CN113544557A - 光隧道 - Google Patents

光隧道 Download PDF

Info

Publication number
CN113544557A
CN113544557A CN202080018534.0A CN202080018534A CN113544557A CN 113544557 A CN113544557 A CN 113544557A CN 202080018534 A CN202080018534 A CN 202080018534A CN 113544557 A CN113544557 A CN 113544557A
Authority
CN
China
Prior art keywords
section
light
reflective
light tunnel
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080018534.0A
Other languages
English (en)
Inventor
盛钟延
D·P·霍拉蒙
S·E·史密斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/520,249 external-priority patent/US11498276B2/en
Priority claimed from US16/808,819 external-priority patent/US11360319B2/en
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Publication of CN113544557A publication Critical patent/CN113544557A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0994Fibers, light pipes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/0825Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种光隧道(904)包括:具有第一表面和相对的第二表面的第一区段(912)、具有第三表面和相对的第四表面的第二区段(914)、具有第五表面和相对的第六表面的第三区段(916),以及具有第七表面和相对的第八表面的第四区段(918);第一区段和第二区段之间的第一折痕(913)、第二区段和第三区段之间的第二折痕(915)、第三区段和第四区段之间的第三折痕(917),以及第一区段的端部和第四区段之间的交汇处(960);以及在第一表面、第三表面、第五表面和第七表面上形成反射表面(921)的反射涂层,该反射表面跨折痕中的至少一个是连续的,并且该反射涂层在交汇处(960)是不连续的。

Description

光隧道
技术领域
本发明一般涉及光学引擎,并且更具体地涉及光学引擎中使用的光隧道。
背景技术
三维打印在许多领域都是有用的,诸如制造和艺术设计。三维打印的成本正在下降;因此,使得针对该技术的越来越多的应用在财务上是可行的。一种类型的三维打印机是光聚合打印机。该类型的打印机使用光将液体聚合物转化为固体。一种类型光的聚合打印机是大桶型。该类型的打印机使用具有透明底部的大桶来容纳可光聚合的液体。最初,提升板是距大桶底部的一层。每台打印机都具有打印机发展的层厚度,其可以是几十到几百微米厚。光学引擎在大桶下面。光学引擎使用光来暴露初始层的图案,该图案得自要打印的物体的三维电子模型。光使大桶中的液体在该图案中聚合并因此形成固体材料。然后提升板升起一层,并然后暴露物体的下一层。该过程重复进行直到打印机形成物体的所有层。
通过光聚合打印机,光学引擎可以产生具有非常高的分辨率的层。例如,数字光处理(DLP)光学引擎可以产生具有数百万像素的图案。然而,此类光学引擎可能是相对昂贵的。为了具有竞争力,该类型装置中的光学引擎的成本应该降低,同时保持高分辨率输出。低成本光学引擎也可用于三维打印以外的各种其他应用,包括汽车头灯、投影仪、测距装置和自动驾驶车辆系统。
发明内容
根据示例,光隧道由一种材料形成,并且该光隧道包括:具有第一表面和相对的第二表面的第一区段、具有第三表面和相对的第四表面的第二区段、具有第五表面和相对的第六表面的第三区段,以及具有第七表面和相对的第八表面的第四区段;第一区段和第二区段之间的第一折痕、第二区段和第三区段之间的第二折痕、第三区段和第四区段之间的第三折痕,以及第一区段的端部和第四区段之间的交汇处;以及在第一表面、第三表面、第五表面和第七表面上形成反射表面的反射涂层,该反射表面跨折痕中的至少一个是连续的,并且反射涂层在交汇处是不连续的。
附图说明
图1是三维打印机的图示。
图2是示例光学引擎的图示。
图3是光积分器的图示。
图4是示例光积分器的图示。
图5A至图5D(统称为“图5”)是示例光积分器的图示。
图6A和图6B(统称为“图6”)是示出用于制作示例光积分器的示例方法的图示。
图7是示例方法的流程图。
图8A至图8D(统称为“图8”)是形成光隧道的示例布置的投影图。
图9A至图9E(统称为“图9”)以平面图、第二平面图、截面图以及两个端视图示出了示例布置中使用的光隧道。
图10A至图10D(统称为“图10”)以一系列视图示出了用于形成光隧道的方法布置的步骤序列。
图11是示出方法布置的主要步骤(诸如图10A至图10D所示的方法)的流程图。
具体实施方式
在附图中,除非另有指示,否则对应的数字和符号一般指的是对应的部分。附图不一定按比例绘制。
在本文中使用术语“耦合”。术语“耦合”可包括与介入元件形成的连接,并且在“耦合”的任何的元件之间可存在额外的元件和各种连接。当元件之间的连接涉及光的透射或接收时,元件在本文中被称为“光学耦合”。
术语“匹配”在本文中用于参考投影光学器件和调制光的发散。如本文中所用,当投影光学器件的输入端的焦点大约在调制光的焦点的±10%之内(按从投影光学器件的输入端到投影光学器件的输入端的焦点的距离测量)时,投影光学器件的焦点“匹配”调制光的发散。
在本文中使用术语“光隧道”。如本文中所用,光隧道是具有两个开口端的元件。进入一端的光在内部被反射并被引导到相反端处的开口。在本文中使用术语“光积分器”。如本文中所用,光积分器是光学系统中的元件,其在输入端处接收非准直的光,并输出发散光。光隧道是光积分器的示例。
在本文中使用术语“反射表面”。如本文中所用,反射表面是这样的分界面,其中至少70%的入射光能量在所期望的波长和角度范围内被反射。在该布置的特定示例中,使用具有大于94%的最小总反射率的反射表面。
在本文中使用术语“折痕”。如本文中所用,折痕是通过折叠在材料中形成的线或脊。在示例布置中,当光隧道的材料被折叠时,在光隧道的区段之间形成折痕。
在示例布置中,通过使用反射材料的片材来形成具有反射材料内表面的光隧道,解决了提供用于向空间光调制器提供照明光的低成本、高效的光隧道的问题。通过使用光隧道将光从光源引导到空间光调制器,避免了在光源和空间光调制器之间需要额外的透镜,从而解决了提供低成本、高质量的光学引擎的问题。在示例布置中,光学装置包括光源,其被配置为在光源输出端处输出光。该光学装置还包括具有光隧道输入端和光隧道输出端的光隧道,其中光隧道输入端光学耦合到光源输出端。光隧道由一块反射材料形成,并被配置为响应于光源输出端处的光在光隧道输出端处提供发散光。该光学装置还包括具有光学器件输入端和光学器件输出端的投影光学器件。投影光学器件被配置为响应于光学器件输入端处的调制光在光学器件输出端处将投影输出光投影。光学器件输入端的焦点匹配调制光的发散以及空间光调制器,空间光调制器光学耦合在光积分器输出端和空间光调制器的光学器件输入端之间。空间光调制器被配置为响应于发散光提供调制光。光隧道可以与任何照明源一起使用以向空间光调制器提供发散光。在下文中描述的示例中,光引擎被用作三维打印机的一部分。该光引擎可用于各种应用,包括例如三维打印机、测距系统、汽车头灯和投影仪。
图1是三维打印机100的图示。三维打印机100根据物体的电子模型逐层打印出三维物体。大桶(vat)102具有透明的底部。提升板104被控制臂106定位在大桶102中。大桶102填充有光聚合树脂108。控制臂106将提升板104定位在距大桶102底部的层厚度110处。在示例中,该层厚度为0.05至0.15mm。当提升板就位时,光学引擎112以要打印的物体的第一层的图案投影光。在来自光学引擎112的光照射到光聚合树脂108的地方,光聚合树脂聚合并形成固体材料。因此,形成了要打印的物体的第一层。
第一层粘附到提升板104。然后,提升板104被提升另一个层厚度110。在一些示例中,控制臂106使提升板104提升、扭转和/或倾斜,以从大桶102的底部释放第一层。当提升板104为要打印的物体的下一层就位时,光学引擎112以要打印的物体的下一层的图案投影光中。该过程重复进行直到物体的所有层被打印。
图2是示例光学引擎212的图示。光学引擎212与光学引擎112(图1)相似。光源202在该示例中是发光二极管(LED)。在其他示例中,光源202是另一种光源,诸如高强度白炽灯。在该示例中,LED产生1255mW的光功率。选择由光源202产生的光的波长以有效聚合光聚合树脂108(图1)。在该示例中,光源202产生大约为405nm的光。在其他示例中,光源202产生在350nm-460nm的范围内的光。在用于光学引擎的许多光源中,来自光源的光在光源的输出端处被准直。然而,这需要在光源202的输出端处的额外透镜。在该示例中,光积分器204的光积分器输入端靠近光源202,并因此光积分器204的光积分器输入端光学耦合到光源202。这样就能捕获尽可能多的光,而不需要准直透镜。此外,在该示例中,光积分器204的光积分器输入端的形状因子与光源202的光源输出端的形状因子大致相同,这增加了来自光源202的光进入光积分器204的部分。
光积分器204的光积分器输出端大于光积分器204的光积分器输入端。如下文中进一步解释的,该配置降低了来自光积分器204的光积分器输出端的光扩散,使得光被有效地提供给空间光调制器210。光积分器204通过光积分器204内部的多次光反射使来自光源202的光均匀化。此外,光积分器204有助于将尽可能多的光导向空间光调制器210上。如本文中所用,术语“光积分器”包括光隧道、积分棒、光管和复合抛物面聚光器。尽管其他类型的装置执行光积分,诸如微透镜阵列,但这些其他类型的装置不包括在本文中所用的术语“光积分器”中。在该示例中,光积分器204是光隧道。
来自光积分器204的光积分器输出端的发散光经过盖棱镜206。来自光积分器204的光积分器输出端的发散光具有与空间光调制器210的形状因子大致匹配的形式。盖棱镜206提供了与光积分器204的输出端的传播路径垂直的表面,以降低从光积分器204输出的光的形式的失真。此外,相对于空气,盖棱镜206的折射率较高,降低了来自光积分器204输出端的光的发散。然后,光经过空气间隙(未示出),并经过反向全内反射棱镜(RTIR棱镜)208。因此,光积分器204的光积分器输出端光学耦合到空间光调制器210。在该示例中,空间光调制器210是数字微镜装置(DMD)。其他示例使用其他空间光调制器,诸如硅上液晶(LCOS)调制器。通过DMD,每个像素是可移动的镜面/反光镜(mirror),其依据提供给DMD的该像素的数据,通过在ON方向和OFF方向上反射来调制光。最接近光积分器204的RTIR棱镜208表面的角度使得其反射来自空间光调制器210反射的像素的ON方向光,但不反射来自光积分器204的光。因此,用于投影的图像从RTIR棱镜208反射到投影光学器件214,并因此空间光调制器210光学耦合到投影光学器件214的光学输入端。如上所述,来自光源202的光在光积分器204之前没有被准直。如下文中关于图3和图4进一步解释,离开光积分器204的光是发散的。空间光调制器210的像素是镜面,因此调制光216在其进入投影光学器件214的光学输入端时也是发散的。投影光学器件通常是远心的,并因此设计用于具有无限输入焦距的非发散和非会聚(即准直)光。在该示例中,调制光216是发散的,所以投影光学器件214必须具有指向发散点的输入焦点,并因此是非远心的。因为光积分器204修改来自光源202的光的发散,所以使用光积分器204输出端处的光的发散角来计算发散点或输入焦点。因此,投影光学器件214的光学器件输入端的焦点与调制光216的发散匹配。如本文中所用,当投影光学器件214的输入端的焦点大约在调制光216的焦点的±10%以内(按从投影光学器件214的输入端到投影光学器件214的输入端的焦点的距离测量)时,投影光学器件214的焦点与调制光216的发散“匹配”。换句话说,当投影光学器件214将发散的调制光216近似地转换为远心光时,投影光学器件214的焦点与调制光216匹配。投影光学器件214的光学器件输出端聚焦在目标上。也就是说,投影光学器件214的光学器件输出端的焦点在提升板104(图1)和大桶102(图1)的底部之间的光聚合树脂108(图1)上。在示例中,投影光学器件214可以包括使用N-BK7玻璃的五个透镜。在该示例中,这五个透镜是球形的。在示例中,投影光学器件204的f数为3。
图3是另一个光积分器304的图示,其中输出面306具有与输入面308相同的大小。在光源302靠近输入面308的情况下,从光源302输出的光的全扩散角α进入光积分器304。在该配置中,光积分器304不能是光棒,除非光棒具有镜面涂覆的表面。这是因为来自光源302的光的反射角对于全内反射(TIR)来说太大。因此,在没有反射表面的情况下,光源302的太多输出会经过光积分器304的壁,并且不会传播到输出面306。因为光积分器304的壁与光的传播方向平行,所以输出扩散角也是α。
图4是光积分器204的示例的图示。在该示例中,输出面406大于输入面408。光源202提供扩散角为α的光。然而,因为光积分器204的壁不平行于光的传播方向,所以来自光源202的光以更斜的角度反射。因此,输出扩散角β是比α更小的角度。该更小角度降低了来自输出面406的光的发散,并因此允许将光从光积分器204提供给空间光调制器,如空间光调制器210(图2),而无需通过额外的透镜重新定向光。此外,该配置可以允许使用基于TIR的积分器棒,因为入射光的反射角更倾斜。如本文中所用,当β大于18°(即,光从输出光的传播路径发散大于9°)时,光积分器如光积分器204的输出是“发散的”。
图5A至图5D(统称为“图5”)是示例光积分器204(也见图2)的额外图示。图5A是光积分器204的侧视图。图5B是光积分器204的俯视图。图5C是光积分器204的输出端的视图。图5C所示的大小和配置是光积分器204的输出端形状因子。图5D是光积分器204的输入端的视图。图5D所示的大小和配置是光积分器204的输入端形状因子。如本文中所用,术语“顶部”和“侧面”仅指示视图的相对位置,并且不指示任何其他物理关系。光积分器204具有长度L。光积分器204的输入端具有高度Hi和宽度Wi。光积分器的输出端具有高度Ho和宽度Wo。在示例中,光积分器504的输入端是正方形的,因此Hi=Wi。在示例中,光积分器204的输入端的大小和形状因子与输入光源如光源202(见图2)的大小和形状因子匹配,使得光积分器204捕获尽可能多的光源的输出。因此,如果光源诸如LED的输出窗口是每边1mm的正方形,则例如Hi和Wi将是约1mm。在示例中,L是Hi和Wi的约8倍。因此,如果Hi是1mm,L将是8mm。然而,在其他示例中,L高达Hi或Wi的20倍。在示例中,对于光积分器的1mm x 1mm的输入端开口,L大约是20mm。
选择Ho和Wo以匹配要被照亮的空间光调制器诸如空间光调制器210(图2)的长宽比或形状因子。这些尺寸的大小涉及权衡。这些尺寸相对于光积分器204的输入端尺寸越大,输出光的发散就越小。然而,更大的尺寸会影响输出光的均匀性并降低光积分器204的效率。另一个重要的设计考虑是完全照亮空间光调制器。通过该考虑,光积分器204的输出图案应大于空间光调制器的大小,使得空间光调制器被完全照亮。
图6A和图6B(统称为“图6”)是示出用于制作示例光积分器604的示例方法的图示。图6的尺寸不是按比例绘制的,而是为了便于说明而选择的。图6A示出示例光积分器为单片,其包括第一区段612、第二区段614、第三区段616、第四区段618和第五区段620。区段中的每个的一个表面包括反射表面,诸如沉积在区段的表面上的铝、银或金层。在示例中,示例光积分器604是铝片。在示例中,片材在区段之间的边界处的折痕处以90°的角度折叠,使得第一区段612和第五区段620彼此折叠(见图6B,其为产生的光隧道或积分器604的端视图),如下文中进一步描述。因此,该示例光积分器易于制造并因此价格低廉。
图7是示例方法700的流程图。步骤702提供光源,诸如光源202(图2)。步骤704将来自光源的光引导通过光积分器,诸如光积分器204(图2),其中该光积分器向空间光调制器提供发散的输出光。步骤706将发散的输出光从空间光调制器,诸如空间光调制器210(图2)反射到投影光学器件,诸如投影光学器件214(图2),该投影光学器件具有与发散的输出光的发散对应的输入端焦点,并在目标处具有输出端焦点。
图8A至图8D(统称为“图8”)示出了在布置中有用的示例光积分器或光隧道形状。在图8A至图8B中,投影图示出了具有长度L、宽度W和高度H的矩形光隧道。在示例中,光隧道304由在光隧道的至少内表面上具有反射表面的一块材料形成。该材料可以是可以以足够的强度支持反射涂层,并且可以在不破坏材料的情况下进行折叠的任何材料。该材料可以是金属的或非金属的。在示例中,该材料是具有形成反射表面的反射涂层的铝片材料。示例包括具有银或金反射涂层的铝和具有铝反射涂层的铝。反射性电介质层涂层可以应用于表面以形成反射表面。具有不同反射性质的分层电介质的系统可以用来增强反射率。可以在反射涂层上形成保护性氧化物以防止划痕并防止腐蚀或失去光泽。有用的示例包括可从Anomet公司商购获得的银涂层铝片材材料
Figure BDA0003244940470000071
4270AG,以及可从同一来源购得的
Figure BDA0003244940470000072
Miro IV物理气相沉积(PVD)增强铝涂层片材材料。这些材料的最低总反射率大于94%,并且最高达98%。Anomet公司还提供可使用的其他反射性铝材料。可替代材料包括涂覆有反射表面(包括用于反射的电介质涂层)的另一种材料,或涂覆有反射金属涂层(诸如银、铝或金)。示例包括基础材料诸如铝、塑料,板状材料诸如纸或纸板,或其他金属诸如铜金属。该材料为反射表面提供结构支持,在示例中,该材料应能够在不切断材料的情况下被折叠。反射表面是通过在材料上涂覆诸如一个或多个反射性电介质层、银、铝或金的反射涂层来形成的。各种氧化物材料可以沉积在反射表面上方以增强反射率并保护反射材料,例如,可以沉积二氧化硅。诸如用于物理气相沉积(PVD)的电子束沉积可用于沉积反射涂层。在布置中,反射表面的最低总反射率为至少70%。在该示例中,长度L可以是大约20mm,但长度L可以变化为任何光学引擎所需的任何长度,特定示例的宽度W是约5.2mm,并且高度H是约4.6mm。在该所示示例中,光隧道304的输入端的二维面积与输出端的二维面积相同。因为在图8A至图8B的该示例中,两端具有相同的面积,任一端都可以被配置为光隧道输入端,并且相对端可以被配置为光隧道输出端。宽度W和高度H可以根据需要改变,以在应用中向特定的空间光调制器提供发散光。
图8C是使用具有反射内表面的单块材料的光隧道204的锥形布置的投影图。光隧道204的形状对应于上文中所述的锥形形状。输出端高度Ho和Wo例如对应于图5A中的204的那些高度。在锥形光隧道布置中,沿长度L的任一点处的截面是矩形区域,其中宽度W大于或等于高度H。在锥形示例中,光输入端的面积可以是1mm×1mm,并且光输出端可以是约5.2×4.5mm。在该示例中,输入端具有正方形区域并且输出端具有矩形区域。
图8D是具有正方形横截面的另一个矩形光隧道804的投影图,图8D中的高度H和宽度W大致相等或相等。应用所需的形状可以通过布置具有空间光调制器的光隧道来确定。来自光隧道输出端的发散光在整个空间光调制器提供了近乎均匀的照明。许多可用的空间光调制器装置,例如大多数DMD装置具有矩形形状因子。如果对于特定的应用需要代替正方形纵横比的空间光调制器,那么使用的光隧道也可以是正方形截面,以确保使用由光隧道输出的发散光进行均匀照明。注意,虽然图8的示例在截面上各自都是四边形或矩形,但在可替代布置中,光隧道可具有3个、4个或更多个边。该布置的光隧道的一般示例具有N个边,其中N是3至10的整数。可以使用三角形、矩形、正方形、五边形、六边形、七边形等形状。
图9A至图9E(统称为“图9”)是用于形成光隧道的材料块900的平面图、单独光隧道工件的平面图、光隧道工件的截面图以及使用该工件形成的光隧道的端视图。在图9A中,示出了用于轮子或“雏菊”切口902的切割平面图。提供了具有用于形成光隧道的反射表面的一块材料900。该切割平面图示出了每个雏菊切口902的多个光隧道904。光隧道904在与将形成内表面的反射表面相对的背面上沿纵向各自开槽。尽管在示例中,可具有一个以上的反射表面的反射铝被用于平面材料,但是至少内表面(在图9A中没有示出,因为背面面向观看者)具有反射表面。在图示的示例中,在切割平面图中形成的每个光隧道904在背面表面中具有在其中制成的若干个凹槽。在示例中,对于20mm长的光隧道,凹槽可以间隔约100微米。凹槽可以在铣削操作中形成,诸如通过使用精密金属槽刨机或铣床。凹槽可以在形成雏菊图案之前进行蚀刻或切割,以提高制造效率。可替代地,可以切割雏菊图案,并然后可在铣削操作中给每个光隧道块904开槽。在示例过程中,反射表面是在切割和开槽操作之前在材料上形成的。在可替代示例中,材料可以被切割和开槽,并然后各个光隧道工件904可以被涂覆反射表面。在图示的示例中,凹槽限定了彼此一体的相邻区段,也就是说,凹槽限定了来自单块材料的相邻区段。
图9B详细示出了在切割操作和开槽操作完成后的单个光隧道块904的背面的平面图。在图9B中,形成了五个锥形的相邻区段912、914、916、918和920。第一区段912具有沿光隧道904材料的第一端的纵向边缘。第五区段920具有沿光隧道904材料的第二端的对应的相对纵向边缘。四个凹槽951、953、955和957形成于光隧道904的背面表面中,每个凹槽都限定了相邻区段之间的交汇处。凹槽延伸到光隧道904的材料中但没有延伸穿过该材料。在该示例中,材料是厚度为0.5毫米的铝片。凹槽可以是V形或U形的,或可具有矩形,并且在0.5mm厚的材料中可具有在0.2-0.3mm的范围内的深度。
图9C是图9B的光隧道904的截面。区段912、914、916、918、920中的每个分别通过材料957、955、953、951背面中的凹槽与相邻区段隔开。例如,第一区段912具有第一表面971和第二表面972,该第一表面具有反射表面921。其他区段,即第二区段914、第三区段916、第四区段918和第五区段920中的每个也具有承载反射表面921的第一表面和第二相对表面,为了清楚起见,这些都没有给出数字。反射表面921包括反射涂层,尽管在一些示例中,光隧道的整个表面(包括背面表面和末端边缘)也可以是反射性的。凹槽是通过切割或蚀刻工艺形成的,并且其深度足以使光隧道904在每个凹槽处被折叠,但在折叠时不会切断。当材料在每个凹槽处被折叠时,在与凹槽位置对应的折叠处,相邻区段之间会形成折痕,如下文中进一步描述。因此,光隧道904的厚度做得足够大,以使材料能折叠而不会断裂或撕裂,从而形成光隧道主体。在示例中,材料是铝并且厚0.5mm。取决于所选择的材料,可以使用其他厚度。
图9D是光隧道904的光输出端的截面。在折叠操作后,每个区段912、914、916、918和920现在是矩形锥形光隧道904的边。在该四边示例中,材料在相邻区段之间的折痕913、915、917、919处以90°角折叠。凹槽957、955、953、951能够在折痕形成的地方进行四次折叠,以形成光隧道的主体。反射表面921成为光隧道904的连续反射内表面,其延伸穿过折痕913、915和917。注意,在第一区段912的第一端与第四区段918的内表面交汇的区域960中,只有单个装配间隙。在该示例中,反射表面921跨光隧道904中的折痕是连续的,除了在反射表面921不连续的区域960中的该装配间隙以外。在该示例布置中,五个区段(912、914、916、918和920)与在折痕931、915、917和919处形成四个折叠的四个凹槽(957、955、953、951)一起使用,以实现四边光隧道904,其中第五区段920与第一区段912的第二或外表面972重叠,使得区域960中的单个装配间隙被第五区段920的内表面的一部分覆盖,并因此密封。以这种方式,在光隧道904内反射的光没有其可以从光隧道泄漏的任何表面或间隙,并且除了输出端外没有出口,使得光隧道的效率很高并且没有损失。
四边隧道904是一个示例布置。边的数量可以改变以形成额外的布置。光隧道可具有N个边,其中N是大于2的正整数。例如,三角形具有3个边,其中N等于3,五边形具有5个边,其中N等于5。有用的示例可具有多达10个边,其中N等于10。对于要在一般情况下描述的光隧道,对于有N个边的光隧道,至少有N个区段的材料。每个区段都具有第一表面和与第一表面相对的第二表面。在N个区段之间形成N-1个折痕,并且在第N区段与第一区段相遇的地方形成交汇处。该交汇处具有装配间隙,然后该装配间隙被密封。如图9D的示例所示,可以通过进一步使用与第一区段重叠的第N+1区段来密封交汇处,使得第N+1区段的第一表面的一部分与交汇处重叠并密封交汇处。在N(或N+1)区段中的每个的材料的第一表面上沉积反射涂层以形成反射表面,并且反射表面在折痕中的至少一个上方是连续的。在图9D的示例中,反射表面在第1区段和第2区段之间、第2区段和第3区段之间以及第3区段和第4区段之间的折痕上方是连续的,但在第4区段(918)和第一区段(912)的交汇处是不连续的。反射表面跨N边光隧道的相邻的1、2、-N区段之间的1、2、-N-1折痕是连续的。在示例中,N+1区段彼此是一体的并由单块材料形成,并且折痕在背面中的凹槽延伸到该块材料中但不延伸穿过该块材料的位置制成。
图9E是可替代的光隧道布置,其中光隧道904仅使用四个区段(912、914、916、918)的材料形成。在图9E中,在第四区段918和第一区段912的端部的交汇处与形成的区域960中的单个装配间隙与第四区段918的内表面相接,使用钎焊棒形成的钎焊接头、焊接处961诸如使用填料棒的TIG焊接、环氧树脂或另一种接缝封闭来密封,这种方法使用的材料较少,但与图9D所示的布置相比略显不足。这两种布置都具有连续的反射表面921,其继续穿过折痕913、915、917,并且在第一部分912的端部与第四部分918的表面交汇的区域960中的装配间隙处不连续,在这两种布置中,装配间隙都被覆盖或密封,使得光不能从交汇处泄漏,并且这两种布置都具有成本效益,并且效率高,很少或没有光损失的可能性。
为了将图9E的布置扩展到更一般的示例,在示例布置中,光隧道具有N个边,其中N是3和10之间的整数。该光隧道具有N个区段的材料。每个区段都具有第一表面和第二相对表面。第一区段具有材料的一端,并且第N区段具有材料的另一端。在N个区段中的相邻区段之间形成N-1个折痕,并在第一区段的端部与第N区段的第一表面相遇的地方形成交汇处。在第N区段和第一区段的端部之间形成密封件以覆盖交汇处的装配间隙。N个区段中的每个的第一表面都具有沉积在其上的反射涂层以形成反射表面。反射表面是跨折痕中的至少一个连续的。在示例中,反射表面是跨N-1个折痕中的每个连续的,并且在第一区段和第N区段的交汇处是不连续的。光隧道可以是区段之间有折痕的三角形、正方形或矩形、五边形、六边形、七边形、八边形、九边形或十边形。如图8C所示,光隧道可以是锥形的,其中输入端处的开口的二维面积比相对出口端的面积更小。可替代地,如图8A至图8B和图8C所示,光隧道可具有相等面积的端部。
图10A至图10D是用于折叠一块扁平的反射材料以形成光隧道布置的示例工具和方法的一系列视图。注意,尽管该图示的示例针对具有四个边并使用五个区段的光隧道,即上文中所述的图9D的示例,但材料可以以其他方式折叠来装配光隧道。
在图10A中,在完成上述图9A所示的切割和开槽操作后,用于单个光隧道904的工件被置于折叠工具中。具有凹槽的材料的背面背对心轴1075放置在具有端部1071、1073的对准夹具中。反射表面(为说明清晰起见未示出)面向心轴1075。
在图10B中,U形折叠夹被强制向上抵住光隧道904,以沿两个凹槽折叠光隧道并形成具有带有反射内表面的三个区段的U形主体,该U形主体抵住心轴1075的外表面。现在,在位于心轴1075下端处的光隧道904的角部处形成了两个折痕。
在图10C中,第一滑动工具1079在第三凹槽处折叠光隧道904,使得光隧道904现在具有四个边,其抵住心轴1075的四个边。现在有在光隧道904中形成的三个折痕。
在图10D中,第二滑动工具1081在第四凹槽处折叠光隧道904的第五区段,以完成第五区段与光隧道的第一区段的重叠,从而形成第四折痕,使得五个区段形成矩形的光隧道904,其中第五区段与第一区段的外表面重叠以完成矩形,见图9D。第一区段的端部与第四区段的内表面交汇的地方形成的单个装配间隙然后被第五区段完全覆盖。然后在第五区段的端部处进行点焊操作完成了光隧道904的装配。示例点焊可以是超声波、电弧焊、氩弧焊或适合材料的其他焊接类型。可以使用钎焊棒进行钎焊。可以使用填料棒进行焊接。可以使用环氧树脂或其他粘合剂材料。在该示例中,某些步骤被描述为以特定的步骤顺序为例,然而步骤的可替代顺序被设想为形成额外的布置。
图11是示出图10A至图10D所示的方法的主要步骤的流程图。在图11中,在步骤1101处,为材料提供反射涂层,该反射涂层在至少一个边上形成反射表面。该反射表面将形成光隧道的内表面。
在步骤1103处,在材料的背面上形成凹槽,并且从材料切割光隧道,如上面图9A至图9B所示。凹槽限定了彼此相邻的区段。然后从材料切出光隧道。如上文中所述,在可替代方法中,可以切出光隧道,然后可形成凹槽。
在步骤1105处,使用凹槽折叠材料以形成光隧道,该光隧道具有在各区段之间具有折痕的区段,并且具有连续的反射内表面,其在第一区段和第四区段或第N区段的交汇处具有装配间隙,如上面图10A至图10C所示。
在步骤1105处,通过将光隧道材料附接到其自身,例如如图10D所示,通过在重叠部分中形成点焊,或如图9E所示,通过沿材料的纵向边缘形成覆盖装配间隙的焊接处或密封件,来通过在交汇处密封光隧道装配间隙完成光隧道装配。
使用片材材料上的反射表面的光隧道是廉价的,不需要光学玻璃或其他光学材料,准确、高效并且制造成本低。这些特性实现了使用该布置的低成本、高效率的光学引擎。
在权利要求的范围内,在所描述的实施例中可以进行修改,而且其他实施例也是可能的。

Claims (30)

1.一种设备,其包括:
材料的光隧道,其包括:
具有第一表面和相对的第二表面的第一区段、具有第三表面和相对的第四表面的第二区段、具有第五表面和相对的第六表面的第三区段,以及具有第七表面和相对的第八表面的第四区段;
所述第一区段和所述第二区段之间的第一折痕、所述第二区段和所述第三区段之间的第二折痕、所述第三区段和所述第四区段之间的第三折痕,以及所述第一区段的端部和所述第四区段的所述第七表面之间的交汇处;以及
在所述第一表面、所述第三表面、所述第五表面和所述第七表面上形成反射表面的反射涂层,所述反射表面跨所述第一折痕、所述第二折痕和所述第三折痕中的至少一个是连续的,并且所述反射涂层在所述交汇处是不连续的。
2.根据权利要求1所述的设备,进一步包括密封件,所述密封件在所述交汇处封闭所述第一区段的所述端部和所述第四区段的所述第七表面之间的装配间隙。
3.根据权利要求2所述的设备,其中所述密封件是钎焊接头、焊接处或环氧树脂。
4.根据权利要求1所述的设备,其中所述光隧道进一步包括:
具有第九表面和相对的第十表面的所述材料的第五区段;
所述第四区段和所述第五区段之间的第四折痕,所述第五区段的所述第九表面至少部分地与所述第一区段的所述第二表面重叠并在所述交汇处覆盖装配间隙。
5.根据权利要求4所述的设备,进一步包括将所述第九表面附接到所述第二表面的密封件。
6.根据权利要求5所述的设备,其中所述密封件是钎焊接头、焊接处或环氧树脂。
7.根据权利要求1所述的设备,其中所述材料是铝、铜、纸、塑料或纸板。
8.根据权利要求1所述的设备,其中所述材料是具有大约0.5mm厚度的铝片。
9.根据权利要求1所述的设备,其中所述反射涂层是银、铝、金、反射性电介质层或这些的组合。
10.根据权利要求9所述的设备,其中所述反射涂层进一步包括保护性氧化物层。
11.根据权利要求1所述的设备,其中所述光隧道具有带有第一面积的第一开口和带有第二面积的第二开口,所述第二面积大于所述第一面积。
12.根据权利要求1所述的设备,其中所述光隧道在第一端处具有被配置为接收光的第一开口,并且在第二相对端处具有被配置为透射发散光的第二开口。
13.根据权利要求1所述的设备,其中所述光隧道是长度大于宽度且具有高度的矩形主体。
14.根据权利要求13所述的设备,其中所述宽度和所述高度近似相等,并且所述矩形主体具有正方形截面。
15.根据权利要求13所述的设备,其中所述宽度大于所述高度并小于所述长度,并且所述矩形主体具有矩形截面。
16.根据权利要求15所述的设备,其中所述光通道具有正方形的第一端开口和矩形的第二端开口。
17.根据权利要求16所述的设备,其中所述第一端开口具有大约1毫米的高度和宽度,并且所述第二端开口具有大约4.6毫米的高度和大约5.2毫米的宽度,并且所述光隧道具有大约20毫米的长度。
18.一种设备,其包括:
具有N个边的材料的光隧道,其中N是介于3和10之间的整数,所述光隧道包括:
N个区段的所述材料,每个区段具有第一表面和相对的第二表面,所述N个区段彼此相邻;
在从所述第一区段和所述第二区段之间到第N-1区段和第N区段之间的相邻区段之间的N-1个折痕,以及所述第一区段中的所述材料的端部和所述第N区段的所述第一表面之间的交汇处,所述交汇处形成装配间隙;
在所述N个区段中的每个的所述第一表面上形成反射表面的反射涂层,所述反射表面跨所述N-1个折痕中的至少一个是连续的,并且所述反射涂层在所述装配间隙处是不连续的;以及
在所述交汇处覆盖所述装配间隙的密封件。
19.根据权利要求18所述的设备,其中所述N个区段是彼此一体的。
20.根据权利要求18所述的设备,所述光隧道进一步包括:
具有第一表面和第二相对表面的所述材料的第N+1区段;
在所述第N区段和所述第N+1区段之间的第N折痕,所述第N+1区段的所述第一表面与所述第一区段的所述第二表面重叠,并在所述交汇处覆盖所述装配间隙;以及
将所述第N+1区段的所述第一表面附接到所述第一区段的所述第二表面的密封件。
21.根据权利要求20所述的设备,其中N+1个区段是彼此一体的。
22.一种方法,其包括:
在材料的背面表面上形成纵向凹槽以限定N个相邻区段,其中N是介于3和10之间的整数,所述材料具有反射涂层以在与所述背面表面相对的所述N个相邻区段中的每个的前表面上形成反射表面;
通过在对应于所述纵向凹槽的位置处在所述N个区段中的相邻区段之间形成N-1个折痕来形成光隧道,所述反射表面跨所述N-1个折痕中的至少一个是连续的,所述反射表面在所述第一区段的一端与所述第N区段的所述反射表面相遇的交汇处具有装配间隙;以及
在所述交汇处密封所述装配间隙。
23.根据权利要求22所述的方法,其中所述N个区段是彼此一体的。
24.根据权利要求22所述的方法,其中密封所述装配间隙进一步包括:
在所述材料的所述背面中形成纵向凹槽以限定与所述第N区段相邻的所述材料的第N+1区段;
在所述第N区段和所述第N+1区段之间的第N折痕处折叠所述第N+1区段以在所述交汇处覆盖所述装配间隙,所述第N+1区段与所述第一区段的背面表面重叠;以及
将所述第N+1区段附接到所述第一区段的所述背面表面。
25.根据权利要求22所述的方法,其中所述反射涂层由银、铝、金、反射性电介质层或其组合形成。
26.根据权利要求22所述的方法,所述材料包括铝、银或铜金属、纸、纸板或塑料。
27.根据权利要求22所述的方法,其中所述N个区段是彼此一体的。
28.根据权利要求22所述的方法,其中N等于4并且所述光隧道具有4个边。
29.根据权利要求24所述的方法,其中N等于4并且所述光隧道具有4个边。
30.一种光学引擎,其包括:
被配置为在光源输出端处提供光的光源;以及
材料的光隧道,其被配置为接收来自所述光源输出端的所述光,并在光隧道输出端处输出发散光,所述光隧道包括:
具有第一表面和相对的第二表面的第一区段、具有第三表面和相对的第四表面的第二区段、具有第五表面和相对的第六表面的第三区段,以及具有第七表面和相对的第八表面的第四区段;
所述第一区段和所述第二区段之间的第一折痕、所述第二区段和所述第三区段之间的第二折痕、所述第三区段和所述第四区段之间的第三折痕,以及所述第一区段的端部和所述第四区段之间的交汇处;以及
在所述第一表面、所述第三表面、所述第五表面和所述第七表面上形成反射表面的反射涂层,所述反射表面跨所述第一折痕、所述第二折痕和所述第三折痕中的至少一个是连续的,并且所述反射涂层在所述交汇处是不连续的;
具有光学器件输入端和光学器件输出端的投影光学器件,所述投影光学器件被配置为响应于所述光学器件输入端处的调制光在所述光学器件输出端处将投影输出光投影,其中所述光学器件输入端的焦点与所述调制光的发散匹配;以及
在所述光隧道输出端和所述光学器件输入端之间光学耦合的空间光调制器,所述空间光调制器被配置为响应于所述发散光提供所述调制光。
CN202080018534.0A 2019-03-05 2020-03-05 光隧道 Pending CN113544557A (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201962813885P 2019-03-05 2019-03-05
US62/813,885 2019-03-05
US16/520,249 US11498276B2 (en) 2018-07-24 2019-07-23 Low cost optical engine
US16/520,249 2019-07-23
US16/808,819 US11360319B2 (en) 2018-07-24 2020-03-04 Light tunnel
US16/808,819 2020-03-04
PCT/US2020/021226 WO2020181110A1 (en) 2019-03-05 2020-03-05 Light tunnel

Publications (1)

Publication Number Publication Date
CN113544557A true CN113544557A (zh) 2021-10-22

Family

ID=72338035

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080018534.0A Pending CN113544557A (zh) 2019-03-05 2020-03-05 光隧道

Country Status (2)

Country Link
CN (1) CN113544557A (zh)
WO (1) WO2020181110A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023031781A1 (en) 2021-09-01 2023-03-09 Novartis Ag Pharmaceutical combinations comprising a tead inhibitor and uses thereof for the treatment of cancers

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0362864A2 (de) * 1988-10-06 1990-04-11 Gerhard Dipl.-Phys. Karl Leuchtscheibe für durchleuchtungsfähige Vorlagen, wie Dias und dgl.
CA2146060A1 (en) * 1994-04-04 1995-10-05 Eugene Dolgoff A high efficiency light valve projection system
US5802903A (en) * 1997-01-28 1998-09-08 Nakajima Steel Pipe Co., Ltd Manufacturing method for angled steel pipes
US6324330B1 (en) * 2000-07-10 2001-11-27 Ultratech Stepper, Inc. Folded light tunnel apparatus and method
US20030031029A1 (en) * 2001-08-10 2003-02-13 Fuji Photo Optical Co., Ltd Rod integrator and illumination optical system using the same
DE10321020A1 (de) * 2003-05-10 2004-12-16 Carl Zeiss Jena Gmbh Anordnung zum Erzeugen eines homogenisierten Leuchtfeldes
US20050006025A1 (en) * 2003-07-11 2005-01-13 Unaxis Balzers Ltd. Method for the assembly of light integrators
CN1754063A (zh) * 2003-02-21 2006-03-29 微阳有限公司 使用改变方向的偏振校正系统
US20080066277A1 (en) * 2004-08-20 2008-03-20 Hunter Douglas Inc. Appparatus and Method for Making a Window Covering Having Operable Vanes
JP2009280211A (ja) * 2008-05-19 2009-12-03 Cosel Co Ltd 包装用箱
WO2010133822A1 (en) * 2009-05-20 2010-11-25 Ceravision Limited Lucent plasma crucible
CN102330888A (zh) * 2010-07-12 2012-01-25 红蝶科技(深圳)有限公司 混光式带荧光粉激发的单色光源及使用其的投影光学引擎
CN102906639A (zh) * 2010-05-21 2013-01-30 Nec显示器解决方案株式会社 照明光学系统以及使用其的投影仪
CN105980913A (zh) * 2013-12-12 2016-09-28 康宁股份有限公司 具有色彩组合元件的光多路复用器
CN106414247A (zh) * 2014-06-17 2017-02-15 利乐拉瓦尔集团及财务有限公司 一种用于提供折痕线的方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0362864A2 (de) * 1988-10-06 1990-04-11 Gerhard Dipl.-Phys. Karl Leuchtscheibe für durchleuchtungsfähige Vorlagen, wie Dias und dgl.
CA2146060A1 (en) * 1994-04-04 1995-10-05 Eugene Dolgoff A high efficiency light valve projection system
EP0676902A2 (en) * 1994-04-04 1995-10-11 Projectavision, Inc. A high efficiency light valve projection system
US5802903A (en) * 1997-01-28 1998-09-08 Nakajima Steel Pipe Co., Ltd Manufacturing method for angled steel pipes
US6324330B1 (en) * 2000-07-10 2001-11-27 Ultratech Stepper, Inc. Folded light tunnel apparatus and method
US20030031029A1 (en) * 2001-08-10 2003-02-13 Fuji Photo Optical Co., Ltd Rod integrator and illumination optical system using the same
CN1754063A (zh) * 2003-02-21 2006-03-29 微阳有限公司 使用改变方向的偏振校正系统
DE10321020A1 (de) * 2003-05-10 2004-12-16 Carl Zeiss Jena Gmbh Anordnung zum Erzeugen eines homogenisierten Leuchtfeldes
US20050006025A1 (en) * 2003-07-11 2005-01-13 Unaxis Balzers Ltd. Method for the assembly of light integrators
US20080066277A1 (en) * 2004-08-20 2008-03-20 Hunter Douglas Inc. Appparatus and Method for Making a Window Covering Having Operable Vanes
JP2009280211A (ja) * 2008-05-19 2009-12-03 Cosel Co Ltd 包装用箱
WO2010133822A1 (en) * 2009-05-20 2010-11-25 Ceravision Limited Lucent plasma crucible
CN102906639A (zh) * 2010-05-21 2013-01-30 Nec显示器解决方案株式会社 照明光学系统以及使用其的投影仪
CN102330888A (zh) * 2010-07-12 2012-01-25 红蝶科技(深圳)有限公司 混光式带荧光粉激发的单色光源及使用其的投影光学引擎
CN105980913A (zh) * 2013-12-12 2016-09-28 康宁股份有限公司 具有色彩组合元件的光多路复用器
CN106414247A (zh) * 2014-06-17 2017-02-15 利乐拉瓦尔集团及财务有限公司 一种用于提供折痕线的方法

Also Published As

Publication number Publication date
WO2020181110A1 (en) 2020-09-10

Similar Documents

Publication Publication Date Title
US9435510B2 (en) Method and system for managing light from a light emitting diode
JP2009523308A5 (zh)
US20050036118A1 (en) Projection display device
US9863759B2 (en) Illumination apparatus, pattern irradiation device, and system
JP2009523308A (ja) 発光ダイオード用光学マニホールド
JP2006302902A (ja) カットオフビームを与える自動車用照明モジュールおよびこの照明モジュールを備えるヘッドライト
JP2018509645A5 (zh)
US10209527B2 (en) Illuminator and projector
JP2007535149A (ja) 発光ダイオード用光学マニホールド
US20180314141A1 (en) Light source device and projection type display apparatus
US8157385B2 (en) Reflector, light source apparatus, and projector
CN113544557A (zh) 光隧道
CN108073025B (zh) 投影装置以及照明系统
JP6604929B2 (ja) 光学ユニットおよびこれを用いた光学装置、光源装置、投射型表示装置
US11360319B2 (en) Light tunnel
JPH0575795A (ja) 文書走査装置用照射装置
EP3301500B1 (fr) Système d'éclairage de véhicule automobile et véhicule automobile
JP2007286608A (ja) ビームコンバイナ及び投影システム
CN109100908B (zh) 照明系统及投影装置
CN116107143A (zh) 色轮模块与投影装置
JP6428437B2 (ja) 多波長光源および光源装置
JP2021189395A (ja) 照明装置およびプロジェクター
CN112835254B (zh) 光源模块
CN100589024C (zh) 光均匀化元件
JP2003262832A (ja) パターン付き反射器を使用する回折補償

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination