CN113530617B - 基于叶端定时传感器提取叶片间固有频率差值方法 - Google Patents

基于叶端定时传感器提取叶片间固有频率差值方法 Download PDF

Info

Publication number
CN113530617B
CN113530617B CN202110708301.XA CN202110708301A CN113530617B CN 113530617 B CN113530617 B CN 113530617B CN 202110708301 A CN202110708301 A CN 202110708301A CN 113530617 B CN113530617 B CN 113530617B
Authority
CN
China
Prior art keywords
blade
frequency
data
blades
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110708301.XA
Other languages
English (en)
Other versions
CN113530617A (zh
Inventor
杨志勃
曹佳辉
田绍华
陈雪峰
杨来浩
王增坤
李浩琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Publication of CN113530617A publication Critical patent/CN113530617A/zh
Application granted granted Critical
Publication of CN113530617B publication Critical patent/CN113530617B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种基于叶端定时传感器提取叶片间固有频率差值方法,方法中,利用多个叶端定时传感器获取旋转叶片的实际达到时间,并根据旋转叶片的转速和叶片长度,理论到达时间和实际达到时间之差转换为叶端的位移数据;对多个叶端定时传感器编号,基于编号区分每个叶片的位移数据以分别分析每个叶端定时传感器的位移数据;选择并截取同转速下的两个旋转叶片的叶端的位移数据;截取的位移数据分别离散傅里叶变换,采样频率近似为平均转速以得到频谱数据,将得到的频谱数据进行线性叠加绘制出总幅频图,从总幅频图中提取两个旋转叶片固有频率混叠后对应的频率余数,将两个频率余数作差得到两个叶片间的固有频率差。

Description

基于叶端定时传感器提取叶片间固有频率差值方法
技术领域
本发明属于叶片非接触无损检测领域,特别是一种基于叶端定时传感器提取叶片间固有频率差值方法。
背景技术
叶片被广泛应用于压气机、燃气轮机、航空发动机等旋转式流体机械设备中,而这些叶片往往在高速、高振动、大冲击等极端恶劣的环境下工作,叶片的故障大都源于异物损伤(Foreign Object Damage,FOD),这些初始缺陷会随着时间的推移而加深,最终导致设备故障甚至发生安全事故。所以对关键设备的旋转叶片进行在线诊断十分必要。叶端定时技术(Blade Tip Timing,BTT)是一种非接触在线测量旋转叶片振动的方法,但叶端定时采样速率和转速和传感器数量有关,由于实际情况下传感器安装位置有限,所以叶端定时数据具有严重欠采样特性。叶端定时测量方法在实际使用中,往往选用使用多个叶端定时传感器来减弱欠采样所造成的混叠影响,但多个叶端定时传感器安装在实际有限的空间中会造成较大的困扰,并且也增加了测量成本,传统方法对叶端定时传感器均布和任意布置的数据进行模态参数识别时,如压缩感知、子空间方法、最小二乘迭代。一方面这类算法都涉及大量的运算,无法实现在线实时检测和诊断,另一方面这类算法是直接对单个叶片的固有频率等参数进行识别,存在较大的误差。所以对叶端定时测量方法和模态参数识别方法进行改进十分重要。
在背景技术部分中公开的上述信息仅仅用于增强对本发明背景的理解,因此可能包含不构成在本国中本领域普通技术人员公知的现有技术的信息。
发明内容
针对现有技术中存在的问题,本发明提出一种基于叶端定时传感器提取叶片间固有频率差值方法,本发明对叶片的健康状态给出更快速和更准确的识别。
本发明的目的是通过以下技术方案予以实现,一种基于叶端定时传感器提取叶片间固有频率差值方法包括以下步骤:
第一步骤中,利用多个叶端定时传感器获取旋转叶片的实际达到时间,并根据旋转叶片的转速和叶片长度,理论到达时间和实际达到时间之差转换为叶端的位移数据;
第二步骤中,对多个叶端定时传感器编号,基于所述编号区分每个叶片的位移数据以分别分析每个叶端定时传感器的位移数据;
第三步骤中,选择并截取同转速下的两个旋转叶片的叶端的位移数据;
第四步骤中,截取的所述位移数据分别离散傅里叶变换,采样频率近似为平均转速以得到频谱数据,
第五步骤中,对每个叶端定时传感器采集到的所述两个旋转叶片的位移数据重复第三步骤和第四步骤,将得到的频谱数据进行线性叠加绘制出总幅频图,
第六步骤中,从所述总幅频图中提取两个旋转叶片固有频率混叠后对应的频率余数,将两个频率余数作差得到两个叶片间的固有频率差。
所述的方法中,第一步骤中,单个叶端定时传感器收取每个叶片的达到时刻t,并根据叶片的转速fr和叶片长度R将理论到达和实际达到时间差转换为叶端位移,表达式如下:
Figure BDA0003130803250000021
其中
Figure BDA0003130803250000022
表示第i个叶片在第j圈的实际到达第k个传感器的时间,
Figure BDA0003130803250000023
表示第i个叶片在第j圈的理论到达第k个传感器的时间,即叶片无振动时的到达时间,
Figure BDA0003130803250000024
其中θi表示以转速传感器安装位置为基准,第i个叶片的角度。表示以转速传感器安装位置为基准,第k个传感器的角度,nj为第j圈时的转速,
Figure BDA0003130803250000025
表示第i个叶片在第
Figure BDA0003130803250000026
时刻的位移。
所述的方法中,叶片的旋转过程为预定加速度的升速、减速过程或者匀速过程,在旋转过程中使用周向均布的气嘴喷气模拟气体激励。
所述的方法中,对于升速或减速过程,选取叶端定时传感器整数圈记录下的位移数据,利用相同的位置区间[N,M]对数据进行截取,获得两个叶片的同转速下的位移数据,采样频率fs近似等于平均转速,其中
Figure BDA0003130803250000031
表示第k圈时的转速,由于以上截取的是索引序号为[N,M],对于单传感器而言,就是截取了第N到第M圈的数据,这里是在求平均转频。这里的截取是任意的:比如两个长度均为M的位移向量L1,L2,选定索引范围[N1,N2],即截取L1,L2索引范围为[N1,N2]内的数据。但是L1,L2需要满足是同一次实验中,测量得到的两个叶片的位移,另外需要说明的是[N1,N2]范围是任意确定,如果是对于变速情况下测量测到的数据,该范围不宜过长。
所述的方法中,第四步骤中,对所截取两段离散位移数据进行离散傅里叶变换得到频谱数据,
Figure BDA0003130803250000032
其中x(n)为采样得到的信号,i是虚数符号,
Figure BDA0003130803250000033
N为采集到的信号的长度,x中元素的个数,n是一个迭代数,从0遍历到N-1,即取遍x中的所有元素,k是一个0到N-1整数,X(k)表示离散傅里叶变换后的第k个数据。所述的方法中,第五步骤中,得到的np组频谱数据
Figure BDA0003130803250000034
线性叠加绘制出频谱数据AMi,j,并将频谱数据绘制成幅频图,其中np为传感器数量,
Figure BDA0003130803250000035
所述的方法中,第六步骤中,从总幅频图中提取两个叶片对应的固有频率混叠后的在欠采样频谱中的频率作为频率余数fsub,将两个频率余数fsub相减得到2个叶片间的固有频率差:
Figure BDA0003130803250000041
将固有频率发生混叠后,在欠采样频谱中呈现的频率称为频率余数,
Figure BDA0003130803250000042
f1 sub分别指叶片2和叶片1的频率余数。通过对原本的信号序列进行离散傅里叶变换就可以得到欠采样频谱。(对信号进行傅里叶变换可以得到频谱,只不过BTT信号是欠采样信号,所以以下都称为欠采样频谱)。这个离散傅里叶变换就是上面那个式子。在欠采样频谱中提取幅值最高频率成分分量,将该频率作为频率余数fsub
本发明方法只需要任意布置的叶端定时传感器即可实现从严重欠采样的数据中提取不同叶片之间的固有频率差,对传感器分布没有特殊的要求,传感器可以任意分布,不需要进行额外的信号重构和更多的叶端定时传感器,运算快速稳定,简单可行,可实现旋转叶片的实时健康监测。
上述说明仅是本发明技术方案的概述,为了能够使得本发明的技术手段更加清楚明白,达到本领域技术人员可依照说明书的内容予以实施的程度,并且为了能够让本发明的上述和其它目的、特征和优点能够更明显易懂,下面以本发明的具体实施方式进行举例说明。
附图说明
通过阅读下文优选的具体实施方式中的详细描述,本发明各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。说明书附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。显而易见地,下面描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。而且在整个附图中,用相同的附图标记表示相同的部件。
在附图中:
图1为基于频率余数的任意布置叶端定时叶片间固有频率差值提取步骤示意图;
图2为所截取的传感器1提取到的1号和2号叶片位移图;
图3为所截取的传感器2提取到的1号和2号叶片位移图;
图4为所截取的传感器3提取到的1号和2号叶片位移图;
图5为所截取的传感器4提取到的1号和2号叶片位移图;
图6为所截取传感器1提取到的1号和2号叶片位移的DFT幅频图;
图7为所截取传感器2提取到的1号和2号叶片位移的DFT幅频图;
图8为所截取传感器3提取到的1号和2号叶片位移的DFT幅频图;
图9为所截取传感器4提取到的1号和2号叶片位移的DFT幅频图;
图10为4个传感器提取的1号叶片位移频谱数据叠加后的总幅频图;
图11为4个传感器提取的2号叶片位移频谱数据叠加后的总幅频图。
以下结合附图和实施例对本发明作进一步的解释。
具体实施方式
下面将参照附图图1至图11更详细地描述本发明的具体实施例。虽然附图中显示了本发明的具体实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
需要说明的是,在说明书及权利要求当中使用了某些词汇来指称特定组件。本领域技术人员应可以理解,技术人员可能会用不同名词来称呼同一个组件。本说明书及权利要求并不以名词的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求当中所提及的“包含”或“包括”为一开放式用语,故应解释成“包含但不限定于”。说明书后续描述为实施本发明的较佳实施方式,然所述描述乃以说明书的一般原则为目的,并非用以限定本发明的范围。本发明的保护范围当视所附权利要求所界定者为准。
为便于对本发明实施例的理解,下面将结合附图以具体实施例为例做进一步的解释说明,且各个附图并不构成对本发明实施例的限定。
基于叶端定时传感器提取叶片间固有频率差值方法包括,
器叶片间固有频率差值提取方法,包括下述步骤:
(1)利用任意布置的叶端定时传感器获取旋转叶片的达到时间,并根据转速和叶片长度,将理论到达和实际达到时间差转换为叶端位移。
在本示例性实例中,具体为将4个光纤型叶端定时传感器固定在机匣上的随机位置,事后测量可知传感器的安装角度为:48°、108°、158°、168°,由于本发明专利所设计的方法并没有使用具体的安装角度信息,所以对传感器安装位置没有要求,将初始转速设定为60Hz,转速加速度为0.5Hz/s,转速变化范围内60Hz-100Hz-60Hz,其中100Hz匀速段时间为20s。叶盘采用8叶片的整体式铝合金叶盘,叶盘半径为R=68mm,叶片厚度d=1mm,叶片宽度w=20mm。在机匣上均布4个喷嘴,喷射0.5Mpa的高压气体,利用任意布置的4个叶端定时传感器获取旋转叶片的达到时间,并根据转速和叶片长度,将理论到达和实际达到时间差转换为叶端位移。
(2)根据传感器编号将每个叶片的位移数据分开,对每个传感器的位移数据进行分析;
本实例使用的叶端定时系统可以直接输出每个传感器通道的叶片实际达到时间,利用转速和叶片半径信息将实际达到时间与理论达到时间之差转换成位移,经过该过程得到了每个传感器通道测量到的所有叶片末端振动位移。
(3)选择所要分析的两个叶片的近似同转速下的两段位移数据。若选取的是缓慢升速或降速数据,截取的数据长度不宜过长,以达到近似恒定采样率频的要求。
在本示例性实例中,具体为选取叶片1和叶片2的位移数据相同序号范围的240个数据,序号范围为[4719,4958],每个传感器通道的位移数据选取范围相同,均为[4719,4958]。如图2所示,对应的转速变化范围为:84.66Hz~85.59Hz,得到单个传感器采集到的位移信号的近似采样频率fs=85.125Hz。
(4)对截取的两段数据分别进行离散傅里叶变换,采样频率近似为平均转速,得到频谱数据;
在本示例性实例中,离散傅里叶变换的计算公式为:
Figure BDA0003130803250000061
其中x(n)为采样得到的信号,i是虚数符号,
Figure BDA0003130803250000062
N为采集到的信号的长度,x中元素的个数,n是一个迭代数,从0遍历到N-1,即取遍x中的所有元素,k是一个0到N-1整数,X(k)表示离散傅里叶变换后的第k个数据。
(5)对每个传感器采集到的两个叶片的数据重复(3)和(4),将得到的频谱数据进行线性叠加,绘制出总幅频图;
在本示例性实例中,具体为对1号、2号、3号、4号叶端定时传感器采集到的1号叶片和2号叶片末端位移数据按照步骤(3)和步骤(4)进行分析,得到叶片1的4个频谱数据向量
Figure BDA0003130803250000071
和叶片2的4个频谱数据向量
Figure BDA0003130803250000072
如图2至图9所示。分别将这4个频谱数据向量进行线性叠加,得到叶片1和2的总幅频数据AM1,2和AM2,1
Figure BDA0003130803250000073
Figure BDA0003130803250000074
根据总幅频数据AM1,2和AM2,1分别绘制4个传感器提取的1号和2号叶片位移频谱数据叠加后总幅频图,如图10和图11所示。
(6)从总幅频图中提取两个叶片固有频率混叠后对应的频率余数,将两个频率余数作差即可得到2个叶片间的固有频率差。
在本示例性实例中,具体包括以下步骤:
a)对上述的总频谱数据AM1,2和AM2,1进行分析,绘制出幅频曲线,
b)排除掉转速频率分量,由于信号中除了叶片振动频率成分,还存在转频及其倍频,由于对每个传感器通道的位移数据而言,采样频率等于转频,对转频及其倍频的混叠情况进行分析可知,该频率在欠采样频谱中出现在0频率附近,排除掉转速频率分量后,提取叶片振动频率混叠后的在欠采样频谱中的频率,以下称为频率余数fsub
Figure BDA0003130803250000075
对于满足
Figure BDA0003130803250000076
条件的两个叶片,也可以直接得到Δf=Δfsub
【应用实例】
如图1所示的叶端定时试验台,具体为将4个光纤型叶端定时传感器固定在机匣上的随机位置,事后测量可知传感器的安装角度为:48°、108°、158°、168°,由于本发明专利所设计的方法并没有使用具体的安装角度信息,所以对传感器安装位置没有要求,将初始转速设定为60Hz,转速加速度为0.5Hz/s,转速变化范围内60Hz-100Hz-60Hz,其中100Hz匀速段时间为20s。叶盘采用8叶片的整体式铝合金叶盘,叶盘半径为R=68mm,叶片厚度d=1mm,叶片宽度w=20mm。在机匣上均布4个喷嘴,喷射0.5Mpa的高压气体,利用任意布置的4个叶端定时传感器获取旋转叶片的达到时间,并根据转速和叶片长度,将理论到达和实际达到时间差转换为叶端位移。
具体为选取叶片1和叶片2的位移数据相同序号范围的240个数据,序号范围为[4719,4958],每个传感器通道的位移数据选取范围相同,均为[4719,4958]。如图2所示,对应的转速变化范围为:84.66Hz~85.59Hz,得到单个传感器采集到的位移信号的近似采样频率fs=85.125Hz。
对1号、2号、3号、4号叶端定时传感器采集到的1号叶片和2号叶片末端位移数据按照步骤(3)和步骤(4)进行分析,得到叶片1的4个频谱数据向量
Figure BDA0003130803250000081
和叶片2的4个频谱数据向量
Figure BDA0003130803250000082
Figure BDA0003130803250000083
如图2至图9所示。将这4个频谱数据向量进行线性叠加,得到叶片1和2的总幅频数据AM1,2和AM2,1
根据总幅频数据AM1,2和AM2,1分别绘制4个传感器提取的1号和2号叶片位移频谱数据叠加后总幅频图,如图10和图11所示。
其中分析4个传感器提取的1号叶片位移频谱数据叠加后的总幅频图,即图10可知,叶片1的固有频率混叠后的频率成分为0.35Hz,即叶片1的频率余数f1 sub=0.35Hz。同时可看到图11,即4个传感器提取的2号叶片位移频谱数据叠加后的总幅频图中也含有频率成分0.35Hz。观察所截取的1号叶片的位移图可知,所截取的1号叶片振动数据接近共振区,转频的倍频接近于固有频率,可以知道转频及其倍频混叠后的频率也为0.35Hz,所以在图11上也会有0.35Hz这个转频及其倍频混叠后的频率分量。图10中的0.35Hz的频率成分既包括了转频及其倍频混叠后的频率分量,也包含了叶片1的固有频率混叠后的频率分量,所以其幅值远大于图11中的对应频率的幅值。
从图11可知,叶片2的固有频率混叠后的频率成分为19.09Hz,即叶片2的频率余数
Figure BDA0003130803250000091
通过模态实验分析,可知该铝合金叶盘的1号叶片和2号叶片的一阶固有频率分别为:341Hz、361Hz,固有频率差为20Hz,实际叶片间的固有频率差不会过大,而选择的数据段的采样频率为fs=85.125Hz,很明显满足
Figure BDA0003130803250000092
的条件,所以此时通过发明专利提出的频率余数的任意布置叶端定时传感器叶片间固有频率差值提取方法可以得到叶片1和叶片2的频率差值Δf=Δfsub,进一步可计算
Figure BDA0003130803250000093
由此可得Δf=18.74Hz。这与实验测量的20Hz非常接近,相差仅为1.26Hz,并且该方法不涉及复杂运算,仅需要对2组少量数据进行离散傅里叶变换分析,所以运算快速稳定,简单可行,可实现旋转叶片的实时健康监测。
尽管以上结合附图对本发明的实施方案进行了描述,但本发明并不局限于上述的具体实施方案和应用领域,上述的具体实施方案仅仅是示意性的、指导性的,而不是限制性的。本领域的普通技术人员在本说明书的启示下和在不脱离本发明权利要求所保护的范围的情况下,还可以做出很多种的形式,这些均属于本发明保护之列。

Claims (7)

1.一种基于叶端定时传感器提取叶片间固有频率差值方法,所述方法包括以下步骤:
第一步骤(S1)中,利用多个叶端定时传感器获取旋转叶片的实际达到时间,并根据旋转叶片的转速和叶片长度,理论到达时间和实际达到时间之差转换为叶端的位移数据;
第二步骤(S2)中,对多个叶端定时传感器编号,基于所述编号区分每个叶片的位移数据以分别分析每个叶端定时传感器的位移数据;
第三步骤(S3)中,选择并截取同转速下的两个旋转叶片的叶端的位移数据;
第四步骤(S4)中,截取的所述位移数据分别离散傅里叶变换,采样频率近似为平均转速以得到频谱数据,
第五步骤(S5)中,对每个叶端定时传感器采集到的所述两个旋转叶片的位移数据重复第三步骤和第四步骤,将得到的频谱数据进行线性叠加绘制出总幅频图,
第六步骤(S6)中,从所述总幅频图中提取两个旋转叶片固有频率混叠后对应的频率余数,将两个频率余数作差得到两个叶片间的固有频率差。
2.根据权利要求1所述的方法,其中,第一步骤(S1)中,单个叶端定时传感器收取每个叶片的达到时刻
Figure DEST_PATH_IMAGE001
,并根据叶片的转速
Figure 529019DEST_PATH_IMAGE002
和叶片长度
Figure DEST_PATH_IMAGE003
将理论到达和实际达到时间差转换为叶端位移,表达式如下:
Figure 196891DEST_PATH_IMAGE004
,其中
Figure DEST_PATH_IMAGE005
表示第
Figure 927694DEST_PATH_IMAGE006
个叶片在第
Figure DEST_PATH_IMAGE007
圈的实际到达第
Figure 135952DEST_PATH_IMAGE008
个传感器的时间,
Figure DEST_PATH_IMAGE009
表示第
Figure DEST_PATH_IMAGE011
个叶片在第
Figure 229286DEST_PATH_IMAGE007
圈的理论到达第
Figure 989431DEST_PATH_IMAGE008
个传感器的时间,即叶片无振动时的到达时间,
Figure 741618DEST_PATH_IMAGE012
表示第
Figure 143780DEST_PATH_IMAGE006
个叶片在第
Figure DEST_PATH_IMAGE013
时刻的位移,其中,
Figure 318320DEST_PATH_IMAGE014
其中
Figure DEST_PATH_IMAGE015
表示以转速传感器安装位置为基准,第
Figure 452629DEST_PATH_IMAGE011
个叶片的角度,
Figure 551166DEST_PATH_IMAGE016
表示以转速传感器安装位置为基准,第
Figure DEST_PATH_IMAGE017
个传感器的角度,
Figure 160615DEST_PATH_IMAGE018
为第
Figure DEST_PATH_IMAGE019
圈时的转速。
3.根据权利要求2所述的方法,其中,叶片的旋转过程为预定加速度的升速、减速过程或者匀速过程,在旋转过程中使用周向均布的气嘴喷气模拟气体激励。
4.根据权利要求3所述的方法,其中,对于升速或减速过程,选取叶端定时传感器整数圈记录下的位移数据,利用相同的位置区间
Figure 28208DEST_PATH_IMAGE020
对数据进行截取,获得两个叶片的同转速下的位移数据,采样频率
Figure DEST_PATH_IMAGE021
近似等于平均转速,
Figure 143538DEST_PATH_IMAGE022
,其中
Figure DEST_PATH_IMAGE023
表示第
Figure 808000DEST_PATH_IMAGE017
圈时的转速,由于以上截取的是索引序号为
Figure 489648DEST_PATH_IMAGE024
,对于单传感器而言,就是截取了第
Figure DEST_PATH_IMAGE025
到第
Figure 943238DEST_PATH_IMAGE026
圈的数据。
5.根据权利要求1所述的方法,其中,第四步骤(S4)中,对所截取两段离散位移数据进行离散傅里叶变换得到频谱数据,
Figure DEST_PATH_IMAGE027
,其中,
Figure 153771DEST_PATH_IMAGE028
为采样得到的信号,
Figure 758059DEST_PATH_IMAGE006
是虚数符号,
Figure DEST_PATH_IMAGE029
Figure 443731DEST_PATH_IMAGE030
是一个迭代数,N为采集到的信号的长度,从
Figure DEST_PATH_IMAGE031
遍历到
Figure 489178DEST_PATH_IMAGE032
,即取遍
Figure DEST_PATH_IMAGE033
中的所有元素,
Figure 605033DEST_PATH_IMAGE008
是一个
Figure 162529DEST_PATH_IMAGE031
Figure 982717DEST_PATH_IMAGE032
整数,
Figure 272884DEST_PATH_IMAGE034
表示离散傅里叶变换后的第
Figure 762902DEST_PATH_IMAGE008
个数据。
6.根据权利要求1所述的方法,其中,第五步骤(S5)中,得到的
Figure DEST_PATH_IMAGE035
组频谱数据
Figure 620744DEST_PATH_IMAGE036
线性叠加绘制出频谱数据
Figure DEST_PATH_IMAGE037
,并将频谱数据绘制成幅频图,其中
Figure 57672DEST_PATH_IMAGE038
为传感器数量,
Figure DEST_PATH_IMAGE039
,其中,i和j是叶片编号。
7.根据权利要求1所述的方法,其中,第六步骤(S6)中,从总幅频图中提取两个叶片对应的固有频率混叠后的在欠采样频谱中、提取幅值最高频率成分分量为频率余数
Figure 215728DEST_PATH_IMAGE040
,将两个频率余数
Figure DEST_PATH_IMAGE041
相减得到2个叶片间的固有频率差:
Figure 470123DEST_PATH_IMAGE042
,其中,
Figure DEST_PATH_IMAGE043
分别指叶片2和叶片1的频率余数,通过对原本的信号序列进行离散傅里叶变换得到欠采样频谱。
CN202110708301.XA 2021-05-18 2021-06-24 基于叶端定时传感器提取叶片间固有频率差值方法 Active CN113530617B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110542960 2021-05-18
CN2021105429600 2021-05-18

Publications (2)

Publication Number Publication Date
CN113530617A CN113530617A (zh) 2021-10-22
CN113530617B true CN113530617B (zh) 2022-06-21

Family

ID=78096690

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110708301.XA Active CN113530617B (zh) 2021-05-18 2021-06-24 基于叶端定时传感器提取叶片间固有频率差值方法

Country Status (1)

Country Link
CN (1) CN113530617B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206816A (en) * 1991-01-30 1993-04-27 Westinghouse Electric Corp. System and method for monitoring synchronous blade vibration
CN112507576A (zh) * 2020-11-05 2021-03-16 西安交通大学 基于叶端位移-位移传递比的转子叶片裂纹损伤识别方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148711A (en) * 1990-11-01 1992-09-22 Westinghouse Electric Corp. Apparatus and method for removing common mode vibration data from digital turbine blade vibration data
GB2374670B (en) * 2001-04-17 2004-11-10 Rolls Royce Plc Analysing vibration of rotating blades
US8606541B2 (en) * 2009-06-12 2013-12-10 Mechanical Solutions, Inc. Combined amplitude and frequency measurements for non-contacting turbomachinery blade vibration
CN105466550B (zh) * 2015-12-04 2018-08-28 中国人民解放军国防科学技术大学 非均匀欠采样叶端定时振动信号重构方法及其装置
CN108051078B (zh) * 2017-12-12 2020-04-24 湖南工业大学 一种转速非恒定时叶片振动叶端定时在线监测方法及装置
CN112541283B (zh) * 2020-11-05 2022-12-06 西安交通大学 一种基于位移-应变传递比的转子叶片裂纹损伤识别方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206816A (en) * 1991-01-30 1993-04-27 Westinghouse Electric Corp. System and method for monitoring synchronous blade vibration
CN112507576A (zh) * 2020-11-05 2021-03-16 西安交通大学 基于叶端位移-位移传递比的转子叶片裂纹损伤识别方法

Also Published As

Publication number Publication date
CN113530617A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
EP2532839B1 (en) Rotating blade analysis
EP2136189B1 (en) Method for analysing vibration in rotor blades
US20090082976A1 (en) Methods of Analysing Apparatus
EP2781897B1 (en) Blade tip timing
US9840935B2 (en) Rotating machinery monitoring system
Lin et al. A review and strategy for the diagnosis of speed-varying machinery
CN113530617B (zh) 基于叶端定时传感器提取叶片间固有频率差值方法
Nembhard et al. Unified Multi-speed analysis (UMA) for the condition monitoring of aero-engines
CN115683644B (zh) 航空发动机双源拍振特征识别方法
Haase et al. Detection, discrimination and real-time tracking of cracks in rotating disks
CN113504310B (zh) 基于单个叶端定时传感器的叶片固有频率识别方法
CN113533529B (zh) 单个或均布叶端定时传感器提取叶片间固有频率差值方法
CN113530616B (zh) 基于多个叶端定时传感器的叶片间固有频率差值提取方法
CN114383718A (zh) 一种基于燃机外机匣振动信号的高频叶片通过频率提取方法
CN113504311B (zh) 基于多个叶端定时传感器的叶片检测方法
CN113404555B (zh) 一种基于多个叶端定时传感器的叶片固有频率识别方法
Thanagasundram et al. Autoregressive based diagnostics scheme for detection of bearing faults
US11898453B1 (en) Method for extracting natural frequency difference between blades by single blade tip timing sensor or uniformly distributed blade tip timing sensors
CN113504309B (zh) 基于单个叶端定时传感器的叶片检测方法
CN113533530B (zh) 单个叶端定时传感器的叶片固有频率检测方法
Milewicz et al. The assessment of the technical condition of SO-3 engine turbine blades using an impulse test
EP2749740A1 (en) System and method for monitoring health of airfoils
CN116601475A (zh) 用于确定飞行器的旋转机器中的一个或多个故障的方法和系统
CN112364886A (zh) 基于叶尖定时和随机森林的叶片裂纹在线测量方法
Hu et al. Experience with the non-contacting blade vibration measurement method using two sensors in a low pressure model steam turbine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant