1/nm
(5-5)根据分级排水阶段测得的所述出水流速vm及其渗流梯度im,计算得到小孔隙区域非饱和渗透系数kwm=vm/im,通过式(10),采用最小二乘法(MATLAB软件)拟合得到小孔隙区域连通性参数lm
Figure BDA0003100091290000054
式中:kwm为小孔隙区域非饱和渗透系数(单位:m/s);lm为小孔隙区域连通性参数;
作为优选,在确定整体渗流参数、大孔隙区域渗流参数和小孔隙区域渗流参数取值后,基于式(5)、(6)、(9)、(10)、(11)-(13)所述的双孔隙度渗流模型,采用COMSOLMultiphysics软件模拟底部出流量,反演得到大孔隙区域与小孔隙区域界面交换系数ka
大孔隙区域和小孔隙区域的渗流控制关系式为:
大孔隙:
Figure BDA0003100091290000061
小孔隙:
Figure BDA0003100091290000062
交换项:Γw=ka(hf-hm) (13)
式中:t代表时间(单位:s),z代表高度(单位:m),Гw为大孔隙区域与小孔隙区域质量交换项(单位:s-1),ka为大小孔隙区域界面交换系数(单位:m-1s-1)。
本发明还公开了一种垃圾双孔隙度渗流参数测试装置,所述测试装置包括装填结构、均匀布水结构、可调节供水供气结构、测量结构,其中:
所述装填结构,用于装填垃圾柱的容纳物,相对密封,为所述可调节供水供气结构以及所述测量结构提供接口;
所述均匀布水结构,用于给所述垃圾柱均匀供水,使得所述垃圾柱各部分含水量趋于一致;
所述可调节供水供气结构,用于给所述垃圾柱注水或注气,来控制所述垃圾柱的含水量和顶部气压;
所述测量结构:在饱和状态下定水头渗流试验中,测量饱和阶段累积注水量Vtotal;在所述垃圾柱一直处于饱和状态下,在不同水头下(所述水头均高于所述垃圾柱顶部),测量所述测试装置底部的出流速度vtotal以及相应的水力梯度itotal;在重力下自由排水试验中,直接测量自由排水阶段初始时刻(饱和状态下)所述测试装置底部的出水流速vf0及其渗流梯度if0,自由排水阶段后续时刻(非饱和状态下)测得的所述出水流速vft、渗流梯度ift以及相应的大孔隙吸力,大孔隙体积含水量θwf,以及自由排水阶段累积出流量Vf;在不同气压下分级排水试验中,测量不同气压下累计出流量Vm、出流速度vm,渗流梯度im,相应的小孔隙吸力以及小孔隙体积含水量θwm
作为优选,所述装填结构包括:容器、气腔、密封盖;所述容器用于装填垃圾柱;所述气腔用于注气时缓冲气压以及注水时调节水头;所述密封盖,用于盖住所述容器,使得所述装填装置内的含水量和气压保持一定值,不受外界影响。
作为优选,所述均匀布水结构包括:多孔板和碎石层;所述碎石层用于防止渗滤液流动时带动垃圾中细颗粒堵塞多孔板,并使得注水注气时流体能均匀分布在所述垃圾柱表面;所述垃圾柱顶部和底部碎石层铺设于所述多孔板与所述垃圾柱之间。
作为优选,所述可调节供水供气结构包括:供水器、水阀门,注气器、调压阀、流量计和压力计;其中所述供水器和水阀门用于调节供水量;所述注气器、调压阀、流量计和压力计用于调节注气量;所述可调节供水供气结构通过管道与所述装填结构连接。
作为优选,所述测量结构包括:时域反射仪(TDR)、张力计、储水箱和水量计;所述TDR用于监测垃圾柱的含水率;所述张力计用于监测垃圾柱吸力;所述储水箱用于储存从垃圾柱中渗流出来的水;所述水量计用于测量储水箱中的水量;在所述装填结构侧壁不同高度打孔,所述TDR、张力计和所述孔通过密封圈进行连接;所述储水箱与所述装填结构底部通过出水管路连接。
作为优选,在所述垃圾柱顶部和底部均铺满碎石层及多孔板。
作为优选,所述碎石层厚度为500~1000mm之间,所述多孔板的开孔大小为8~30mm之间。
本发明的有益效果是:
1)本发明巧妙地利用大、小孔隙区域持水能力的差异性,分阶段获得大、小孔隙区域渗流参数,分别根据自主设计的饱和状态下定水头渗流试验确定垃圾整体渗流参数、根据重力下自由排水阶段试验确定大孔隙区域渗流参数,根据不同气压作用下分级排水试验确定小孔隙区域渗流参数,通过物理测试的方式直接确定了双孔隙度模型中13个渗流参数的取值,仅大孔隙与小孔隙区域的界面交换系数ka通过数值反演得到,减少了需要数值模拟的渗流参数数量,提高了双孔隙度模型的精度和可靠度。而目前文献中报道的物理试验无法区分出大孔隙和小孔隙区域的渗流过程,试验的直接测试结果仅仅只是大、小孔隙各自渗流参数的混合值,既不能代表大孔隙区域渗流参数,也不能代表小孔隙区域渗流参数,极大地限制了垃圾双孔隙度模型用于垃圾填埋场渗流分析的可行性及实际使用价值。本发明克服了垃圾双孔隙度渗流参数无法直接通过物理测试方式确定的技术瓶颈,提升了双孔隙度模型用于填埋场渗流分析的可行性及实际使用价值;
2)由于现场不同深度填埋垃圾的应力水平和降解程度相差较大,导致垃圾的优先流程度在不同深度存在差异;本发明通过测试装置内填充不同孔隙比及降解龄期的垃圾柱,用以研究应力压缩和降解作用对垃圾双孔隙度渗流参数的影响,为准确分析不同深度的渗流过程提供依据;
3)测试装置操作简便,同一垃圾柱在整个测试过程无需拆卸,避免了拆卸过程对垃圾柱孔隙结构产生的扰动。
附图说明
图1是分别用单孔隙模型和双孔隙模型对竖井降水进行模拟的结果图。
图2是本发明所述垃圾双孔隙度渗流参数测试装置的结构示意图;
图3是本发明所述测试垃圾双孔隙度渗流参数的方法的流程示意图;
图中:1、容器,2、垃圾柱,3、气腔,4、多孔板,5、碎石层,6、注气器,7、调压阀,8、流量计,9、压力计,10、阀门,11、TDR传感器,12、张力计,13、密封圈,14、密封盖,15、供水器,16、储水箱,17、水量计。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
如图2所述,本发明公开了一种垃圾双孔隙度渗流参数测试装置,所述测试装置包括装填结构、均匀布水结构、可调节供水供气结构、测量结构,其中:
所述装填结构,用于装填垃圾柱的容纳物,相对密封,为所述可调节供水供气结构以及所述测量结构提供接口;
所述均匀布水结构,用于给所述垃圾柱均匀供水,使得所述垃圾柱各部分含水量趋于一致;
所述可调节供水供气结构,用于给所述垃圾柱注水或注气,来控制所述垃圾柱的含水量和顶部气压;
所述测量结构:在饱和状态下定水头渗流试验中,测量饱和阶段累积注水量Vtotal;在所述垃圾柱一直处于饱和状态下,在不同水头下(所述水头均高于所述垃圾柱顶部),测量所述测试装置底部的出流速度vtotal以及相应的水力梯度itotal;在重力下自由排水试验中,实时直接测量自由排水阶段初始时刻(饱和状态下)所述测试装置底部的出水流速vf0及其渗流梯度if0,自由排水阶段后续时刻(非饱和状态下)测得的所述出水流速vft、渗流梯度ift以及相应的大孔隙吸力,大孔隙体积含水量θwf,以及自由排水阶段累积出流量Vf;在不同气压下分级排水试验中,测量不同气压下累计出流量Vm、出流速度vm,渗流梯度im,相应的小孔隙吸力以及小孔隙体积含水量θwm
作为优选,所述装填结构包括:容器1、气腔3、密封盖14;所述容器用于装填垃圾柱;所述气腔用于注气时缓冲气压以及注水时调节水头用;所述密封盖,用于盖住所述容器,使得所述装填装置内的含水量和气压保持一定值,不受外界影响。
作为优选,所述均匀布水结构包括:多孔板4和碎石层5;所述碎石层用于防止渗滤液流动时带动垃圾中细颗粒堵塞多孔板,并使得注水注气时流体能均匀分布在所述垃圾柱表面。所述垃圾柱顶部和底部碎石层铺设于所述多孔板与所述垃圾柱之间。
作为优选,在所述垃圾柱顶部和底部均铺满碎石层及多孔板。
作为优选,所述碎石层厚度为500~1000mm之间,所述多孔板的开孔大小为8~30mm之间,所述顶部和底部碎石层铺设于所述多孔板与所述垃圾柱之间。
作为优选,所述可调节供水供气结构包括供水器15、水阀门10,注气器6、调压阀7、流量计8和压力计9;其中所述供水器和水阀门用于调节供水量;所述注气器、调压阀、流量计和压力计用于调节注气量;所述可调节供水供气结构通过管道与所述装填结构连接。
作为优选,所述测量结构包括时域反射仪(TDR)11、张力计12、储水箱16和水量计17;所述TDR用于监测垃圾柱的含水率;所述张力计用于监测垃圾柱吸力;所述储水箱用于储存从垃圾柱中渗流出来的水;所述水量计用于测量储水箱中的水量;在所述装填结构侧壁不同高度打孔,所述TDR、张力计和所述孔通过密封圈进行连接;所述储水箱与所述装填结构底部通过出水管路连接。
具体地,本发明提供的垃圾双孔隙度渗流参数测试装置可以是如图2所示的结构。考虑到垃圾颗粒尺寸较大,容器1的内径取为400mm,高度为1200mm,壁厚8mm;垃圾柱2需进行多级出流试验,即上边界在不同气相压力条件下测试渗滤液出流情况,因而容器上部为气腔3,气腔高度设为200mm,注气器6中压缩气体经调压阀7、流量计8及压力计9后进入气腔,调压阀7通过控制进气量的多少对气腔压力进行调节;容器1下部为分层填充垃圾柱2,高度为1000mm,初始孔隙比e控制在2.5;垃圾柱2顶部及底部为厚度25mm的不锈钢多孔板4,开孔大小为20mm,沿径向均匀排列3圈,共37个孔,开孔率为9.3%;多孔板与垃圾柱之间碎石层5厚度为300mm,其有两个作用:一、防止渗滤液流动时带动垃圾中细颗粒堵塞多孔板4;二、使得注水注气时流体能均匀分布在垃圾柱2表面;试验过程中主要对垃圾柱的含水量、吸力及底部出水流量进行实时连续监测,其中含水量和吸力通过埋设在不同高度的TDR传感器11和张力计12进行测量,共布设有ROW A~C三排传感器,其距垃圾柱2底部的距离分别为700,500及300mm;TDR传感器11和张力计12是在垃圾分层填充完成后,在侧壁钻孔进行埋设,埋设后采用密封圈13密封;容器底部出流连接储水箱16,累积出流量通过水量计17进行测量;上部供水器15对垃圾柱2起供水作用,通过阀门10进行控制,可进行饱和及注水等过程。
如图3所示,本发明还公开了一种测试垃圾双孔隙度渗流参数的方法,所述的方法包括以下步骤:
(1-1)准备阶段,在垃圾双孔隙度渗流参数测试装置中,按指定孔隙比分层均匀填充垃圾2,获得指定孔隙比的垃圾柱,填充过程中在相应高度埋设TDR传感器11和张力计12,采用注气方式检查所述装置气密性,直接测量所述垃圾柱的体积Vwaste
(1-2)进行饱和状态下定水头渗流试验:从所述测试装置底部以5L/min的速率通入CO2气体,用以排出所述垃圾柱孔隙中的空气;然后在所述测试装置顶部施加20kPa负压,在所述测试装置底部注入去离子水进行饱和,当整个所述垃圾柱2浸没在水中之后即视为饱和状态,停止注水,同时缓慢释放负压,通过流量计测量饱和阶段累积注水量Vtotal;在所述垃圾柱一直处于饱和状态下,通过供水器15向垃圾柱2上部注水,改变供水器15的高度(均高于所述垃圾柱顶部)),直接测量所述测试装置底部的出流速度vtotal以及相应水力梯度itotal
(1-3)在重力下进行自由排水实验:停止注水,首先将底部出水管管口高度抬升至与顶部多孔板4平齐,用以排出气腔3中多余水;然后将出水管口下放至垃圾柱2底部,开始进行重力下自由排水,即上部气腔3中不施加气压,待排水稳定后停止试验;这里的排水达到稳定不仅指出水流量不再增加,还包括TDR传感器11和张力计12读数不再变化(下同);自由排水试验可视为大孔隙中水分出流的过程,测量自由排水阶段初始时刻(饱和状态下)所述测试装置底部的出水流速vf0及其渗流梯度if0,测量自由排水阶段后续时刻(非饱和状态下)底部出水流速vft、渗流梯度ift以及相应的大孔隙吸力,大孔隙体积含水量θwf,以及自由排水阶段累积出流量Vf
(1-4)进行不同气压下分级排水试验:对所述的垃圾柱分级增加气压,首先向气腔3中通气至气压为10kPa,底部出水口保持与底板平齐进行排水;待排水达到稳定后,再向气腔3中增大气压至30kPa,底部进行排水;依次类推,共进行五级排水过程,各级上部气压分别为10,30,50,70,90kPa;分级排水试验实质是保持底部边界条件不变,通过改变顶部气压边界条件,使垃圾柱2中小孔隙区域水分逐级排出,直接测量不同气压下所述测试装置底部的累计出流量Vm、出流速度vm,渗流梯度im,相应的小孔隙吸力以及小孔隙体积含水量θwm
作为优选,所述水头为计算点距基准面的高度,在本发明中指的是水位面距离所述垃圾柱底部的高度。所述水头的计算方法为:大孔隙水头hf=大孔隙吸力的负数/每米水头的压力,小孔隙水头hm=小孔隙吸力的负数/每米水头的压力;每米水头的压力10kPa/m。
作为优选,利用步骤(1-2)的测量结果,获得垃圾整体渗流参数,方法如下:
(3-1)通过式(1)获得垃圾整体饱和体积含水量θws
Figure BDA0003100091290000111
(3-2)根据测试装置底部的出流速度vtotal和相应水力梯度itotal的测量结果,通过式(2)获得整体饱和渗透系数ksw
Figure BDA0003100091290000112
作为优选,利用步骤(1-2)、(1-3)的测量结果,获得垃圾大孔隙区域渗流参数,方法如下:
(4-1)现有的研究(Fellner等,2010,Modeling of leachate generation fromMSW landfills by a 2-dimensional 2-domain approach.Waste Management,30,2084-2095)表明:在饱和状态下认定所述大孔隙全部被水占据,因此定义大孔隙区域饱和体积含水量θwsf=1;同时在自由排水阶段认定大孔隙中的水可以全部渗流排出,因此定义大孔隙区域残余体积含水量θwrf=0;
(4-2)在自由排水阶段初始时刻,可认为大孔隙区域仍处于饱和状态,根据自由排水阶段初始时刻测得的所述出水流速vf0及其渗流梯度if0,通过式(3)计算得到大孔隙区域饱和渗透系数kswf
Figure BDA0003100091290000113
(4-3)通过式(4)计算得到大孔隙区域体积占比wf
Figure BDA0003100091290000114
(4-4)根据自由排水阶段获得的所述大孔隙体积含水量θwf和水头hf,通过式(5),采用最小二乘法(MATLAB软件)拟合得到大孔隙区域进气值的倒数αf及决定持水曲线斜率的孔隙尺寸分布参数nf
Figure BDA0003100091290000121
式中:θwf为大孔隙区域体积含水量,θwrf为大孔隙区域残余体积含水量,θwsf为大孔隙区域饱和体积含水量,Sewf为大孔隙区域有效饱和度,hf为大孔隙区域的水头(单位:m),αf为大孔隙区域进气值的倒数(单位:m-1),nf为大孔隙区域决定持水曲线斜率的孔隙尺寸分布参数,mf=1-1/nf
(4-5)在自由排水阶段后续时刻,大孔隙区域处于非饱和状态,根据自由排水阶段后续时刻测得的所述出水流速vft及其渗流梯度ift,计算得到大孔隙区域非饱和渗透系数kwf=vft/ift,通过式(6),采用最小二乘法(MATLAB软件)拟合得到大孔隙区域连通性参数lf
Figure BDA0003100091290000122
式中:kwf为大孔隙区域非饱和渗透系数(单位:m/s);lf为大孔隙区域连通性参数;作为优选,利用步骤(1-4)的测量结果,获得垃圾小孔隙区域渗流参数,方法如下:
(5-1)通过式(7)计算得到小孔隙区域饱和渗透系数kswm
Figure BDA0003100091290000123
(5-2)通过式(8)计算得到小孔隙区域饱和体积含水量θwsm
Figure BDA0003100091290000124
(5-3)在最后一次施加气压排水后垃圾柱处于残余含水量状态,对所述垃圾柱烘干,直接测量得到小孔隙区域残余体积含水量θwrm取值;
(5-4)根据分级排水阶段测得的所述小孔隙体积含水量θwm和水头hm,通过式(9),采用最小二乘法(MATLAB软件)拟合得到小孔隙区域进气值的倒数αm及决定持水曲线斜率的孔隙尺寸分布参数nm
Figure BDA0003100091290000125
式中:θwm为小孔隙区域体积含水量,θwrm为小孔隙区域残余体积含水量,θwsm为小孔隙区域饱和体积含水量,Sewm为小孔隙区域有效饱和度,hm为小孔隙区域的水头(单位:m),αm为小孔隙区域进气值的倒数(单位:m-1),nm为小孔隙区域决定持水曲线斜率的孔隙尺寸分布参数,mm=1-1/nm
(5-5)根据分级排水阶段测得的所述出水流速vm及其渗流梯度im,计算得到小孔隙区域非饱和渗透系数kwm=vm/im,通过式(10),采用最小二乘法(MATLAB软件)拟合得到小孔隙区域连通性参数lm
Figure BDA0003100091290000131
式中:kwm为小孔隙区域非饱和渗透系数(单位:m/s);lm为小孔隙区域连通性参数;
作为优选,在确定整体渗流参数、大孔隙区域渗流参数和小孔隙区域渗流参数取值后,基于式(5)、(6)、(9)、(10)、(11)-(13)所述的双孔隙度渗流模型,采用COMSOLMultiphysics软件模拟底部出流量,反演得到大孔隙区域与小孔隙区域界面交换系数ka
大孔隙区域和小孔隙区域的渗流控制关系式为:
大孔隙:
Figure BDA0003100091290000132
小孔隙:
Figure BDA0003100091290000133
交换项:Γw=ka(hf-hm) (13)
式中:t代表时间(单位:s),z代表高度(单位:m),Гw为大孔隙区域与小孔隙区域质量交换项(单位:s-1),ka为大小孔隙区域界面交换系数(单位:m-1s-1)。
根据上述图2所示垃圾双孔隙度渗流参数测试装置以及图3所述测试方法,巧妙地利用大、小孔隙区域持水能力的差异性,分阶段测试了我国典型高厨余含量生活垃圾的大、小孔隙区域渗流参数,得到以下14个双孔隙度渗流参数,具体数值见表1,可见,根据本实施例的结果可知,本发明通过物理测试的方式直接确定了双孔隙度模型中13个渗流参数的取值,仅大孔隙与小孔隙区域的界面交换系数ka通过数值反演得到,本发明采用的技术方案能精准确定垃圾双孔隙渗流参数取值,从而提升双孔隙模型的实际使用价值。
Figure BDA0003100091290000134
Figure BDA0003100091290000141
表1垃圾双孔隙度渗流参数取值
以上所述的仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的范围之内,所做的任何修改、等效替换等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种测试垃圾双孔隙度渗流参数的方法,其特征在于,所述的方法包括以下步骤:
(1-1)在垃圾双孔隙度渗流参数测试装置中,按指定孔隙比分层均匀填充垃圾,获得指定孔隙比的垃圾柱,直接测量所述垃圾柱的体积Vwaste
(1-2)进行饱和状态下定水头渗流试验,从所述测试装置底部通入气体排出所述垃圾柱孔隙中的空气,然后在所述测试装置顶部施加一定范围的负压,从所述测试装置底部对所述垃圾柱进行缓慢注水,当整个垃圾柱浸没在水中后即视为饱和状态,停止注水,直接测量得到饱和阶段累积注水量Vtotal;在所述垃圾柱处于饱和状态下,在不同水头下(所述水头均高于所述垃圾柱顶部),直接测量所述测试装置底部的出流速度vtotal以及相应水力梯度itotal
(1-3)在重力下进行自由排水试验,直接测量自由排水阶段初始时刻(饱和状态下)所述测试装置底部的出水流速vf0及其渗流梯度if0,自由排水阶段后续时刻(非饱和状态下)测得的所述出水流速vft、渗流梯度ift以及相应的大孔隙吸力,大孔隙体积含水量θwf,以及自由排水阶段累积出流量Vf
(1-4)进行不同气压下分级排水试验,对所述的垃圾柱分级增加气压,直接测量不同气压下所述测试装置底部的累计出流量Vm、出流速度vm,渗流梯度im,相应的小孔隙吸力以及小孔隙体积含水量θwm
2.根据权利要求1所述的方法,其特征在于,所述水头的计算方法为:大孔隙水头hf=大孔隙吸力的负数/每米水头的压力,小孔隙水头hm=小孔隙吸力的负数/每米水头的压力。
3.根据权利要求1所述的方法,其特征在于,利用步骤(1-2)的测量结果,获得垃圾整体渗流参数,方法如下:
(3-1)通过式(1)获得垃圾整体饱和体积含水量θws
Figure RE-FDA0003223072630000011
(3-2)根据测试装置底部的出流速度vtotal和相应水力梯度itotal的测量结果,通过式(2)获得整体饱和渗透系数ksw
Figure RE-FDA0003223072630000021
4.根据权利要求1所述的方法,其特征在于,利用步骤(1-2)、(1-3)的测量结果,获得垃圾大孔隙区域渗流参数取值,方法如下:
(4-1)在饱和状态下认定大孔隙全部被水占据,因此定义大孔隙区域饱和体积含水量θwsf=1,同时在自由排水阶段认定大孔隙中的水可以全部渗流排出,因此定义大孔隙区域残余体积含水量θwrf=0;
(4-2)在自由排水阶段初始时刻,可认为大孔隙区域仍处于饱和状态,根据自由排水阶段初始时刻测得的所述出水流速vf0及其渗流梯度if0,通过式(3)计算得到大孔隙区域饱和渗透系数kswf
Figure RE-FDA0003223072630000022
(4-3)通过式(4)计算得到大孔隙区域体积占比wf
Figure RE-FDA0003223072630000023
(4-4)根据自由排水阶段获得的所述大孔隙体积含水量θwf和水头hf,通过式(5),采用最小二乘法(MATLAB软件)拟合得到大孔隙区域进气值的倒数αf及决定持水曲线斜率的孔隙尺寸分布参数nf
Figure RE-FDA0003223072630000024
式中:θwf为大孔隙区域体积含水量,θwrf为大孔隙区域残余体积含水量,θwsf为大孔隙区域饱和体积含水量,Sewf为大孔隙区域有效饱和度,hf为大孔隙区域的水头(单位:m),αf为大孔隙区域进气值的倒数(单位:m-1),nf为大孔隙区域决定持水曲线斜率的孔隙尺寸分布参数,mf=1-1/nf
(4-5)在自由排水阶段后续时刻,大孔隙区域处于非饱和状态,根据自由排水阶段后续时刻测得的所述出水流速vft及其渗流梯度ift,计算得到大孔隙区域非饱和渗透系数kwf=vft/ift,通过式(6),采用最小二乘法(MATLAB软件)拟合得到大孔隙区域连通性参数lf
Figure RE-FDA0003223072630000031
式中:kwf为大孔隙区域非饱和渗透系数(单位:m/s);lf为大孔隙区域连通性参数。
5.根据权利要求1所述的方法,其特征在于,利用步骤(1-4)的测量结果,获得垃圾小孔隙区域渗流参数,方法如下:
(5-1)通过式(7)计算得到小孔隙区域饱和渗透系数kswm
Figure RE-FDA0003223072630000032
(5-2)通过式(8)计算得到小孔隙区域饱和体积含水量θwsm
Figure RE-FDA0003223072630000033
(5-3)在最后一次施加气压排水后垃圾柱处于残余含水量状态,对所述垃圾柱烘干,直接测量得到小孔隙区域残余体积含水量θwrm取值;
(5-4)根据分级排水阶段获得的所述小孔隙体积含水量θwm和水头hm,通过式(9),采用最小二乘法(MATLAB软件)拟合得到小孔隙区域进气值的倒数αm及决定持水曲线斜率的孔隙尺寸分布参数nm
Figure RE-FDA0003223072630000034
式中:θwm为小孔隙区域体积含水量,θwrm为小孔隙区域残余体积含水量,θwsm为小孔隙区域饱和体积含水量,Sewm为小孔隙区域有效饱和度,hm为小孔隙区域的水头(单位:m),αm为小孔隙区域进气值的倒数(单位:m-1),nm为小孔隙区域决定持水曲线斜率的孔隙尺寸分布参数,mm=1-1/nm
(5-5)根据分级排水阶段测得的所述出水流速vm及其渗流梯度im,计算得到小孔隙区域非饱和渗透系数kwm=vm/im,通过式(10),采用最小二乘法(MATLAB软件)拟合得到小孔隙区域连通性参数lm
Figure RE-FDA0003223072630000035
式中:kwm为小孔隙区域非饱和渗透系数(单位:m/s);lm为小孔隙区域连通性参数。
6.根据权利要求1所述的方法,其特征在于,在确定整体渗流参数、大孔隙区域渗流参数和小孔隙区域渗流参数取值后,基于式(5)、(6)、(9)、(10)、(11)-(13)所述的双孔隙度渗流模型,采用COMSOL Multiphysics软件模拟底部出流量,反演得到大孔隙区域与小孔隙区域界面交换系数ka
大孔隙区域和小孔隙区域的渗流控制关系式为:
大孔隙:
Figure RE-FDA0003223072630000041
小孔隙:
Figure RE-FDA0003223072630000042
交换项:Γw=ka(hf-hm) (13)
式中:t代表时间,z代表高度,Гw为大孔隙区域与小孔隙区域质量交换项,ka为大小孔隙区域界面交换系数。
7.一种垃圾双孔隙度渗流参数测试装置,其特征在于,所述测试装置包括装填结构、均匀布水结构、可调节供水供气结构、测量结构,其中:
所述装填结构,用于装填垃圾柱的容纳物,相对密封,为所述可调节供水供气结构以及所述测量结构提供接口;
所述均匀布水结构,用于给所述垃圾柱均匀供水,使得所述垃圾柱各部分含水量趋于一致;
所述可调节供水供气结构,用于给所述垃圾柱注水或注气,来控制所述垃圾柱的含水量和顶部气压;
所述测量结构:在饱和状态下定水头渗流试验中,测量饱和阶段累积注水量Vtotal;在所述垃圾柱一直处于饱和状态下,在不同水头下(所述水头均高于所述垃圾柱顶部),测量所述测试装置底部的出流速度vtotal以及相应的水力梯度itotal;在重力下自由排水试验中,直接测量自由排水阶段初始时刻(饱和状态下)所述测试装置底部的出水流速vf0及其渗流梯度if0,自由排水阶段后续时刻(非饱和状态下)测得的所述出水流速vft、渗流梯度ift以及相应的大孔隙吸力,大孔隙体积含水量θwf,以及自由排水阶段累积出流量Vf;在不同气压下分级排水试验中,测量不同气压下累计出流量Vm、出流速度vm,渗流梯度im,相应的小孔隙吸力以及小孔隙体积含水量θwm
优选的,所述装填结构包括:容器、气腔、密封盖;所述容器用于装填垃圾柱;所述气腔用于注气时缓冲气压以及注水时调节水头;所述密封盖,用于盖住所述容器,使得所述装填装置内的含水量和气压保持一定值,不受外界影响。
优选的,所述均匀布水结构包括:多孔板和碎石层;所述碎石层用于防止渗滤液流动时带动垃圾中细颗粒堵塞多孔板,并使得注水注气时流体能均匀分布在所述垃圾柱表面;所述顶部和底部碎石层铺设于所述多孔板与所述垃圾柱之间。
优选的,所述可调节供水供气结构包括供水器、水阀门,注气器、调压阀、流量计和压力计;其中所述供水器和水阀门用于调节供水量;所述注气器、调压阀、流量计和压力计用于调节注气量;所述可调节供水供气结构通过管道与所述装填结构连接。
8.根据权利要求7所述的垃圾双孔隙度渗流参数测试装置,其特征在于,所述测量结构包括时域反射仪(TDR)、张力计、储水箱和水量计;所述TDR用于监测垃圾柱的含水率;所述张力计用于监测垃圾柱吸力;所述储水箱用于储存从垃圾柱中渗流出来的水;所述水量计用于测量储水箱中的水量;在所述装填结构侧壁不同高度打孔,所述TDR、张力计和所述孔通过密封圈进行连接;所述储水箱与所述装填结构底部通过出水管路连接。
9.根据权利要求7所述的装置,其特征在于,在所述垃圾柱顶部和底部均铺满碎石层及多孔板。
10.根据权利要求7所述的装置,其特征在于,所述碎石层厚度为500~1000mm之间,所述多孔板的开孔大小为8~30mm之间。
CN202110622611.XA 2021-06-03 2021-06-03 一种测试垃圾双孔隙度渗流参数的装置及方法 Active CN113552037B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110622611.XA CN113552037B (zh) 2021-06-03 2021-06-03 一种测试垃圾双孔隙度渗流参数的装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110622611.XA CN113552037B (zh) 2021-06-03 2021-06-03 一种测试垃圾双孔隙度渗流参数的装置及方法

Publications (2)

Publication Number Publication Date
CN113552037A true CN113552037A (zh) 2021-10-26
CN113552037B CN113552037B (zh) 2022-08-02

Family

ID=78130302

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110622611.XA Active CN113552037B (zh) 2021-06-03 2021-06-03 一种测试垃圾双孔隙度渗流参数的装置及方法

Country Status (1)

Country Link
CN (1) CN113552037B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295529A (zh) * 2022-01-05 2022-04-08 国家能源集团新疆能源有限责任公司 一种人工扰动后岩体内部裂隙发育情况测定方法及系统
CN115096763A (zh) * 2022-05-31 2022-09-23 东莞理工学院 基于双孔隙传输理论混凝土内部水分流动细观分析方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0608544A2 (de) * 1993-01-27 1994-08-03 Micro Perforation Engineering GmbH Verfahren und Vorrichtung zur optischen Porositätsmessung an einer laufenden Bahn
US20150066372A1 (en) * 2012-08-09 2015-03-05 Ids New Technology Co., Ltd. Method and system for analyzing and processing continued flow data in well testing data
CN105036490A (zh) * 2015-08-27 2015-11-11 桂林理工大学 两段式进水矿化垃圾反应器处理垃圾渗滤液脱氮的方法
CN105136648A (zh) * 2015-10-19 2015-12-09 江西理工大学 土壤有效孔径及其分布参数的测试方法
CN106716114A (zh) * 2015-09-11 2017-05-24 数岩科技(厦门)股份有限公司 多孔介质分析系统和方法
CN107036960A (zh) * 2017-04-14 2017-08-11 宋凯 一种污染物在包气带中的截留释放试验三维模拟系统及其试验方法
CN108181220A (zh) * 2017-12-13 2018-06-19 浙江大学 一种室内同时测试不同压力下粗粒土水平向及竖向饱和渗透系数的试验装置
CN108801865A (zh) * 2018-05-31 2018-11-13 辽宁工程技术大学 一种砂土颗粒梯度疲劳液化实验装置及方法
CN109033575A (zh) * 2018-07-10 2018-12-18 中国海洋石油集团有限公司 一种复杂孔隙结构储层的含水饱和度计算方法
CN110579427A (zh) * 2019-10-22 2019-12-17 桂林理工大学 一种裂隙-孔隙双渗透介质优势流模拟装置及实验方法
CN111208042A (zh) * 2020-02-07 2020-05-29 中国科学院武汉岩土力学研究所 一种反演非饱和垃圾土水力参数的装置及方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0608544A2 (de) * 1993-01-27 1994-08-03 Micro Perforation Engineering GmbH Verfahren und Vorrichtung zur optischen Porositätsmessung an einer laufenden Bahn
US20150066372A1 (en) * 2012-08-09 2015-03-05 Ids New Technology Co., Ltd. Method and system for analyzing and processing continued flow data in well testing data
CN105036490A (zh) * 2015-08-27 2015-11-11 桂林理工大学 两段式进水矿化垃圾反应器处理垃圾渗滤液脱氮的方法
CN106716114A (zh) * 2015-09-11 2017-05-24 数岩科技(厦门)股份有限公司 多孔介质分析系统和方法
CN105136648A (zh) * 2015-10-19 2015-12-09 江西理工大学 土壤有效孔径及其分布参数的测试方法
CN107036960A (zh) * 2017-04-14 2017-08-11 宋凯 一种污染物在包气带中的截留释放试验三维模拟系统及其试验方法
CN108181220A (zh) * 2017-12-13 2018-06-19 浙江大学 一种室内同时测试不同压力下粗粒土水平向及竖向饱和渗透系数的试验装置
CN108801865A (zh) * 2018-05-31 2018-11-13 辽宁工程技术大学 一种砂土颗粒梯度疲劳液化实验装置及方法
CN109033575A (zh) * 2018-07-10 2018-12-18 中国海洋石油集团有限公司 一种复杂孔隙结构储层的含水饱和度计算方法
CN110579427A (zh) * 2019-10-22 2019-12-17 桂林理工大学 一种裂隙-孔隙双渗透介质优势流模拟装置及实验方法
CN111208042A (zh) * 2020-02-07 2020-05-29 中国科学院武汉岩土力学研究所 一种反演非饱和垃圾土水力参数的装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
柯瀚等: "基于优势流及各向异性随上覆压力变化的填埋体饱和渗流模型", 《岩土工程学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295529A (zh) * 2022-01-05 2022-04-08 国家能源集团新疆能源有限责任公司 一种人工扰动后岩体内部裂隙发育情况测定方法及系统
CN114295529B (zh) * 2022-01-05 2023-07-25 国家能源集团新疆能源有限责任公司 一种人工扰动后岩体内部裂隙发育情况测定方法及系统
CN115096763A (zh) * 2022-05-31 2022-09-23 东莞理工学院 基于双孔隙传输理论混凝土内部水分流动细观分析方法
CN115096763B (zh) * 2022-05-31 2024-06-11 东莞理工学院 基于双孔隙传输理论混凝土内部水分流动细观分析方法

Also Published As

Publication number Publication date
CN113552037B (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
CN110082275B (zh) 大型原级配粗颗粒土垂直渗透变形试验仪及试验方法
CN111208042B (zh) 一种反演非饱和垃圾土水力参数的装置及方法
CN110082274B (zh) 大型原级配粗颗粒土水平渗透变形试验仪及试验方法
CN113552037B (zh) 一种测试垃圾双孔隙度渗流参数的装置及方法
CN105651677B (zh) 一种可同时测定给水度及渗透系数的岩土参数性质测定仪
CN104777016B (zh) 一种泥浆固结制样设备及其使用方法
CN110672497A (zh) 一种多功能渗透管涌测试仪
CN108801873A (zh) 一种高铁不同上覆荷载及可变水压下膨胀土渗透仪及其使用方法
CN109269959A (zh) 一种大型水位可控式土壤渗透系数测定装置及测定方法
CN110487699A (zh) 一种透水混凝土渗透系数的试验装置及试验方法
CN205484324U (zh) 一种固结渗透联合实验装置
CN113049472A (zh) 一种土石坝砂砾石筑坝料垂直渗透特性试验方法
CN114459977A (zh) 一种碎石桩排水结构的可视化淤堵模拟系统及其模拟方法
CN115112531A (zh) 一种多功能渗透管涌测试装置及方法
CN110658120B (zh) 一种高水压下泡沫改良砂性渣土渗透系数测试方法及测试装置
CN205404360U (zh) 可同时测定给水度及渗透系数的岩土参数性质测定仪
CN116907972A (zh) 具有渗流压力控制的粗粒土大型三轴试验仪
CN115032135B (zh) 用于测定超软土固结参数的水力固结试验装置及试验方法
CN203069486U (zh) 超大粒径粗粒土渗透系数测定装置
CN214374138U (zh) 一种适用于胶结土的无损原位渗透性测试装置
CN106248558B (zh) 掺加大粒径橡胶片体击实土的渗透系数测试装置与方法
CN115290533A (zh) 一种模拟土体渗透的离心模型试验装置及试验方法
CN211318136U (zh) 一种适用于承压含水层上断层突水研究的突水模拟装置
CN210401151U (zh) 大型原级配粗颗粒土垂直渗透变形试验仪
CN108507929A (zh) 定压充气密封的透水混凝土渗透测试装置及其测试方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant