CN113527391B - 一种梓醇衍生物及其制备方法和应用 - Google Patents

一种梓醇衍生物及其制备方法和应用 Download PDF

Info

Publication number
CN113527391B
CN113527391B CN202110693529.6A CN202110693529A CN113527391B CN 113527391 B CN113527391 B CN 113527391B CN 202110693529 A CN202110693529 A CN 202110693529A CN 113527391 B CN113527391 B CN 113527391B
Authority
CN
China
Prior art keywords
catalpol
dmso
nmr
cancer cells
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110693529.6A
Other languages
English (en)
Other versions
CN113527391A (zh
Inventor
董春红
孔媛芳
刘双林
胡玉龙
王国庆
蒋士卿
李杰明
李晓飞
蔡军涛
丁侃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Traditional Chinese Medicine HUTCM
Original Assignee
Henan University of Traditional Chinese Medicine HUTCM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Traditional Chinese Medicine HUTCM filed Critical Henan University of Traditional Chinese Medicine HUTCM
Publication of CN113527391A publication Critical patent/CN113527391A/zh
Application granted granted Critical
Publication of CN113527391B publication Critical patent/CN113527391B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明属于医药技术领域,具体公开一种梓醇衍生物及其制备方法和应用,所述梓醇衍生物是具有式I、式II和式III所示化学结构或/和其可药用衍生物:并利用该药物衍生物制备的药物组合物用于制备治疗食管癌细胞和胰腺癌细胞中的应用,通过对梓醇C10‑位羟基结构修饰从而得到一种反应条件温和、简单、高效的梓醇衍生物。

Description

一种梓醇衍生物及其制备方法和应用
技术领域
本发明属于医药技术领域,尤其涉及一种梓醇衍生物及其制备方法和应用。
背景技术
恶性肿瘤,又称为癌症,严重威胁着人类健康。目前传统的癌症药物治疗方法有化学治疗、中医中药和生物免疫疗法。传统的化疗治疗癌症的思路是最大效率的杀死癌细胞,因此开发出来的各种药物往往有明显的耐药性、选择性差以及由此产生的毒副作用等,在治疗疾病的同时也对患者带来巨大的伤害。中医药治疗肿瘤的理念是扶正固本。中医认为免疫力低下是导致各种疾病发生的主要原因,肿瘤也不例外。基于此,通过中医扶正法可扶助正气、提高免疫能力,在各种原因引起的正气不足、虚损性疾病的治疗中有着重要作用。临床实践证明,采用中医扶正法治疗恶性肿瘤效果确切,能够显著降低并发症、提高患者生活质量,同时对延长患者生命时间有积极意义,可在临床推广使用。近年来,通过激活人类自身免疫功能对抗癌细胞的生物免疫疗法异军突起,成为了癌症治疗的新热点。而生物免疫疗法治疗癌症的理念和中医中药的治疗理念不谋而合。
中药是开发各类新型结构药物的重要化合物库,从中药中发现有效成分并加以结构优化是药物研发的重要途径。环烯醚萜类化合物是植物中一类非常重要的化合物,它具有多种药理活性,而且是许多中药的主要有效成分。其主体结构环烯醚萜环被认为是生物活性物质的药效基团之一,在药物的发现、药理活性部分的设计和开发中发挥重要作用。研究表明环烯醚萜类化合物和糖类是生地黄中的主要化学成分和活性部位,而梓醇又是生地黄中含量最高的环烯醚萜类化合物,梓醇具有神经保护、抗炎利胆、降血糖及抗肿瘤等作用。梓醇对乳腺癌(Catalpol suppresses proliferation and facilitates apoptosisofMCF-7breast cancer cells through upregulating microRNA-146a anddownregulating matrix metalloproteinase-16expression[J].Molecular medicinereports 2015,12(5):7609-7614.)、胃癌(Catalpol inhibits migration and inducesapoptosis in gastric cancer cells and in athymic nude mice[J].BiomedPharmacother 2018,103:1708-1719.)、肺癌(Catalpol inhibits TGF-β1-inducedepithelial-mesenchymal transition in human non-small-cell lung cancer cellsthrough the inactivation of Smad2/3andNF-κB signaling pathways[J].Journalofcellularbiochemistry 2018.)和结直肠癌(Catalpol suppressed proliferation,growth and invasion ofCT26 colon cancer by inhibiting inflammation and tumorangiogenesis[J].Biomed Pharmacother2017,95:68-76.)均有显著抑制作用;研究发现梓醇对于临床中的晚期结肠癌患者,能够提高其无复发存活率(Efficacy,Safety,and Costof Therapy of the Traditional Chinese Medicine,Catalpol,in Patients FollowingSurgical Resection for Locally Advanced Colon Cancer[J].Medical ScienceMonitor International Medical Journal ofExperimental&Clinical Research 2018,24:3184.),还可以抑制人结肠癌细胞的生长(Catalpol promotes cellular apoptosisin human HCT116 colorectal cancer cells via microRNA-200and thedownregulation of PI3K-Akt signaling pathway[J].Oncology letters 2017,14(3):3741-3747);梓醇发挥抗肿瘤作用的机制主要是通过减少炎症、细胞凋亡、血管生成以及阻止细胞周期的进行。首先对于胃癌,2018年,Wang等(Catalpol inhibits migration andinduces apoptosis in gastric cancer cells and in athymic nude mice[J].BiomedPharmacother 2018,103:1708-1719.)发现梓醇可以抑制人胃癌细胞系HGC-27和MKN-45的增殖并诱导其凋亡;作用机制可能为:使细胞周期中停留在G0/G1期,不停留在S期,上调p53和p27表达,下调CDK4和cyclinD1表达。梓醇能提高促凋亡蛋白Bax的表达、降低抗凋亡蛋白Bcl-2的表达、增强caspase-3活性。对肝细胞癌(HCC)(Catalpol inhibits cellproliferation,invasion and migration through regulating miR-22-3p/MTA3signalling in hepatocellular carcinoma[J].Experimental and molecularpathology 2019,109:51-60.),梓醇显著抑制细胞活力和集落生长,减少迁移/侵袭细胞数,增加细胞凋亡率;同时上调miR-22-3p表达和下调MTA3表达。对非小细胞肺癌,梓醇能抑制转化生长因子-β1诱导的细胞迁移和侵袭以及基质金属蛋白酶-2和基质金属蛋白酶-9的表达(Catalpol inhibits TGF-β1-induced epithelial-mesenchymal transition inhuman non-small-cell lung cancer cells through the inactivation of Smad2/3andNF-κB signaling pathways[J].Journal of cellular biochemistry 2018.)。炎症是导致结肠癌发病的主要原因,zhu等(Catalpol suppressed proliferation,growth andinvasion ofCT26 colon cancer by inhibiting inflammation and tumorangiogenesis[J].Biomed Pharmacother 2017,95:68-76.)研究表明梓醇通过降低结肠癌中常见的炎症因子,如IL-1、β、IL-6、IL-8、COX-2和iNOS,发挥抑制结肠癌细胞的生长、增殖和侵袭的作用。2010年,Liu等(Catalpol promotes cellular apoptosis in humanHCT116 colorectal cancer cells via microRNA-200and the downregulation ofPI3K-Akt signaling pathway[J].Oncology letters 2017,14(3):3741-3747.)研究发现梓醇能够抑制结肠癌细胞中促血管生成因子,使其促血管生成因子和抗血管生成因子之间达到平衡发挥抑制人结肠癌细胞活力。梓醇在治疗手术切除后的晚期结肠癌患者中,能显著提高术后48个月的无复发存活率(Efficacy,Safety,and Cost of Therapy of theTraditional Chinese Medicine,Catalpol,in Patients Following SurgicalResection for Locally Advanced Colon Cancer[J].Medical Science MonitorInternational Medical Journal of Experimental&Clinical Research 2018,24:3184.)。梓醇主要通过激活caspase-3表达、降低MMP-16活性、增强microRNA中miR-146a表达发挥抑制MCF-7乳腺癌细胞的增殖(Catalpol suppresses proliferation andfacilitates apoptosis of MCF-7breast cancer cells through upregulatingmicroRNA-146a and downregulating matrix metalloproteinase-16expression[J].Molecular medicine reports 2015,12(5):7609-7614.)。Pungitore等(Iridoids asallelochemicals and DNA polymerase inhibitors[J].J Nat Prod 2004,67(3):357-361.)认为梓醇是DNA聚合酶的竞争性抑制剂,从而影响细胞发生癌变
因此对于梓醇的研究具有重要意义。但由于梓醇作为天然产物,其本身存在结构复杂、活性强度较低以及成药性等问题(HPLC-APCI-MS/MS method for thedetermination of catalpol in rat plasma and cerebrospinal fluid:applicationto an in vivo pharmacokinetic study[J].J Pharm Biomed Anal.2012,70:337-43.),在转化成新药之前需要进行结构修饰改造。通过对梓醇类衍生物的结构与生物活性间的文献可以发现,对于梓醇类衍生物其结构变化位置主要在C6-位羟基,而对梓醇C10-位的结构修饰研究未有报道。而且通过对梓醇类抗肿瘤特性所需的全部药效团的组成可以清楚的看到在各种天然产物中加入卤素和杂环基可以增强它们的生物效应。因此对梓醇特定位置引入杂环基和卤素的结构设计合成有重要意义。
发明内容
本发明的目的是提供一种新型梓醇衍生物及其制备方法和应用,通过对梓醇C10-位羟基结构修饰从而得到一种反应条件温和、简单、高效的梓醇衍生物。
为达到上述目的,本发明采用的技术方案是:
一种梓醇衍生物,所述梓醇衍生物是具有式I、式II和式III所示化学结构或/和其可药用衍生物:
式I、式II和式III中的X、Y、Z、R为:X为F、Cl、Br、I,Y、Z为一个、两个或三个C、N、O和S;R选自氢原子、氘原子、取代或非取代C1-C8烷基、取代或非取代氘代C1-C8烷基、取代或非取代C2-C8烯烃基、取代或非取代C1-C8烷氧基、卤素、氨基、硝基、羟基、酰基、氰基、取代或非取代C3-C8环烷基、取代或非取代含有1~3个选自N、O、S杂原子的5~8元杂环基、取代或非取代5~8元芳基、取代或非取代含有1~3个选自N、O、S杂原子的5~8元杂芳基;其中所述取代是选自下组中的一个或多个取代基取代:C1-C8烷基、卤代C1-C8烷基、卤素、氨基、硝基、氰基、羟基、C1-C8烷氧基、卤代C1-C8烷氧基、羟代C1-C8烷基、C3-C8环烷基、含有1~3个选自N、O、S杂原子的5~8元杂环基、5~8元芳基、含有1~3个选自N、O、S杂原子的5~8元杂芳基。
进一步的,式I、式II和式III中的X、Y、Z、R为:X为F、Cl、Br、I等卤素,Y、Z分别独立地选自一个、两个或三个C、N、O和S;R选自取代或未取代C1-C8烷氧基、取代或未取代C1-C8烷基、取代或未取代C3-C8环烷基、取代或未取代含有1~3个选自N、O、S杂原子的5~8元杂环基、取代或非取代5~8元芳基、取代或非取代含有1~3个选自N、O、S杂原子的5~8元杂芳基;其中所述取代是选自下组中的一个或多个取代基取代:C1-C8烷基、卤代C1-C8烷基、卤素、氨基、硝基、氰基、羟基、羟甲基、羟乙基、巯基、羧基、酯基、C1-C6烷基单取代胺基、C1-C6烷基双取代胺基、C1-C6烷氧基、C1-C6烷基羰氧基、C3-C6环烷基羰氧基、含有1~3个选自N、O、S杂原子的5~8元杂环基羰氧基、C3-C6烷基羰基、C3-C6环烷氧基羰基、含有1~3个选自N、O、S杂原子的5~8元杂环氧基羰基、C1-C6烷氧甲酰胺基、C1-C6烷巯基。
进一步的,含氮杂环基或含氮杂芳基是杂环结构或螺环结构或两个杂环直接相连。
进一步的,所述通式I、通式II和通式III表示的化合物的药学上可接受的盐包括:无机酸盐,有机酸盐,烷基磺酸盐,无机酸盐包括盐酸盐、氢溴酸盐、硝酸盐、硫酸盐、磷酸盐;有机酸盐包括甲酸盐、乙酸盐、丙酸盐、苯甲酸盐、马来酸盐、富马酸盐、琥珀酸盐、酒石酸盐、柠檬酸盐;烷基磺酸盐包括甲基磺酸盐、乙基磺酸盐等;还包括芳基磺酸盐,如苯磺酸盐、对甲苯磺酸盐。
进一步的,所述通式I、通式II和通式III表示的化合物的药学上可接受的溶剂合物包括通式I、通式II和通式III表示的化合物与水、乙醇、异丙醇、乙醚、丙酮的溶剂合物。
进一步的,所述通式I、通式II和通式III表示的梓醇衍生物具有结构式如下所示:
一种梓醇衍生物的制备方法,包括以下步骤:
(1)化合物A在卤素单质或氢卤化物下发生反应,得到碘代物B;
(2)碘代物B与取代杂环反应,获得化合物C和D;
具体反应关系式如下:
一种药物组合物,所述药物组合物包括通式I、通式II和通式III表示的梓醇衍生物、其药学上可接受的盐或药学上可接受的溶剂合物,和任选的药学上可接受的赋形剂。
一种药物组合物在制备治疗抗肿瘤药物中的应用。
一种药物组合物在制备治疗食管癌细胞和胰腺癌细胞中的应用。
本发明具有的优点是:本发明首次探究了在对梓醇C10-位的结构修饰获得了一种梓醇衍生物,通过对梓醇特定位置引入杂环基和卤素的结构合成一种新的梓醇衍生物,对食管癌细胞和胰腺癌细胞均具有显著抑制作用,在制备新型抗肿瘤药物中具有良好的应用前景,提供的制备方法仅用两步就合成出一系列新型梓醇衍生物,合成方法温和高效,实验证明本发明所述的式(I)、式(II)和式(III)化合物或其水合物、药学上可接受的盐或药学上可接受的溶剂合物或所述的药物组合物对食管癌细胞和胰腺癌细胞具有显著的抑制作用,在制备抗肿瘤药物上有着广阔的应用空间。
附图说明
图1是化合物II-4对2株食管癌细胞的IC50值测定关系图。
图2是化合物II-1对2株食管癌细胞的IC50值测定关系图。
图3是化合物II-9对四株胰腺癌细胞的抑制活性测定关系图。
具体实施方式
实施例1
一种梓醇衍生物,所述梓醇衍生物是具有式I、式II和式III所示化学结构或/和其可药用衍生物:
式I、式II和式III中的X、Y、Z、R为:X为F、Cl、Br、I,Y、Z为一个、两个或三个C、N、O和S;R选自氢原子、氘原子、取代或非取代C1-C8烷基、取代或非取代氘代C1-C8烷基、取代或非取代C2-C8烯烃基、取代或非取代C1-C8烷氧基、卤素、氨基、硝基、羟基、酰基、氰基、取代或非取代C3-C8环烷基、取代或非取代含有1~3个选自N、O、S杂原子的5~8元杂环基、取代或非取代5~8元芳基、取代或非取代含有1~3个选自N、O、S杂原子的5~8元杂芳基;其中所述取代是选自下组中的一个或多个取代基取代:C1-C8烷基、卤代C1-C8烷基、卤素、氨基、硝基、氰基、羟基、C1-C8烷氧基、卤代C1-C8烷氧基、羟代C1-C8烷基、C3-C8环烷基、含有1~3个选自N、O、S杂原子的5~8元杂环基、5~8元芳基、含有1~3个选自N、O、S杂原子的5~8元杂芳基。
进一步的,式I、式II和式III中的X、Y、Z、R为:X为F、Cl、Br、I等卤素,Y、Z分别独立地选自一个、两个或三个C、N、O和S;R选自取代或未取代C1-C8烷氧基、取代或未取代C1-C8烷基、取代或未取代C3-C8环烷基、取代或未取代含有1~3个选自N、O、S杂原子的5~8元杂环基、取代或非取代5~8元芳基、取代或非取代含有1~3个选自N、O、S杂原子的5~8元杂芳基;其中所述取代是选自下组中的一个或多个取代基取代:C1-C8烷基、卤代C1-C8烷基、卤素、氨基、硝基、氰基、羟基、羟甲基、羟乙基、巯基、羧基、酯基、C1-C6烷基单取代胺基、C1-C6烷基双取代胺基、C1-C6烷氧基、C1-C6烷基羰氧基、C3-C6环烷基羰氧基、含有1~3个选自N、O、S杂原子的5~8元杂环基羰氧基、C3-C6烷基羰基、C3-C6环烷氧基羰基、含有1~3个选自N、O、S杂原子的5~8元杂环氧基羰基、C1-C6烷氧甲酰胺基、C1-C6烷巯基。
进一步的,含氮杂环基或含氮杂芳基是杂环结构或螺环结构或两个杂环直接相连。
进一步的,所述通式I、通式II和通式III表示的化合物的药学上可接受的盐包括:无机酸盐,有机酸盐,烷基磺酸盐,无机酸盐包括盐酸盐、氢溴酸盐、硝酸盐、硫酸盐、磷酸盐;有机酸盐包括甲酸盐、乙酸盐、丙酸盐、苯甲酸盐、马来酸盐、富马酸盐、琥珀酸盐、酒石酸盐、柠檬酸盐;烷基磺酸盐包括甲基磺酸盐、乙基磺酸盐等;芳基磺酸盐,如苯磺酸盐、对甲苯磺酸盐。
进一步的,所述通式I、通式II和通式III表示的化合物的药学上可接受的溶剂合物包括通式I、通式II和通式III表示的化合物与水、乙醇、异丙醇、乙醚、丙酮的溶剂合物。
进一步的,所述通式I、通式II和通式III表示的梓醇衍生物具有结构式如下所示:
一种梓醇衍生物的制备方法,包括以下步骤:
(1)化合物A在卤素单质或氢卤化物下发生反应,得到卤代物B;
(2)卤代物B与取代杂环反应,获得化合物C和D;
具体反应关系式如下:
一种药物组合物,所述药物组合物包括通式I、通式II和通式III表示的梓醇衍生物、其药学上可接受的盐或药学上可接受的溶剂合物,和任选的药学上可接受的赋形剂。
一种药物组合物在制备治疗抗肿瘤药物中的应用。
一种药物组合物在制备治疗食管癌细胞和胰腺癌细胞中的应用。
实验例
下面实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。化合物的结构用Bruker-500MHz型核磁共振仪测定,氘代二甲基亚砜(DMSO)为溶剂,四甲基硅烷(TMS)为内标。层析柱一般使用200~300目硅胶为载体。
一、化合物制备例部分
实验例1:I类化合物的制备
化合物B的合成:
在反应瓶中加入梓醇36.2mg(0.1mmol)和1mL超干四氢呋喃,0℃冰水浴且氮气保护下依次加入咪唑85.7mg(1.26mmol)、三苯基膦157.4mg(0.6mmol)和碘单质152.3mg(0.6mmol),于0℃反应至终点(TLC跟踪检测)。加入适量200-300目硅胶伴样,减压回收溶剂,经柱层析硅胶V(二氯甲烷):V(甲醇)=15:1,得到化合物B(即I类化合物),收率为:70%。
I-1,1H NMR(500MHz,DMSO-d6)δ6.37(dd,J=5.9,1.8Hz,1H),5.33(s,1H),5.05(s,1H),4.98(dd,J=6.0,4.6Hz,2H),4.89(d,J=9.7Hz,1H),4.58(d,J=7.4Hz,1H),4.11(d,J=10.4Hz,1H),3.81–3.75(m,1H),3.68(dd,J=11.9,2.0Hz,1H),3.66–3.62(m,1H),3.38(dd,J=11.8,6.8Hz,1H),3.23(d,J=10.4Hz,1H),3.21–3.10(m,5H),3.03–2.95(m,1H),2.36(dd,J=9.7,7.6Hz,1H),2.12(m,J=8.0,4.6,1.8Hz,1H).13C NMR(125MHz,DMSO-d6)δ140.80,103.28,99.18,94.33,78.28,77.74,77.19,73.75,70.58,68.89,63.58,61.84,49.07,42.75,37.48.HRMS(ESI)m/zcalcdforC15H25NIO9[M+NH4]+:490.0562,found:490.0565.
实验例2:II类化合物的制备
化合物B的合成:
在反应瓶中加入梓醇36.2mg(0.1mmol)和1mL超干四氢呋喃,0℃冰水浴且氮气保护下依次加入咪唑85.7mg(1.26mmol)、三苯基膦157.4mg(0.6mmol)和碘单质152.3mg(0.6mmol),于0℃反应至终点(TLC跟踪检测)。加入适量200-300目硅胶伴样,减压回收溶剂,经柱层析硅胶V(二氯甲烷):V(甲醇)=15:1,得到化合物B,收率为:70%。
II类化合物的合成:
在反应瓶中将化合物B(1mmol)溶于N,N-二甲基甲酰胺中,在室温搅拌下加入M1-R(6.6mmol)和无水碳酸钾(2.2mmol),于70℃反应至终点(TLC跟踪检测)。加入适量200-300目硅胶伴样,减压回收溶剂,经柱层析硅胶分离得到相应的式II类化合物,收率在50%-90%之间。
表1制备新型梓醇衍生物的底物试剂(M1-R)
II-1:1H NMR(500MHz,DMSO-d6)δ7.68(s,1H),7.22(s,1H),6.95(s,1H),6.38(dd,J=6.0,1.8Hz,1H),5.04–4.97(m,2H),4.78(d,J=15.0Hz,1H),4.65(d,J=7.9Hz,1H),4.31(d,J=15.1Hz,5H),3.85–3.82(m,1H),3.73(dd,J=11.9,2.1Hz,1H),3.48(dd,J=11.9,6.3Hz,1H),3.22(q,J=7.4,6.0Hz,2H),3.19(s,1H),3.16(s,1H),3.12–3.08(m,2H),2.21(s,1H),2.10–2.06(m,1H).13C NMR(125MHz,DMSO-d6)δ168.28,165.13,163.79,140.83,103.27,99.92,94.85,77.71,77.16,76.92,73.78,70.36,63.40,63.21,61.62,49.04,42.01,37.78.HRMS(ESI+)Calculated for C18H25N2O9[M+H]+:413.1554,found:413.1556。
II-2:1H NMR(500MHz,DMSO-d6)δ7.10(s,1H),6.67(s,1H),6.39(d,J=5.9Hz,1H),5.38(s,1H),5.19(dd,J=24.4,10.0Hz,3H),5.05(d,J=9.7Hz,1H),5.01–4.98(m,1H),4.64(dd,J=7.9,1.9Hz,1H),4.46(d,J=7.9Hz,2H),3.82(d,J=8.2Hz,1H),3.71(d,J=11.7Hz,1H),3.45(d,J=6.7Hz,1H),3.25–3.15(m,3H),3.07(dd,J=21.9,8.9Hz,2H),2.94(s,1H),2.34(t,J=8.7Hz,1H),2.23(d,J=1.9Hz,3H),2.10(q,J=7.0Hz,1H).13C NMR(125MHz,DMSO-d6)δ145.41,140.86,126.34,121.12,103.38,99.46,94.50,77.90,77.12,77.00,73.82,70.55,63.80,62.32,61.83,44.52,42.64,37.86,13.21.HRMS(ESI+)Calculated for C19H27N2O9[M+H]+:427.1711,found:427.1709。
II-3:1H NMR(500MHz,DMSO-d6)δ6.80(d,J=1.2Hz,1H),6.39(dd,J=6.0,1.7Hz,1H),5.49–5.06(m,3H),5.05–4.97(m,3H),4.64(d,J=7.9Hz,1H),4.37(d,J=4.4Hz,2H),3.81(d,J=8.2Hz,1H),3.73(dd,J=11.8,2.0Hz,1H),3.43(dd,J=11.8,6.9Hz,2H),3.21(t,J=8.9Hz,2H),3.08(t,J=8.5Hz,1H),3.03(d,J=9.1Hz,1H),2.98(s,1H),2.34(dd,J=9.7,7.4Hz,1H),2.18(s,3H),2.11(ddt,J=9.4,4.9,2.3Hz,1H),2.00(s,3H).13C NMR(150MHz,DMSO-d6)δ144.62,140.89,134.23,117.22,103.37,99.44,94.50,77.92,77.19,77.01,73.81,63.81,62.41,61.94,49.06,44.43,42.59,37.87,13.83,13.03.HRMS(ESI+)Calculated for C20H27N2O9[M+H]+:441.1867,found:441.1864。
II-4:1H NMR(500MHz,DMSO-d6)δ7.77(d,J=7.7Hz,2H),7.64(d,J=15.7Hz,2H),7.35(t,J=7.6Hz,2H),7.20(t,J=7.4Hz,1H),6.40(dd,J=5.9,1.7Hz,1H),5.36(d,J=5.6Hz,1H),5.27(d,J=5.1Hz,1H),5.10–4.98(m,4H),4.81(d,J=15.1Hz,1H),4.68(t,J=7.6Hz,2H),4.34(d,J=15.1Hz,1H),3.85(dd,J=8.5,3.7Hz,1H),3.81–3.74(m,1H),3.53(dd,J=11.4,6.3Hz,1H),3.24(d,J=10.0Hz,3H),3.19–3.10(m,2H),2.31(dd,J=9.7,7.4Hz,1H),2.17–2.09(m,1H).13C NMR(125MHz,DMSO-d6)δ140.87,140.47,139.09,134.83,128.96,126.72,124.71,116.95,103.29,100.00,94.91,77.76,77.25,76.99,73.89,70.41,63.45,63.25,61.71,46.64,42.04,37.83.HRMS(ESI+)Calculated for C24H29N2O9[M+H]+:489.1867,found:489.1865。
II-5:1H NMR(500MHz,DMSO-d6)δ7.54(d,J=1.5Hz,1H),7.25(d,J=1.5Hz,1H),6.39(dd,J=6.0,1.7Hz,1H),5.35(d,J=5.6Hz,1H),5.24(d,J=5.2Hz,1H),5.06(d,J=4.9Hz,1H),5.04–4.97(m,3H),4.78(d,J=15.1Hz,1H),4.64(d,J=7.8Hz,1H),4.60(dd,J=6.9,4.9Hz,1H),4.26(d,J=15.0Hz,1H),3.83(dd,J=8.3,5.4Hz,1H),3.73(m,J=12.0,6.8,2.0Hz,1H),3.48(m,J=11.5,5.6Hz,1H),3.25–3.18(m,3H),3.09(m,J=17.1,8.9,4.7Hz,2H),2.25(dd,J=9.7,7.5Hz,1H),2.10(m,J=7.7,4.6,1.8Hz,1H).13C NMR(125MHz,DMSO-d6)δ140.85,138.83,119.75,113.91,103.24,100.06,94.88,77.70,77.18,76.92,73.78,70.32,63.31,63.18,61.62,47.02,41.94,37.78.HRMS(ESI+)Calculated forC18H24BrN2O9[M+H]+:491.0659,found:491.0656。
II-6:1H NMR(500MHz,DMSO-d6)δ8.33(d,J=1.5Hz,1H),8.02(d,J=1.5Hz,1H),7.20(dd,J=6.0,1.8Hz,1H),6.16(d,J=5.6Hz,1H),6.05(d,J=5.2Hz,1H),5.92–5.84(m,1H),5.84–5.78(m,3H),5.58(d,J=15.1Hz,1H),5.46(d,J=7.9Hz,1H),5.41(dd,J=7.0,4.9Hz,1H),5.05(d,J=15.1Hz,1H),4.64(dd,J=8.3,5.4Hz,1H),4.54(m,J=11.9,6.7,2.1Hz,1H),4.33–4.25(m,1H),4.04–3.96(m,3H),3.90(m,J=13.3,4.3Hz,2H),3.07(dd,J=9.7,7.5Hz,1H),2.91(m J=7.9,4.6,1.8Hz,1H).13C NMR(150MHz,DMSO-d6)δ140.86,137.65,127.70,116.51,103.24,100.05,94.87,77.71,77.20,76.93,73.78,70.32,63.32,63.16,61.63,47.12,41.93,37.78.HRMS(ESI+)Calculated for C18H24ClN2O9[M+H]+:447.1164,found:447.1167。
II-7:1H NMR(500MHz,DMSO-d6)δ7.52(d,J=1.3Hz,1H),7.29(d,J=1.3Hz,1H),6.37(dd,J=6.0,1.7Hz,1H),5.34(d,J=5.7Hz,1H),5.22(d,J=5.2Hz,1H),5.05(d,J=5.1Hz,1H),5.02–4.97(m,3H),4.78(d,J=15.1Hz,1H),4.63(d,J=7.9Hz,1H),4.59(dd,J=7.0,4.9Hz,1H),4.26(d,J=15.0Hz,1H),3.82(dd,J=8.3,5.7Hz,1H),3.72(m,J=11.8,7.0,2.1Hz,1H),3.50–3.43(m,1H),3.21(q,J=5.1,4.6Hz,3H),3.12–3.03(m,2H),2.23(dd,J=9.7,7.5Hz,1H),2.09(m,J=9.6,4.7,2.9Hz,1H).13C NMR(125MHz,DMSO-d6)δ140.84,140.77,125.89,103.24,100.06,94.89,82.28,77.70,77.18,76.93,73.79,70.33,63.27,61.64,49.08,46.67,41.95,37.78.HRMS(ESI+)Calculated for C18H24IN2O9[M+H]+:539.0520,found:539.0518。
II-8:1H NMR(500MHz,DMSO-d6)δ7.38(d,J=1.5Hz,1H),6.93(d,J=1.4Hz,1H),6.40(dd,J=6.0,1.8Hz,1H),5.48–4.74(m,6H),4.69–4.47(m,4H),3.81(dd,J=8.1,1.3Hz,1H),3.73(dd,J=11.9,2.0Hz,1H),3.45(dd,J=11.8,6.9Hz,1H),3.21(m,J=11.3,6.4,5.8,3.2Hz,2H),3.11–3.00(m,2H),2.98(s,1H),2.39(dd,J=9.8,7.5Hz,1H),2.13(m,J=8.0,4.6,1.8Hz,1H).13C NMR(125MHz,DMSO-d6)δ140.91,129.21,124.48,120.46,103.33,99.36,94.27,77.85,77.18,76.95,73.75,70.56,62.98,62.28,61.93,46.25,42.82,37.87.HRMS(ESI+)Calculated for C18H24BrN2O9[M+H]+:491.0659,found:491.0657。
II-9:1H NMR(500MHz,DMSO-d6)δ7.75(s,1H),6.40(dd,J=6.0,1.7Hz,1H),5.33(d,J=5.3Hz,1H),5.18(d,J=5.0Hz,1H),5.12–4.92(m,4H),4.67–4.58(m,3H),4.54(d,J=21.3Hz,1H),3.82(d,J=8.1Hz,1H),3.73(d,J=11.7Hz,1H),3.49–3.39(m,2H),3.20(m,J=10.3,5.9,2.9Hz,2H),3.05(q,J=10.4,10.0Hz,2H),2.39(dd,J=9.7,7.5Hz,1H),2.17–2.09(m,1H).13C NMR(125MHz,DMSO-d6)δ140.94,137.14,124.28,113.82,103.25,99.54,94.36,77.82,77.14,76.90,73.72,70.46,62.70,62.10,61.85,49.06,42.71,37.84.HRMS(ESI+)Calculated for C18H23Cl2N2O9[M+H]+:481.0775,found:481.0773。
II-10:1H NMR(500MHz,DMSO-d6)δ6.38(dd,J=5.9,1.8Hz,1H),5.09–4.96(m,4H),4.93(d,J=9.7Hz,1H),4.58(d,J=7.7Hz,1H),4.36(d,J=10.9Hz,1H),3.81(d,J=8.3Hz,1H),3.69(dd,J=11.8,2.0Hz,1H),3.59(d,J=1.1Hz,1H),3.44(d,J=10.9Hz,1H),3.42–3.37(m,1H),3.27–3.19(m,1H),3.19–3.12(m,3H),3.09(dd,J=9.0,7.8Hz,1H),3.01(q,J=9.3,8.5Hz,1H),2.42(dd,J=9.8,7.5Hz,1H),2.11(m,J=7.9,4.6,1.8Hz,1H).13C NMR(125MHz,DMSO-d6)δ140.87,103.25,99.21,94.22,77.74,77.72,77.15,73.80,70.57,66.79,63.16,62.43,61.82,61.18,49.08,41.94,37.53,35.75.HRMS(ESI+)Calculatedfor C18H22Br3N2O9[M+H]+:648.8849,found:648.8852。
II-11:1H NMR(500MHz,DMSO-d6)δ7.54(d,J=1.3Hz,1H),7.16(d,J=1.2Hz,1H),6.39(dd,J=6.0,1.8Hz,1H),5.33(d,J=5.7Hz,1H),5.15(d,J=5.2Hz,1H),5.10(d,J=15.3Hz,1H),5.06–5.01(m,2H),5.01–4.96(m,3H),4.59(d,J=7.9Hz,1H),4.54(dd,J=7.1,5.0Hz,1H),3.79(m,J=7.4,5.8,1.3Hz,1H),3.73(m,J=11.8,7.1,2.1Hz,1H),3.54–3.46(m,1H),3.17(d,J=5.2Hz,2H),3.05(m,J=9.2,5.4Hz,1H),3.01–2.93(m,1H),2.90(d,J=1.3Hz,1H),2.40(dd,J=9.8,7.6Hz,1H),2.13(m,J=8.1,4.6,1.8Hz,1H).13C NMR(150MHz,DMSO-d6)δ145.90,140.88,127.91,127.87,103.23,99.78,94.44,77.64,77.17,76.86,73.63,70.24,62.77,61.84,61.69,48.04,42.98,37.95.HRMS(ESI+)Calculatedfor C18H24N3O11[M+H]+:458.1405,found:458.1407。
II-12:1H NMR(500MHz,DMSO-d6)δ9.50(s,1H),7.25(t,J=2.0Hz,1H),6.97(dd,J=4.0,1.7Hz,1H),6.40(dd,J=6.0,1.8Hz,1H),6.23(dd,J=4.1,2.4Hz,1H),5.39–5.11(m,2H),5.10–5.02(m,3H),5.00(dd,J=5.9,4.5Hz,1H),4.85(d,J=15.3Hz,1H),4.66(d,J=7.9Hz,1H),4.62–4.32(m,1H),3.78–3.70(m,2H),3.45(dd,J=11.9,6.7Hz,2H),3.22(m,J=11.1,6.5,5.7,3.2Hz,2H),3.10–3.00(m,2H),2.73(d,J=1.1Hz,1H),2.37(dd,J=9.7,7.6Hz,1H),2.12(m,J=7.9,4.6,1.9Hz,1H).13C NMR(125MHz,DMSO-d6)δ180.17,140.79,132.79,132.72,109.89,103.38,99.47,94.40,77.67,77.31,76.96,73.82,70.55,64.01,62.16,61.93,55.37,46.11,43.01,37.97.HRMS(ESI+)Calculated for C20H26NO10[M+H]+:440.1551,found:440.1553。
II-13:1H NMR(500MHz,DMSO-d6)δ7.68(d,J=2.3Hz,1H),7.41(d,J=1.9Hz,1H),6.40(d,J=6.0Hz,1H),5.27(d,J=5.4Hz,1H),5.18(d,J=5.1Hz,1H),5.01(m,J=15.0,5.1Hz,4H),4.93(d,J=15.2Hz,1H),4.76(m,J=6.6,2.9Hz,1H),4.70(d,J=15.2Hz,1H),4.66(d,J=7.9Hz,1H),3.78(dd,J=8.2,5.6Hz,1H),3.77–3.70(m,1H),3.48(dt,J=12.0,6.0Hz,2H),3.20(m,J=9.7,5.0Hz,3H),3.14–3.06(m,2H),2.35(dd,J=9.8,7.4Hz,1H),2.12(q,J=7.4Hz,1H).13C NMR(125MHz,DMSO-d6)δ140.97,138.86,131.76,105.72,103.30,99.97,95.01,77.51,77.28,76.96,73.78,70.27,63.48,61.95,61.49,50.34,42.77,37.87.HRMS(ESI+)Calculated for C18H25N2O9[M+H]+:413.1554,found:413.1556。
II-14:1H NMR(500MHz,DMSO-d6)δ7.50(d,J=2.1Hz,1H),6.38(dd,J=5.9,1.8Hz,1H),6.00(d,J=2.2Hz,1H),5.23(d,J=5.4Hz,1H),5.17(d,J=5.2Hz,1H),5.04–4.97(m,5H),4.84(t,J=6.7Hz,1H),4.65(dd,J=7.9,1.6Hz,1H),4.52(d,J=15.4Hz,1H),3.78–3.71(m,2H),3.50(m,J=12.1,6.2Hz,1H),3.24–3.15(m,3H),3.15–3.06(m,2H),2.33(dd,J=9.8,7.4Hz,1H),2.13(s,4H).13C NMR(150MHz,DMSO-d6)δ147.35,141.01,132.58,105.27,103.27,100.23,95.25,77.37,77.29,76.93,73.79,70.13,63.67,61.80,61.30,49.79,42.76,37.92,13.53.HRMS(ESI+)Calculated for C19H27N2O9[M+H]+:427.1711,found:427.1711。
II-15:1H NMR(500MHz,DMSO-d6)δ7.89(s,1H),7.52(s,1H),6.39(dd,J=6.0,1.7Hz,1H),5.29(d,J=5.5Hz,1H),5.15(d,J=5.1Hz,1H),5.04–4.97(m,4H),4.78(d,J=15.2Hz,1H),4.70(d,J=15.2Hz,1H),4.63(d,J=7.8Hz,1H),4.55(dd,J=6.9,5.5Hz,1H),3.81(m,J=8.1,5.5,1.3Hz,1H),3.72(m,J=11.9,7.1,2.1Hz,1H),3.47(dt,J=11.9,5.9Hz,1H),3.19(m,J=9.0,5.9,2.5Hz,2H),3.11–3.02(m,2H),2.34(dd,J=9.7,7.4Hz,1H),2.11(m,J=9.7,7.8,4.7,1.8Hz,1H),1.44–1.17(m,3H),0.87(t,J=7.3Hz,1H).13CNMR(150MHz,DMSO-d6)δ140.94,139.34,131.79,103.31,99.80,94.76,92.21,77.65,77.24,76.95,73.78,70.31,62.97,62.11,61.60,51.54,42.70,37.83,14.38.HRMS(ESI+)Calculated for C19H27N2O9[M+H]+:427.1711,found:427.1711。
II-16:1H NMR(500MHz,DMSO-d6)δ7.49(d,J=2.2Hz,1H),6.38(dd,J=6.0,1.8Hz,1H),6.00(d,J=2.2Hz,1H),5.24–5.16(m,2H),5.04–4.97(m,5H),4.96(s,1H),4.84(q,J=6.3,5.8Hz,1H),4.64(d,J=7.8Hz,1H),4.52(d,J=15.4Hz,1H),3.75(m,J=12.4,10.5,6.0Hz,2H),3.49(m,J=11.6,5.6Hz,1H),3.19(m,J=7.9,2.2Hz,2H),3.13–3.06(m,2H),2.70(s,1H),2.33(dd,J=9.8,7.4Hz,1H),2.12(s,3H).13C NMR(150MHz,DMSO-d6)δ147.35,141.01,132.58,105.27,103.27,100.22,95.24,77.36,77.28,76.92,73.79,70.13,63.66,61.81,61.30,49.80,42.76,37.91,13.54.HRMS(ESI+)Calculated for C19H27N2O9[M+H]+:427.1711,found:427.1711。
II-17:1H NMR(500MHz,DMSO-d6)δ6.39(dd,J=5.9,1.9Hz,1H),5.24(s,1H),5.21(s,1H),5.16(d,J=7.8Hz,1H),5.01–4.93(m,3H),4.65(d,J=7.9Hz,1H),4.31(d,J=15.9Hz,1H),3.79–3.70(m,2H),3.49(dd,J=12.5,5.9Hz,1H),3.20(m,J=8.2,2.6Hz,2H),3.13–3.06(m,2H),2.52(s,3H),2.46(s,1H),2.40(dd,J=9.8,7.4Hz,1H),2.35(s,1H),2.16(s,3H),2.06(s,3H).13C NMR(125MHz,DMSO-d6)δ146.73,141.39,141.08,104.94,103.27,100.44,95.48,77.34,77.21,76.97,73.80,70.17,64.50,61.25,61.14,46.25,43.18,37.97,13.45,11.34.HRMS(ESI+)Calculated for C19H27N2O9[M+H]+:441.1867,found:441.1867。
II-18:1H NMR(500MHz,DMSO-d6)δ7.73(d,J=2.3Hz,1H),6.42–6.37(m,2H),5.30(d,J=5.5Hz,1H),5.15(d,J=5.2Hz,1H),5.02(dd,J=10.5,5.5Hz,4H),4.79(d,J=15.3Hz,1H),4.66–4.60(m,2H),4.56–4.50(m,1H),3.83(dd,J=8.4,5.4Hz,1H),3.73(m,J=11.9,7.0,2.1Hz,1H),3.48(m,J=11.8,5.7Hz,1H),3.20(m,J=9.8,6.4,2.6Hz,2H),3.11–3.05(m,3H),2.33(dd,J=9.7,7.5Hz,1H),2.13(m,J=9.6,7.6,4.6,1.8Hz,1H).13CNMR(150MHz,DMSO-d6)δ140.91,134.59,124.42,108.47,103.33,99.66,94.66,77.71,77.24,76.94,73.78,70.35,62.86,62.15,61.63,51.49,42.70,37.80.HRMS(ESI+)Calculated for C18H24BrN2O9[M+H]+:491.0659,found:491.0655。
II-19:1H NMR(500MHz,DMSO-d6)δ7.95–7.74(m,1H),7.57–7.38(m,1H),6.39(dd,J=5.9,1.7Hz,1H),5.30(d,J=5.5Hz,1H),5.17(dd,J=10.6,5.1Hz,1H),5.01(m,J=9.9,6.6,4.3Hz,4H),4.76–4.60(m,3H),4.57(q,J=6.2Hz,1H),3.81(dd,J=8.6,5.3Hz,1H),3.73(m,J=12.0,7.0,2.1Hz,1H),3.47(dt,J=11.8,5.8Hz,1H),3.20(m,J=6.5,3.6Hz,2H),3.08(m,J=9.3,5.3Hz,2H),2.99(d,J=5.0Hz,1H),2.35(dd,J=9.7,7.5Hz,1H),2.16–2.08(m,1H).13C NMR(125MHz,DMSO-d6)δ140.94,131.79,125.91,117.96,103.31,99.72,94.72,77.63,77.24,76.94,73.77,70.32,63.03,62.15,61.58,51.99,42.65,37.82.HRMS(ESI+)Calculated for C18H24FN2O9[M+H]+:431.1460,found:431.1462。
II-20:1H NMR(500MHz,DMSO-d6)δ7.89(s,1H),7.51(s,1H),6.38(dd,J=5.9,1.8Hz,1H),5.29(s,1H),5.15(s,1H),5.00(dt,J=10.6,4.0Hz,4H),4.76(d,J=15.2Hz,1H),4.70–4.61(m,2H),4.55(q,J=13.6,12.1Hz,1H),3.81(d,J=8.2Hz,1H),3.72(d,J=11.8Hz,1H),3.46(dd,J=11.9,6.1Hz,1H),3.22–3.17(m,2H),3.06(m,J=8.9,5.1Hz,2H),2.99(d,J=1.1Hz,1H),2.34(dd,J=9.7,7.5Hz,1H),2.11(m,J=7.8,4.6,1.7Hz,1H).13CNMR(150MHz,DMSO-d6)δ140.94,137.26,129.75,108.50,103.31,99.77,94.74,77.64,77.23,76.94,73.77,70.31,62.94,62.13,61.59,51.66,42.68,37.82.HRMS(ESI+)Calculated for C18H24ClN2O9[M+H]+:447.1164,found:447.1167。
II-21:1H NMR(500MHz,DMSO-d6)δ7.89(s,1H),7.52(s,1H),6.39(dd,J=6.1,1.8Hz,1H),5.28(t,J=6.2Hz,1H),5.17–5.10(m,1H),5.09–4.93(m,4H),4.79(d,J=15.2Hz,1H),4.70(d,J=15.2Hz,1H),4.64(d,J=7.8Hz,1H),4.55(d,J=6.5Hz,1H),3.81(dd,J=8.6,3.7Hz,1H),3.75–3.68(m,1H),3.47(d,J=17.8Hz,1H),3.24–3.13(m,2H),3.07(q,J=8.3Hz,2H),2.98(s,1H),2.34(dd,J=9.8,7.5Hz,1H),2.15–2.07(m,1H).13CNMR(125MHz,DMSO-d6)δ140.93,139.33,131.78,103.30,99.78,94.76,92.20,77.62,77.21,76.94,73.77,70.30,62.96,62.11,61.58,51.54,42.70,37.81.HRMS(ESI+)Calculated for C18H24BrN2O9[M+H]+:491.0659,found:491.0656。
II-22:1H NMR(500MHz,DMSO-d6)δ7.84(s,1H),7.50(s,1H),6.39(dd,J=6.0,1.7Hz,1H),5.29(d,J=5.5Hz,1H),5.15(d,J=5.2Hz,1H),5.04–4.98(m,4H),4.83–4.72(m,2H),4.64(d,J=7.8Hz,1H),4.57(t,J=6.3Hz,1H),3.81(dd,J=8.3,5.4Hz,1H),3.73(m,J=12.1,7.0,2.2Hz,1H),3.47(m,J=11.7,5.8Hz,1H),3.20(m,J=9.4,6.0,3.6Hz,2H),3.07(m,J=13.8,9.0,5.2Hz,2H),2.94(s,1H),2.34(dd,J=9.7,7.5Hz,1H),2.12(m,J=7.7,4.8,1.7Hz,1H).13C NMR(150MHz,DMSO-d6)δ143.84,140.94,135.92,103.30,99.84,94.79,77.63,77.24,76.96,73.79,70.30,63.10,62.07,61.60,57.44,51.14,42.73,37.84.HRMS(ESI+)Calculated for C18H24IN2O9[M+H]+:539.0521,found:539.0519。
II-23:1H NMR(500MHz,DMSO-d6)δ8.71(s,1H),8.24(s,1H),6.38(dd,J=5.9,1.7Hz,1H),5.34(d,J=5.6Hz,1H),5.13–4.88(m,7H),4.66–4.60(m,2H),4.54(t,J=6.1Hz,1H),3.85(dd,J=8.3,5.2Hz,1H),3.76–3.69(m,1H),3.53–3.48(m,1H),3.20(dt,J=9.8,2.8Hz,2H),3.11(dd,J=9.3,3.9Hz,1H),3.02(m,J=8.5,3.8Hz,1H),2.37(dd,J=9.7,7.5Hz,1H),2.13(m,J=7.6,4.7,1.8Hz,1H).13C NMR(125MHz,DMSO-d6)δ140.87,135.79,135.36,132.00,103.23,99.90,94.72,77.66,77.23,76.90,73.67,70.17,62.23,61.94,61.53,49.06,42.72,37.77.HRMS(ESI+)Calculated for C18H24N3O11[M+H]+:458.1405,found:458.1405。
II-24:1H NMR(500MHz,DMSO-d6)δ7.55(s,1H),6.40(dd,J=5.9,1.8Hz,1H),5.31(d,J=5.8Hz,1H),5.12–4.93(m,7H),4.87(d,J=15.7Hz,1H),4.60(d,J=7.9Hz,1H),4.52(dd,J=7.9,4.7Hz,1H),3.91–3.85(m,1H),3.72(m,J=11.9,7.7,2.1Hz,1H),3.42(m,J=11.7,7.1,4.6Hz,1H),3.18(m,J=7.4,2.7Hz,2H),3.04(s,1H),2.98(m,J=8.1,5.1,3.0Hz,2H),2.14(m,J=7.9,4.5,1.9Hz,1H).13C NMR(125MHz,DMSO-d6)δ140.97,140.50,133.95,122.04,120.51,107.51,103.34,98.84,93.74,77.97,77.07,76.90,73.75,70.59,61.97,61.74,61.69,50.93,43.88,37.82.HRMS(ESI+)Calculated for C20H23F6N2O9[M+H]+:571.1122,found:571.1121。
II-25:1H NMR(500MHz,DMSO-d6)δ7.97–7.93(m,1H),6.70(d,J=2.3Hz,1H),6.39(dd,J=6.1,1.8Hz,1H),5.41–5.23(m,1H),5.16–4.97(m,4H),4.94(d,J=15.2Hz,1H),4.68–4.62(m,2H),4.52(s,1H),3.85(d,J=8.1Hz,1H),3.72(dd,J=12.0,2.1Hz,1H),3.47(dd,J=11.9,6.3Hz,2H),3.20(m,J=8.8,2.1Hz,2H),3.11(s,1H),3.10–3.03(m,2H),2.35(dd,J=9.7,7.5Hz,1H),2.11(m,J=7.7,4.7,1.8Hz,1H).13C NMR(125MHz,DMSO-d6)δ140.88,134.00,120.95,104.68,103.32,99.58,94.53,77.76,77.20,76.93,73.75,70.37,62.61,62.32,61.68,51.89,49.06,42.71,37.80.HRMS(ESI+)Calculated for C19H24F3N2O9[M+H]+:481.1428,found:481.1426。
II-26:1H NMR(500MHz,DMSO-d6)δ8.27(s,1H),7.87(s,1H),6.39(dd,J=6.0,1.8Hz,1H),5.31(d,J=5.6Hz,1H),5.11(d,J=5.1Hz,1H),5.01(m,J=11.2,5.5,4.9Hz,4H),4.87(d,J=15.2Hz,1H),4.75(d,J=15.2Hz,1H),4.64(d,J=7.8Hz,1H),4.55(t,J=6.2Hz,1H),3.83(dd,J=8.2,5.4Hz,1H),3.73(m,J=11.9,6.9,2.0Hz,1H),3.49(mJ=11.5,5.7Hz,1H),3.24–3.17(m,3H),3.07(m,J=16.2,8.8,4.8Hz,2H),2.36(dd,J=9.7,7.5Hz,1H),2.13(m,J=7.5,4.6,1.8Hz,1H).13C NMR(125MHz,DMSO-d6)δ140.91,136.76,131.85,112.08,103.26,99.86,94.76,77.65,77.23,76.95,73.77,70.24,62.73,62.02,61.57,51.35,49.06,42.78,37.82.HRMS(ESI+)Calculated for C19H24F3N2O9[M+H]+:481.1428,found:481.1424。
实验例3:III类化合物的制备
化合物B的合成:
在反应瓶中加入梓醇36.2mg(0.1mmol)和1mL超干四氢呋喃,0℃冰水浴且氮气保护下依次加入咪唑85.7mg(1.26mmol)、三苯基膦157.4mg(0.6mmol)和碘单质152.3mg(0.6mmol),于0℃反应至终点(TLC跟踪检测)。加入适量200-300目硅胶伴样,减压回收溶剂,经柱层析硅胶V(二氯甲烷):V(甲醇)=15:1,得到化合物B,收率为:70%。
III类化合物的合成:
在反应瓶中将化合物B(1mmol)溶于N,N-二甲基甲酰胺中,在室温搅拌下加入M2-R(6.6mmol)和无水碳酸钾(2.2mmol),于70℃反应至终点(TLC跟踪检测)。加入适量200-300目硅胶伴样,减压回收溶剂,经柱层析硅胶分离得到相应的式III类化合物,收率在50%-90%之间。
表2制备新型梓醇衍生物的底物试剂(M2-R)
III-1:1H NMR(500MHz,DMSO-d6)δ9.15(s,1H),8.90(s,1H),8.55(s,1H),6.41(dd,J=6.0,1.8Hz,1H),5.29(d,J=5.6Hz,1H),5.19(d,J=5.1Hz,1H),5.08(d,J=9.7Hz,1H),5.05–4.96(m,4H),4.87(d,J=15.4Hz,1H),4.68(d,J=7.8Hz,1H),4.53(t,J=6.3Hz,1H),3.86–3.81(m,1H),3.81–3.74(m,1H),3.56(m,J=11.9,5.9Hz,1H),3.23(m,J=17.3,8.9,5.2Hz,2H),3.13–3.01(m,2H),3.00(s,1H),2.48–2.43(m,1H),2.14(m,J=7.5,3.5Hz,1H).13C NMR(125MHz,DMSO-d6)δ152.45,151.97,148.30,147.80,140.96,133.62,103.32,99.72,94.59,77.65,77.22,76.88,73.72,70.29,62.75,62.08,61.67,43.02,42.27,37.93.HRMS(ESI+)Calculated for C20H25N4O9[M+H]+:465.1616,found:465.1616。
III-2:1H NMR(500MHz,DMSO-d6)δ8.14(s,1H),7.67(d,J=8.0Hz,1H),7.63(d,J=7.9Hz,1H),7.25(t,J=7.5Hz,1H),7.20(t,J=7.5Hz,1H),6.41(d,J=6.0Hz,1H),5.27(d,J=5.5Hz,1H),5.21(d,J=5.1Hz,1H),5.15(d,J=9.7Hz,1H),5.06(t,J=4.6Hz,2H),5.00(t,J=5.4Hz,1H),4.91(d,J=15.7Hz,1H),4.77(d,J=15.7Hz,1H),4.71(d,J=8.2Hz,2H),3.81(m,J=11.4,5.8Hz,2H),3.53(m,J=11.4,6.9,4.0Hz,1H),3.31–3.21(m,2H),3.09(m,J=18.3,9.2,8.7,4.2Hz,2H),2.87(s,1H),2.37(dd,J=9.7,7.5Hz,1H),2.13(t,J=6.6Hz,1H).13C NMR(150MHz,DMSO-d6)δ145.16,143.26,140.98,134.97,122.76,121.97,119.63,111.54,103.28,99.80,94.76,78.08,77.19,77.03,73.80,70.57,63.42,62.35,61.95,43.81,42.61,37.84.HRMS(ESI+)Calculated for C22H27N2O9[M+H]+:463.1711,found:463.1711。
III-3:1H NMR(500MHz,DMSO-d6)δ8.18(d,J=157.9Hz,1H),7.86–7.46(m,2H),7.43–6.93(m,2H),6.44–6.38(m,1H),5.29–4.97(m,8H),4.95–4.86(m,1H),4.69(dd,J=7.8,3.3Hz,1H),4.46(d,J=5.3Hz,2H),3.80(m,J=13.8,8.1,4.9Hz,2H),3.53(m,J=15.8,8.9,4.7Hz,1H),3.30–3.17(m,2H),3.17–3.08(m,1H),3.05(m,J=8.3,7.8,4.3Hz,1H),2.18–2.10(m,1H).13C NMR(125MHz,DMSO-d6)δ141.03,140.66,133.23,126.42,123.64,121.08,117.24,110.87,103.38,99.66,94.79,77.85,77.30,77.02,73.78,70.50,63.93,63.26,61.51,47.25,43.40,37.90.HRMS(ESI+)Calculated for C22H27N2O9[M+H]+:463.1711,found:463.1711。
二、体外抗肿瘤抑制活性测试部分
实验例4:式I、II类化合物对四株食管癌细胞的抑制作用
实验利用来源、病理分型明确,对药物敏感的ECA109、EC9706、KYSE150和KYSE70四株食管癌细胞,在MTT培养板上观察合成目标化合物在体外对细胞直接的生长抑制或杀伤作用。
实验作用时间:24h,48h
通过对4株食管癌细胞筛选,最终确定有六种化合物对四株食管癌细胞具有生长抑制作用,其中进一步测定化合物II-4和II-1对两株食管癌细胞的IC50值。
表3四种化合物对2株食管癌细胞细胞存活率
表4两种化合物对2株食管癌细胞IC50
化合物II-4、化合物II-1两种化合物对2株食管癌细胞的生长抑制作用图见图1和图2所示。
实验例5:式II、III类化合物对3株胰腺癌细胞的抑制作用
对合成的30个梓醇衍生物,选择3株不同的人胰腺癌细胞AsPC-1、BxPC-3和PANC-1并同时选择人正常胰腺导管上皮细胞HPDE6-C7进行毒性评估试验。
试验方法:PANC-1细胞使用DMEM培养基培养,另加入10%FBS,100U/mL青霉素和100μg/mL链霉素,AsPC-1、BxPC-3和HPDE6-C7细胞使用1640培养基培养,另加入10%FBS,100U/mL青霉素和100μg/mL链霉素。各细胞系均于含5%CO2的37℃恒温培养箱中培养。待细胞生长状态良好对其进行计数,并以每孔2000-4000个细胞接种于96孔板中,待细胞贴壁(约24h)后,加入不同浓度或种类化合物进行处理。37℃恒温培养箱作用一定时间后,每孔加入10μL MTT(5mg/mL),置于培养箱中继续孵育4h。随后,吸出培养基和MTT,每孔分别加入150μL DMSO。将培养板放置于摇床上震荡15-30min,至甲臜完全溶解。然后用酶标仪在490nm波长处检测每孔的吸光度(Optical Density,OD)。实验中要设置调零孔(培养基、MTT、二甲基亚砜)。
细胞存活率=(处理组OD-调零孔OD)/(对照组OD-调零孔OD)×100%
结果化合物II-9对胰腺癌的抑制效果呈时间依赖性(图3),且对不同种胰腺癌细胞特别是BXPC-3具有良好的抑制活性,化合物II-9刺激72h后,对AsPC-1细胞的抑制率为78.0%,BxPC-3细胞的抑制率为91.6%,PANC-1细胞的抑制率为73.1%。且对正常胰腺导管上皮细胞也有一定抑制作用,抑制率低于胰腺癌细胞为62.5%(原因是由于长期培养条件下,HPDE6-C7细胞某些基因突变可无限增殖,使其具有肿瘤细胞特性)。
本发明的优点一是不同于以往梓醇衍生物的合成方法,本发明的制备方法为首次制备合成。根据文献调研与总结,发现近二十年对梓醇不同位置进行修饰的研究已有报道。如Carlos R.Pungitore课题组和Celina García课题组进行了梓醇部分硅醚化研究,Carlos E.Tonn课题组对梓醇进行了先硅醚化后酯化以及全酯化的探索,CarlosR.Pungitore课题组对梓醇结构进行了全酯化的探索。上海中医药大学张刘强等对6-位酯化的梓醇衍生物梓苷和胡黄连苷II进行结构修饰,得到一系列对8-羟基鸟嘌呤DNA糖基化酶1(OGG1)具有显著抑制活性的梓醇衍生物。
通过对已报道梓醇结构修饰的研究进展可知,前期对梓醇修饰主要集中在对梓醇的部分或全部硅醚化以及部分或全部酯化研究而对梓醇羟基定向引入药效团未见报道。对于梓醇类衍生物其结构变化主要梓苷的C6-位羟基,而对梓醇C10-位羟基结构修饰研究未有报道。
本发明的优点二,实验证明本发明所述的式(I)、式(II)和式(III)化合物或其水合物、药学上可接受的盐或药学上可接受的溶剂合物或所述的药物组合物对肿瘤细胞具有显著的抑制作用,在制备抗肿瘤药物上有着广阔的应用空间。

Claims (6)

1.一种梓醇衍生物,其特征在于:所述梓醇衍生物是对梓醇C10-位羟基结构修饰得到,具有以下所示化学结构或其药学上可接受的盐:
2.如权利要求1所述的梓醇衍生物,其特征在于:所述药学上可接受的盐为盐酸盐、氢溴酸盐、硝酸盐、硫酸盐、磷酸盐、甲酸盐、乙酸盐、丙酸盐、苯甲酸盐、马来酸盐、富马酸盐、琥珀酸盐、酒石酸盐、柠檬酸盐、甲基磺酸盐、乙基磺酸盐、芳基磺酸盐、苯磺酸盐或对甲苯磺酸盐。
3.如权利要求1-2任一所述的梓醇衍生物的制备方法,其特征在于,包括以下步骤:(1)化合物A在卤素单质或氢卤化物下发生反应,得到卤代物B;
(2)卤代物B与取代杂环反应,获得化合物C和D;
具体反应关系式如下:
所述为/>所述/>为/>所述化合物C为/> 所述化合物D是
4.一种药物组合物,其特征在于:所述药物组合物包括权利要求1中结构式表示的梓醇衍生物或其药学上可接受的盐,和任选的药学上可接受的赋形剂。
5.如权利要求4所述的药物组合物在制备治疗抗肿瘤药物中的应用。
6.如权利要求4所述的药物组合物在制备抑制食管癌细胞和胰腺癌细胞药物中的应用。
CN202110693529.6A 2021-05-24 2021-06-22 一种梓醇衍生物及其制备方法和应用 Active CN113527391B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2021105676627 2021-05-24
CN202110567662 2021-05-24

Publications (2)

Publication Number Publication Date
CN113527391A CN113527391A (zh) 2021-10-22
CN113527391B true CN113527391B (zh) 2024-02-06

Family

ID=78125691

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110693529.6A Active CN113527391B (zh) 2021-05-24 2021-06-22 一种梓醇衍生物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113527391B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113773356B (zh) * 2021-09-30 2024-02-02 河南中医药大学 一种胡黄连苷ii衍生物及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109734759A (zh) * 2019-01-10 2019-05-10 上海中医药大学 一种梓醇衍生物及其应用
KR20200129963A (ko) * 2019-05-10 2020-11-18 한국생명공학연구원 카탈폴 유도체 화합물을 포함하는 항암 보조제

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109734759A (zh) * 2019-01-10 2019-05-10 上海中医药大学 一种梓醇衍生物及其应用
KR20200129963A (ko) * 2019-05-10 2020-11-18 한국생명공학연구원 카탈폴 유도체 화합물을 포함하는 항암 보조제

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Fabrizio Dal Piaz等.A Chemical−Biological Study Reveals C9‑type Iridoids as Novel HeatShock Protein 90 (Hsp90) Inhibitors.Journal of Medicinal Chemistry.2013,第56卷(第4期),1583 - 1595. *
H.M. Sampath Kumar 等.Development of novel lipidated analogs of picroside as vaccine adjuvants: Acylated analogs of picroside-II elicit strong Th1 and Th2 response to ovalbumin in mice.Vaccine.2010,第28卷(第52期),8327–8337. *
孔媛芳 等.环烯醚萜类化合物的结构及构效关系研究进展.天然产物研究与开发.2021,第33卷(第7期),1236-1250. *

Also Published As

Publication number Publication date
CN113527391A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
JP5128812B2 (ja) ハルミン誘導体、これらの調製において使用する中間体、調製過程およびこれらの使用
JP5216083B2 (ja) アザインドール−インドールカップリング誘導体及びその調合と用途
Wu et al. Optimization of 2-(3-(arylalkyl amino carbonyl) phenyl)-3-(2-methoxyphenyl)-4-thiazolidinone derivatives as potent antitumor growth and metastasis agents
CN109134586B (zh) 雷公藤红素衍生物及其应用
CN113527391B (zh) 一种梓醇衍生物及其制备方法和应用
CN102584780A (zh) 一种蓝萼甲素衍生物及其制备方法和应用
Yan et al. Design, synthesis, and biological evaluation of novel diphenylamine derivatives as tubulin polymerization inhibitors targeting the colchicine binding site
Xiao et al. Synthesis, biological evaluation and anti-proliferative mechanism of fluorine-containing proguanil derivatives
Wu et al. Discovery of novel flavonoid-based CDK9 degraders for prostate cancer treatment via a PROTAC strategy
Kang et al. Discovery of a novel water-soluble, rapid-release triptolide prodrug with improved drug-like properties and high efficacy in human acute myeloid leukemia
CN102827124B (zh) 香豆素类衍生物及其药物组合物及用途
CN111196922B (zh) pH敏感型β-咔啉衍生物荧光探针在肿瘤荧光成像中的应用
CN107383015B (zh) 烷硫端基寡PEG修饰的氨基吡唑并[3,4-d]嘧啶衍生物及抗非小细胞肺癌的应用
CN113816971B (zh) DII-bb-DTT及其在制备抗结直肠癌药物中的应用
CN115160277A (zh) 芹菜素衍生物及其应用
CN110590778B (zh) 3,10二对甲氧基苯基6,12二氮杂四高立方烷类化合物及合成方法和药物组合物
CN114573459A (zh) β-榄香烯双胺基取代衍生物及其制备方法和应用
CN113444074B (zh) 一种具有EGFR和Wnt双重抑制作用的化合物及其制备方法和应用
Ling et al. Novel sulfonyl-substituted tetrandrine derivatives for colon cancer treatment by inducing mitochondrial apoptosis and inhibiting PI3K/AKT/mTOR pathway
CN108640965B (zh) 2-取代-18β-甘草次酸衍生物及其应用
CN106905275B (zh) 一种4-芳基吡喃衍生物及其制备和应用
CN101230015B (zh) 含酰胺取代基的取代桂皮酸衍生物及其肿瘤细胞毒性
Li et al. Synthesis, biological activity evaluation and mechanism of action of novel bis-isatin derivatives as potential anti-liver cancer agents
CN111393405A (zh) 一类含氟取代的苯并噻吩类化合物及其药物组合物及应用
CN104334571B (zh) 重楼皂苷i的酰化衍生物、及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant