CN113533727A - 精氨酸甲基转移酶3在乳腺癌诊疗中的应用 - Google Patents

精氨酸甲基转移酶3在乳腺癌诊疗中的应用 Download PDF

Info

Publication number
CN113533727A
CN113533727A CN202010318243.5A CN202010318243A CN113533727A CN 113533727 A CN113533727 A CN 113533727A CN 202010318243 A CN202010318243 A CN 202010318243A CN 113533727 A CN113533727 A CN 113533727A
Authority
CN
China
Prior art keywords
breast cancer
arginine methyltransferase
prmt3
application
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010318243.5A
Other languages
English (en)
Other versions
CN113533727B (zh
Inventor
王红霞
许静轩
周天浩
蒋梦怡
鞠高达
虞越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai First Peoples Hospital
Original Assignee
Shanghai First Peoples Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai First Peoples Hospital filed Critical Shanghai First Peoples Hospital
Priority to CN202010318243.5A priority Critical patent/CN113533727B/zh
Priority claimed from CN202010318243.5A external-priority patent/CN113533727B/zh
Publication of CN113533727A publication Critical patent/CN113533727A/zh
Application granted granted Critical
Publication of CN113533727B publication Critical patent/CN113533727B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57415Specifically defined cancers of breast
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/91Transferases (2.)
    • G01N2333/91005Transferases (2.) transferring one-carbon groups (2.1)
    • G01N2333/91011Methyltransferases (general) (2.1.1.)
    • G01N2333/91017Methyltransferases (general) (2.1.1.) with definite EC number (2.1.1.-)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Oncology (AREA)
  • Genetics & Genomics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hospice & Palliative Care (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及精氨酸甲基转移酶3(PRMT3)在乳腺癌诊疗中的应用。本发明证实乳腺癌肿瘤组织中PRMT3表达高于正常组织,PRMT3高表达与乳腺癌患者的预后差呈现显著正相关;过表达或抑制PRMT3可改变乳腺癌细胞干性表型、微球体形成、成瘤能力及对传统化疗药物的抵抗性,PRMT3通过促进间质型转化与乳腺癌细胞干性的增强促进复发转移及治疗抵抗的产生,其对乳腺癌干性的调控作用通过激活Wnt通路来介导。本发明为乳腺癌的诊断、预后和治疗提供了一种新的手段。

Description

精氨酸甲基转移酶3在乳腺癌诊疗中的应用
技术领域
本发明属于疾病诊断与药物靶点领域,具体涉及精氨酸甲基转移酶3在乳腺癌的临床诊断与作为药物靶点中的应用。
背景技术
乳腺癌(Breast Cancer,BC)占女性恶性肿瘤发病和相关死因的首位。中国乳腺癌发病率呈现逐年上升趋势,全球范围内中国占新诊断病例12.2%,占乳腺癌死亡病例9.6%。复发、转移及耐药性产生是导致患者治疗失败及死亡的主要原因。近年来的研究发现,除了基础的遗传学因素外,表观遗传修饰(Epigenetics Modification)在乳腺癌的发生发展中发挥重要调控作用。几乎所有人类肿瘤中都存在表观遗传异常,导致DNA结构功能改变、基因异常活化、染色体复制调控机制破坏等,在不改变DNA序列情况下调控基因表达及细胞表型,在肿瘤的发生发展过程中扮演着重要的角色,以表观遗传学为基础的抗肿瘤药物研发已在临床前及临床研究中展示出较好的临床应用前景。
乳腺癌具有特异的表观遗传学修饰特点,是导致细胞生物学特征改变、恶性转化的重要机制。表观遗传调控包括DNA甲基化、组蛋白修饰、染色质重塑等,组蛋白的甲基化修饰主要是由一类含有SET结构域的蛋白来执行的,参与异染色质形成、基因印记、X染色体失活和转录调控等多种主要生理功能,是表观遗传学研究的一个重要领域。组蛋白甲基化的异常与肿瘤发生等多种人类疾病相关,可以特异性地激活或者抑制基因的转录活性。研究发现,组蛋白甲基转移酶的作用对象不仅仅限于组蛋白,某些非组蛋白也可以被组蛋白甲基转移酶甲基化,这将为探明乳腺癌细胞内部的基因转录、信号转导、乃至发生发展机制提供更广阔的空间。蛋白质精氨酸甲基转移酶家族(Protein Arginine Methyltransferase,PRMTs)参与的精氨酸甲基化是一种广泛翻译后修饰,以S-腺苷-甲硫氨酸(S-adenosyl-L-methionine,AdoMet)为甲基供体,甲基化修饰蛋白精氨酸侧链氮原子,生成S-腺苷同型半胱氨酸和甲基精氨酸。目前哺乳动物共发现10种PRMTs,分为I-IV型,参与DNA修复和转录、RNA加工、信号转导及核苷酸-细胞质定位调控等。精氨酸甲基化在多种肿瘤发生发展过程中起重要作用,PRMTs在肺癌、乳腺癌、结直肠癌及白血病等肿瘤中表达异常,但目前研究比较多的PRMT1,PRMT4,PRMT5等,对PRMT3报道极少。
国内外研究表明,肿瘤细胞包括乳腺癌肿瘤组织中存在着一小部分具有自我更新和无限增殖潜能的细胞亚群,称为“肿瘤干细胞”(Cancer Stem Cells,CSCs),该群细胞具有治疗抵抗以及免疫逃逸的特点,在乳腺癌进展的各个环节起主导作用。乳腺癌干细胞与上皮间质转化(EMT)关系密切。EMT是以上皮细胞极性丧失并获得间质细胞表型为特征,对肿瘤的侵袭和转移具有重要作用。多项研究表明诱导EMT可使正常细胞获得干细胞样特性,对肿瘤的侵袭转移与预后产生重大影响,是开启早期肿瘤进入侵袭性恶性表型的关键过程。目前认为,乳腺癌的发生和复发被认为与乳腺癌干细胞的生物学特性密切相关,而且由不同因子诱导、具有EMT表型的细胞是乳腺癌干细胞样细胞的丰富来源。乳腺癌细胞中EMT的诱导不仅促进侵袭和转移而且有助于药物抵抗的产生。因此,深入探索表观遗传修饰参与乳腺癌干性和EMT调控的重要方式和分子机制,不仅是理解乳腺癌生理特性的突破点,更将是推进乳腺癌临床诊治的关键,对发展特异性靶向治疗、改善乳腺癌患者的长期生存至关重要。
精氨酸甲基转移酶3(Protein Arginine Methyltransferases 3,PRMT3)属于蛋白质精氨酸甲基转移酶家族,其编码酶可以催化蛋白质胍基氮精氨酸残基甲基化反应;作用于40S核糖体蛋白S2;参与核糖体80S亚基功能成熟的生理过程以及选择性剪切导致多样性转录变异。PRMT3在其N端具有一个“锌指”结构,这有别于其他的精氨酸甲基转移酶。关于PRMT3与肿瘤的研究报道较少,对其如何参与肿瘤发展的调控分子机制目前还不清楚。
《中国农学通报》2008年第24卷第7期刊出的论文“精氨酸甲基转移酶及其生物学功能研究进展”公开了编码PRMT3的基因在小鼠中被敲出后胚胎变小,但是在成熟期又可以恢复野生型的大小,说明该基因可能在早期胚胎发育中起着重要的作用。《中华口腔医学会口腔医学科研管理分会第二次学术年会论文集》2017年刊出的论文“组蛋白精氨酸甲基转移酶PRMT3和H4R3甲基化修饰在间充质干细胞成骨分化过程中的作用”公开了PRMT3对间充质干细胞成骨分化有明显的促进作用。
然而,目前未见PRMT3与乳腺癌关系的报道。
发明内容
本发明的目的是针对现有技术中的不足,提供精氨酸甲基转移酶3在制备乳腺癌诊断试剂或药物中的应用。
第一方面,本发明提供了精氨酸甲基转移酶3作为生物标志物在制备乳腺癌诊断试剂盒中的应用。
第二方面,本发明提供了精氨酸甲基转移酶3作为生物标志物在制备乳腺癌预后试剂盒中的应用。
第三方面,本发明提供了检测精氨酸甲基转移酶3基因或蛋白含量的试剂在制备乳腺癌诊断试剂盒中的应用。
第四方面,本发明提供了检测精氨酸甲基转移酶3基因或蛋白含量的试剂在制备乳腺癌预后试剂盒中的应用。
优选地,检测的样品为组织。
第五方面,本发明提供了精氨酸甲基转移酶3的抑制剂在制备治疗乳腺癌的药物中的应用。
优选地,所述精氨酸甲基转移酶3的抑制剂选自以精氨酸甲基转移酶3蛋白或其转录本为靶序列、且能够抑制精氨酸甲基转移酶3蛋白表达或基因转录的小干扰RNA、dsRNA、shRNA、微小RNA、反义核酸;或能表达或形成所述小干扰RNA、dsRNA、微小RNA、反义核酸的构建物。
更优选地,所述精氨酸甲基转移酶3的抑制剂是如SEQ ID NO:1和SEQ ID NO:2所示的shRNA,或如SEQ ID NO:3和SEQ ID NO:4所示的shRNA。
第六方面,本发明提供了精氨酸甲基转移酶3的抑制剂在制备防止乳腺癌复发转移及治疗抵抗的药物中的应用。
第七方面,本发明提供了精氨酸甲基转移酶3的抑制剂在制备抑制体外乳腺癌细胞干细胞相关因子表达、克隆形成、CD44+CD24-表型亚群细胞比例升高或对化疗药物敏感性的实验试剂中的应用。
其中,所述实验试剂不同于药物,其是用于在体外进行研究实验所使用的试剂。
本发明优点在于:
本发明基于前期高通量慢病毒shRNA文库筛选并鉴定出新型与乳腺癌干细胞表型CD44+CD24-转化调控密切相关的表观遗传修饰酶—PRMT3,过表达或抑制PRMT3可改变干性表型、微球体形成、成瘤能力及对传统化疗药物的抵抗性:PRMT3在乳腺癌微球体中表达显著高于贴壁细胞;过表达PRMT3可使乳腺癌细胞的干性表型增加、克隆形成能力增强,同时对多种化疗药物如吉西他滨、5-氟尿嘧啶和紫杉醇的耐药性增加;抑制其表达则产生相反效果。临床上,乳腺癌肿瘤组织中PRMT3表达高于正常组织,尤其PRMT3高表达与乳腺癌患者的预后差呈现显著正相关。同时,我们发现PRMT3表达与乳腺癌细胞的间质性表型及侵袭转移能力密切相关:Transwell及划痕实验表明,过表达PRMT3可导致乳腺癌侵袭转移能力的提高,同时伴有EMT关键分子Snail与Vimentin的表达相应上调。这一系列前期研究均提示我们,PRMT3通过促进间质型转化与乳腺癌细胞干性的增强促进复发转移及治疗抵抗的产生。
本发明深入研究PRMT3参与乳腺癌细胞干性维持、促进治疗抵抗的确切分子机制:采用分子生物学手段干扰PRMT3表达后进行RNA-seq及ChIP-Seq检测,发现PRMT3高表达细胞Wnt信号通路多个关键基因如WNT5B、ROCK2、LRP6、MYC等呈现转录激活状态;TCF/LEF-1Luciferase报告基因检测显示PRMT3可增强β-catenin对下游基因的转录活性;采用Wnt通路抑制剂ICG001可逆转PRMT3这一调控作用。这一系列前期研究均表明:PRMT3对乳腺癌干性的调控作用通过激活Wnt通路来介导。
附图说明
图1:乳腺癌组蛋白修饰基因shRNA文库(A)。经过2轮筛选以及shRNA靶点初步验证,88个基因中3个组蛋白修饰基因与CD44+CD24-表型转化调控相关(B)。
图2:组织芯片验证PRMT3在乳腺癌中表达情况及其临床意义。PRMT3在乳腺癌组织中表达显著高于正常组织(A);且与预后显著相关(B)。
图3:PRMT3在乳腺癌微球体培养中表达量要显著高于贴壁培养细胞(A),去悬浮后表达量下降(B)。
图4:采用经典分子生物学手段干扰PRMT3基因表达,发现抑制或过表达PRMT3可导致干细胞相关因子(ALDHA1、SOX2及OCT4)呈现相应下调或上调(A),可显著改变乳腺癌细胞克隆形成能力(B)及干性表型CD44+CD24-表型亚群细胞比例变化(C),对化疗药物的敏感性(D)。
图5:PRMT3过表达可上调Wnt通路转录活性。A,B,PRMT3过表达或干扰后检测Hedgehog、Wnt与Notch通路,发现Wnt通路呈现显著活化,多个节点mRNA(A)与蛋白水平显著变化(B);C,D,抑制或过表达PRMT3调控Wnt通路多个分子表达;E,Luciferase报告基因检测。
图6:过表达PRMT3可导致乳腺癌侵袭转移能力的提高,同时伴有EMT关键分子Snail与Vimentin的表达相应上调。
图7:PRMT3通过Wnt通路发挥对乳腺癌干细胞的调控作用,采用Wnt通路抑制剂ICG001可逆转PRMT3的干性调控作用。A,ICG001逆转PRMT3过表达引起干性表型增加;B,ICG001逆转PRMT3过表达导致的微球体与克隆形成能力增强。
图8:PRMT3ChIP-Seq信号通路分析显示:PRMT3过表达与Wnt通路转录调控显著相关;PRMT3调控Wnt通路多个节点基因的转录活性增强;PRMT3与Wnt下游关键基因如c-Myc表达具显著相关性。
图9:动物体内实验证实:过表达PRMT3乳腺肿瘤生长加快。
具体实施方式
下面结合附图对本发明提供的具体实施方式作详细说明。
实施例1
一、实验材料
该实施例所用试剂的来源:MTT(四甲基偶氮唑蓝)及DMSO购自Sigma公司,新生牛血清购于杭州四季青生物工程科技有限公司,胎牛血清及RPMI-1640培养基购自GIBCO公司。LipofectamineTM2000购自Invitrogen公司。乳腺癌细胞株购自中科院上海细胞库。
二、实验方法
1.建立特异性shRNA慢病毒文库,共包含88个HAT\HDAC和HMT\HDM基因
shRNA引物设计与合成(Invitrogen),连接至shRNA慢病毒载体pUCTP;载体酶切体系,产物回收,连接体系;取5μl连接产物转化GeneHogs化学感受态细菌;酶切验证;shRNA慢病毒包装。细胞培养:293T细胞培养于DMEM+10%FBS+1%Pen-Strep+1%NEAA中。细胞接种:将状态良好的293T细胞传代,以合适密度接种至孔板,使第二天细胞汇合度达70-80%左右。将转染混合物逐滴加入细胞孔板,轻摇孔板混匀。荧光观察:转染后24h,用荧光显微镜观察转染效率。建立质粒转染筛选体系,摸索高通量病毒感染MOI值;高通量慢病毒文库感染乳腺癌细胞(MCF-7、HMLER细胞)。
2.PRMT3在乳腺癌肿瘤组织中高表达,且与预后相关
1)在传统病理学技术的基础上制备各种组织蜡块作为组织供体,再用组织阵列仪(Advanced Tissue Arrayer ATA100,Chemicon International,Temecula,CA)按照预先设计(肿瘤切片:1.0mm孔径,良性组织切片:1.5mm孔径)制作各种组织阵列蜡块,经切片和烤片后即成为各种组织芯片(Tissue Microarray)。其优势在于可以快速、高效地对大量组织样本进行分析,结果具有更高一致性。目前我们已收集230例乳腺癌患者组织标本(福尔马林固定石蜡包埋的组织块)、50例良性乳腺组织标本(来源于因乳腺良性病变切除的乳腺组织),并获得伦理委员会同意。
2)免疫组化染色:石蜡切片脱蜡至水。蒸馏水冲洗,PBS浸泡5分钟,3%H2O2室温孵育5~10分钟,以消除内源性过氧化物酶的活性,PBS冲洗,2分钟×3次。滴加适当比例稀释的一抗或一抗工作液,37℃孵育1~2小时或4℃过夜。PBS冲洗,2分钟×3次。滴加试剂1(Polymer Helper),室温或37℃孵育20分钟,PBS或TBS冲洗,2分钟×3次。滴加试剂2(polyperoxidase-anti-mouse/rabbit IgG),室温或37℃孵育20~30分钟,PBS或TBS冲洗,2分钟×3次。PBS冲洗,2分钟×3次。显色剂显色(DAB或AEC)。自来水充分冲洗,复染,脱水透明(如需要)、封片。
3)总结分析患者临床病史资料,与Pathway Array、Microarray结果对照,统计软件(BRB Array Tools、SAVI)分析结果,确定有效分子诊断及预测预后生物标记物和分子模型。
3.通过慢病毒介导的RNAi或基因过表达技术,测定转染前后乳腺癌干细胞及其分化细胞克隆形成、侵袭能力、动物成瘤能力、EMT转化(Vimentin,Twist,Snail)调控
1)慢病毒载体的构建:依照已知序列,按siRNA序列设计的原则,参照Ambion的网上设计工具(http://www.ambion.com/techlib/misc/siRNA_tools.html),使用BLAST排除同源序列。分别设计、合成shRNA寡核苷酸序列:
shRNA-1:
5’-TGCTGTTGACAGTGAGCGACAGATTTATGTGCAAAGGTTATAGTGAAGCCACAGATGTATAACCTTTGCACATAAATCTGGTGCCTACTGCCTCGGA-3’(SEQ ID NO:1)
5’-TCCGAGGCAGTAGGCACCAGATTTATGTGCAAAGGTTATACATCTGTGGCTTCACTATAACCTTTGCACATAAATCTGTCGCTCACTGTCAACAGCA-3’(SEQ ID NO:2)
shRNA-2:
5’-TGCTGTTGACAGTGAGCGCAAGGACAAAATACGAACAGAATAGTGAAGCCACAGATGTATTCTGTTCGTATTTTGTCCTTTTGCCTACTGCCTCGGA-3’(SEQ ID NO:3)
5’-TCCGAGGCAGTAGGCAAAAGGACAAAATACGAACAGAATACATCTGTGGCTTCACTATTCTGTTCGTATTTTGTCCTTGCGCTCACTGTCAACAGCA-3’(SEQ ID NO:4)
以pGIPZ(Open Biosystems)为基本载体构建质粒,转染293T细胞,根据对基因抑制率确定有效靶序列。用构建好的LV-shRNA慢病毒载体共转染包装细胞293T细胞,包装产生慢病毒,以293T细胞GFP蛋白的表达水平测定病毒滴度。
2)流式细胞仪检测干扰前后乳腺癌CD44+CD24-表型亚群细胞比例变化:细胞以106/100μl个细胞比例混悬于HBSS中,加入1mg/ml的Sandogobulin,冰上孵育10min,HBSS洗涤,再按106/100μl细胞混悬于HBSS中,按照有效稀释度加入荧光标记的一抗,冰上孵育20min,HBSS洗涤2次,按106/100μl加入活性染料7AAD(1μg/ml),上机(FACS Calibur),测定CD44+CD24-细胞比例。
3)Real-time PCR及Western blot检测乳腺癌干细胞相关蛋白/基因(Nanog、SOX2、Oct4、Notch、Wnt)及EMT转化基因(E-cadherin/N-cadherin,Zeb1/Zeb2,Vimentin,Twist,Snail)改变。分别提取靶基因过表达及敲降表达的细胞的mRNA及蛋白:用Trizol法提取总RNA,甲醛变性胶电泳质检总RNA纯度及完整性。分装。保存在-80℃冰箱中备用。
4)微球体形成实验检测靶基因修饰改变对克隆形成的影响:分别取不同处理前后细胞,用含20μg/L表皮生长因子(EGF)、10μg/L碱性成纤维细胞生长因子(bFGF)、5mg/L胰岛素和B27的DMEM-F12培养液重悬,以2×104个/ml接种至塑料培养瓶(Coming)中。第7天测定微球体大小,并计算微球体形成效率。(微球体形成效率=微球体数目/接种细胞数×100%)。
5)过表达或干扰靶基因表达后,MTT检测化疗抵抗
MTT检测:实验分2组:NBCSC组、感染后BCSC组。取各实验组细胞接种96孔板(500细胞/孔)。分别加入化疗药物(阿霉素,紫杉醇),终体积200μl/孔。酶标仪读取OD值,IC50用LIGAND软件求得。统计分析。
6)动物体内成瘤检测:取1×104个细胞,悬浮于HBSS/Matrigel,0.2ml分别原位接种至NOD/SCID小鼠左腋乳腺皮下的脂肪垫中(5周龄,7只一组),每3天每7d观察一次肿瘤形成情况,测量肿瘤的长径(a)和短径(b),计算肿瘤体积,绘制肿瘤生长曲线。观察其致瘤性(包括肿瘤大小、生长速度、成瘤率),生存期和死亡率。
4.靶基因调控乳腺癌细胞干性的分子机制研究
1)RNA-Seq——检测目的组蛋白修饰基因所调控的下游基因/DNA甲基化修饰表达变化。i)组织总RNA提取及纯化。ii)基因芯片杂交:采用同型双功能偶联剂(APS-PDC)包被玻璃基片,用OnmiG-rid 100点样仪进行点样,晾干;42℃过夜,55℃用2×SSC/0.2%SDS/0.1%BSA洗片20-30mins,1500rpm离心5mins干片,室温放置30mins,干燥避光保存。QIAquiek PCR purificationKit(QIAGEN公司)荧光探针纯化。iii)检测与分析:Agilent激光共聚焦扫描仪扫描,Imagene3.0(Biediseovery,Inc.)软件图像分析。
2)通过CHIP-seq实验检测待研究的组蛋白甲基转移酶或组蛋白去甲基化酶与哪些其调控表达变化的基因的启动子区域结合。
3)通过对表达谱实验及CHIP-seq实验结果的分析寻找乳腺癌特异的组蛋白甲基化事件及其调控的下游信号传导通路。
三、实验结果
1、建立特异性组蛋白甲基化/乙酰化基因shRNA文库(包含88个HMT/HDM基因)进行乳腺癌干细胞特异性组蛋白表观遗传修饰基因筛选与鉴定,结果见图1中A。经过2轮筛选以及shRNA靶点初步验证,88个基因中3个组蛋白修饰基因与CD44+CD24-表型转化调控相关(图1中B)。
2、PRMT3在乳腺癌肿瘤组织中表达明显高于周围正常组织(图2中A),且与乳腺癌患者预后具有显著相关性(图2中B)。
3、PRMT3在乳腺癌微球体培养中表达量要显著高于贴壁培养细胞(图3中A),去悬浮后表达量下降(图3中B)。
4、采用经典分子生物学手段干扰PRMT3基因表达,发现抑制或过表达PRMT3可导致干细胞相关因子(ALDHA1、SOX2及OCT4)呈现相应下调或上调(图4中A),可显著改变乳腺癌细胞克隆形成能力(图4中B)及干性表型CD44+CD24-表型亚群细胞比例变化(图4中C),对化疗药物的敏感性(图4中D)。
5、PRMT3过表达可上调Wnt通路转录活性。图5中A和B表明,PRMT3过表达或干扰后检测Hedgehog、Wnt与Notch通路,发现Wnt通路呈现显著活化,多个节点mRNA(图5中A)与蛋白水平显著变化(图5中B);图5中C和D表明,抑制或过表达PRMT3调控Wnt通路多个分子表达;图5中E为Luciferase报告基因检测的结果。
6、过表达PRMT3可导致乳腺癌侵袭转移能力的提高,同时伴有EMT关键分子Snail与Vimentin的表达相应上调(图6)。
7、PRMT3通过Wnt通路发挥对乳腺癌干细胞的调控作用,采用Wnt通路抑制剂ICG001可逆转PRMT3的干性调控作用。图7中A表明,ICG001逆转PRMT3过表达引起干性表型增加;图7中B表明,ICG001逆转PRMT3过表达导致的微球体与克隆形成能力增强。
8、PRMT3ChIP-Seq信号通路分析显示:PRMT3过表达与Wnt通路转录调控显著相关;PRMT3调控Wnt通路多个节点基因的转录活性增强;PRMT3与Wnt下游关键基因如c-Myc表达具显著相关性(图8)。
9、动物体内实验证实:过表达PRMT3乳腺肿瘤生长加快(图9)。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。
SEQUENCE LISTING
<110> 上海市第一人民医院
<120> 精氨酸甲基转移酶3在乳腺癌诊疗中的应用
<130> /
<160> 4
<170> PatentIn version 3.3
<210> 1
<211> 97
<212> DNA
<213> 人工序列
<400> 1
tgctgttgac agtgagcgac agatttatgt gcaaaggtta tagtgaagcc acagatgtat 60
aacctttgca cataaatctg gtgcctactg cctcgga 97
<210> 2
<211> 97
<212> DNA
<213> 人工序列
<400> 2
tccgaggcag taggcaccag atttatgtgc aaaggttata catctgtggc ttcactataa 60
cctttgcaca taaatctgtc gctcactgtc aacagca 97
<210> 3
<211> 97
<212> DNA
<213> 人工序列
<400> 3
tgctgttgac agtgagcgca aggacaaaat acgaacagaa tagtgaagcc acagatgtat 60
tctgttcgta ttttgtcctt ttgcctactg cctcgga 97
<210> 4
<211> 97
<212> DNA
<213> 人工序列
<400> 4
tccgaggcag taggcaaaag gacaaaatac gaacagaata catctgtggc ttcactattc 60
tgttcgtatt ttgtccttgc gctcactgtc aacagca 97

Claims (10)

1.精氨酸甲基转移酶3作为生物标志物在制备乳腺癌诊断试剂盒中的应用。
2.精氨酸甲基转移酶3作为生物标志物在制备乳腺癌预后试剂盒中的应用。
3.检测精氨酸甲基转移酶3基因或蛋白含量的试剂在制备乳腺癌诊断试剂盒中的应用。
4.检测精氨酸甲基转移酶3基因或蛋白含量的试剂在制备乳腺癌预后试剂盒中的应用。
5.根据权利要求1-4任一所述的应用,其特征在于,检测的样品为组织。
6.精氨酸甲基转移酶3的抑制剂在制备治疗乳腺癌的药物中的应用。
7.根据权利要求6所述的应用,其特征在于,所述精氨酸甲基转移酶3的抑制剂选自以精氨酸甲基转移酶3蛋白或其转录本为靶序列、且能够抑制精氨酸甲基转移酶3蛋白表达或基因转录的小干扰RNA、dsRNA、shRNA、微小RNA、反义核酸;或能表达或形成所述小干扰RNA、dsRNA、微小RNA、反义核酸的构建物。
8.根据权利要求7所述的应用,其特征在于,所述精氨酸甲基转移酶3的抑制剂是如SEQID NO:1和SEQ ID NO:2所示的shRNA,或如SEQ ID NO:3和SEQ ID NO:4所示的shRNA。
9.精氨酸甲基转移酶3的抑制剂在制备防止乳腺癌复发转移及治疗抵抗的药物中的应用。
10.精氨酸甲基转移酶3的抑制剂在制备抑制体外乳腺癌细胞干细胞相关因子表达、克隆形成、CD44+CD24-表型亚群细胞比例升高或对化疗药物敏感性的实验试剂中的应用。
CN202010318243.5A 2020-04-21 精氨酸甲基转移酶3在乳腺癌诊疗中的应用 Active CN113533727B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010318243.5A CN113533727B (zh) 2020-04-21 精氨酸甲基转移酶3在乳腺癌诊疗中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010318243.5A CN113533727B (zh) 2020-04-21 精氨酸甲基转移酶3在乳腺癌诊疗中的应用

Publications (2)

Publication Number Publication Date
CN113533727A true CN113533727A (zh) 2021-10-22
CN113533727B CN113533727B (zh) 2024-07-02

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160271149A1 (en) * 2015-03-16 2016-09-22 Epinova Therapeutics Corp. Therapeutic compounds that suppress protein arginine methyltransferase activity for reducing tumor cell proliferation
WO2017136699A1 (en) * 2016-02-05 2017-08-10 Epizyme, Inc Arginine methyltransferase inhibitors and uses thereof
US20170283400A1 (en) * 2014-09-17 2017-10-05 Epizyme, Inc. Arginine methyltransferase inhibitors and uses thereof
CN110214010A (zh) * 2016-12-01 2019-09-06 葛兰素史密斯克莱知识产权发展有限公司 组合疗法
CN110804642A (zh) * 2019-09-10 2020-02-18 清华大学 Gpr174免疫学功能及其用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170283400A1 (en) * 2014-09-17 2017-10-05 Epizyme, Inc. Arginine methyltransferase inhibitors and uses thereof
US20160271149A1 (en) * 2015-03-16 2016-09-22 Epinova Therapeutics Corp. Therapeutic compounds that suppress protein arginine methyltransferase activity for reducing tumor cell proliferation
WO2017136699A1 (en) * 2016-02-05 2017-08-10 Epizyme, Inc Arginine methyltransferase inhibitors and uses thereof
CN110214010A (zh) * 2016-12-01 2019-09-06 葛兰素史密斯克莱知识产权发展有限公司 组合疗法
CN110804642A (zh) * 2019-09-10 2020-02-18 清华大学 Gpr174免疫学功能及其用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHU-CHING M WANG 等: "Epigenetic arginine methylation in breast cancer: emerging therapeutic strategies", 《JOURNAL OF MOLECULAR ENDOCRINOLOGY 》, vol. 62, 31 December 2019 (2019-12-31), pages 223 - 237 *
TAE GYU OH等: "Therapeutic Implications of Epigenetic Signaling in Breast Cancer", 《ENDOCRINOLOGY》, vol. 158, no. 3, 31 March 2017 (2017-03-31), pages 439 *

Similar Documents

Publication Publication Date Title
Chen et al. N 6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis
Tang et al. LncCCAT1 promotes breast cancer stem cell function through activating WNT/β-catenin signaling
Kong et al. Long non-coding RNA LINC01133 inhibits epithelial–mesenchymal transition and metastasis in colorectal cancer by interacting with SRSF6
Xu et al. Circular RNA hsa_circ_0003221 (circPTK2) promotes the proliferation and migration of bladder cancer cells
Ji et al. Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex
Wang et al. miR-206 inhibits cell migration through direct targeting of the actin-binding protein Coronin 1C in triple-negative breast cancer
Liu et al. miR-504 suppresses mesenchymal phenotype of glioblastoma by directly targeting the FZD7-mediated Wnt–β-catenin pathway
Lee et al. hNaa10p contributes to tumorigenesis by facilitating DNMT1-mediated tumor suppressor gene silencing
Lv et al. MiR-212-5p suppresses the epithelial-mesenchymal transition in triple-negative breast cancer by targeting Prrx2
Cong et al. Long non-coding RNA tumor suppressor candidate 7 functions as a tumor suppressor and inhibits proliferation in osteosarcoma
Zhang et al. ErbB3 binding protein 1 represses metastasis-promoting gene anterior gradient protein 2 in prostate cancer
Hua et al. Long noncoding RNA HOST2, working as a competitive endogenous RNA, promotes STAT3-mediated cell proliferation and migration via decoying of let-7b in triple-negative breast cancer
Yang et al. Long non‐coding RNA SNHG16 has Tumor suppressing effect in acute lymphoblastic leukemia by inverse interaction on hsa‐miR‐124‐3p
Shao et al. In vitro and in vivo effects of miRNA-19b/20a/92a on gastric cancer stem cells and the related mechanism
Liu et al. Hypoxia-induced suppression of alternative splicing of MBD2 promotes breast cancer metastasis via activation of FZD1
Yang et al. Downregulation of lncRNA ZNF582-AS1 due to DNA hypermethylation promotes clear cell renal cell carcinoma growth and metastasis by regulating the N (6)-methyladenosine modification of MT-RNR1
Sun et al. MicroRNA-544a regulates migration and invasion in colorectal cancer cells via regulation of homeobox A10
Qu et al. CDH17 is a downstream effector of HOXA13 in modulating the Wnt/β-catenin signaling pathway in gastric cancer.
Han et al. Suppression of miR-16 promotes tumor growth and metastasis through reversely regulating YAP1 in human cholangiocarcinoma
Wang et al. Long noncoding RNA FBXL19‐AS1 induces tumor growth and metastasis by sponging miR‐203a‐3p in lung adenocarcinoma
Cui et al. MicroRNA-196a promotes renal cancer cell migration and invasion by targeting BRAM1 to regulate SMAD and MAPK signaling pathways
Pu et al. Repression of miR-135b-5p promotes metastasis of early-stage breast cancer by regulating downstream target SDCBP
Li et al. DDX11-AS1exacerbates bladder cancer progression by enhancing CDK6 expression via suppressing miR-499b-5p
Li et al. Hsa_circ_0008934 promotes the proliferation and migration of osteosarcoma cells by targeting miR-145-5p to enhance E2F3 expression
Zhang et al. piR-001773 and piR-017184 promote prostate cancer progression by interacting with PCDH9

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant