CN113525509A - 一种铰接车辆转向控制方法及装置 - Google Patents

一种铰接车辆转向控制方法及装置 Download PDF

Info

Publication number
CN113525509A
CN113525509A CN202010290996.XA CN202010290996A CN113525509A CN 113525509 A CN113525509 A CN 113525509A CN 202010290996 A CN202010290996 A CN 202010290996A CN 113525509 A CN113525509 A CN 113525509A
Authority
CN
China
Prior art keywords
vehicle body
steering
radius
obstacle
articulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010290996.XA
Other languages
English (en)
Other versions
CN113525509B (zh
Inventor
王小娟
曹鹭萌
贾莉
郭建辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou Yutong Bus Co Ltd
Original Assignee
Zhengzhou Yutong Bus Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou Yutong Bus Co Ltd filed Critical Zhengzhou Yutong Bus Co Ltd
Priority to CN202010290996.XA priority Critical patent/CN113525509B/zh
Publication of CN113525509A publication Critical patent/CN113525509A/zh
Application granted granted Critical
Publication of CN113525509B publication Critical patent/CN113525509B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

本发明涉及一种铰接车辆转向控制方法及装置,属于智能驾驶控制技术领域。其中方法包括:获取前车体和后车体的铰接角、以及障碍物信息;确定一个转向坐标系;根据铰接角确定前车体的转向半径和后车体的转向半径;根据前车体的转向半径确定最小半径;根据后车体的转向半径确定最大半径,以坐标原点为圆心,根据最小半径和最大半径确定为目标区域;将障碍物信息转换到转向坐标系,从而定位在目标区域中的障碍物或障碍物部分,进而进行铰接车辆的转向控制。本发明兼顾了障碍物对于不在一条直线上行驶的前车体和后车体的影响,保证了目标区域划分的准确,进而引导铰接车辆做出正确的行为决策,保证铰接车辆转向的安全性。

Description

一种铰接车辆转向控制方法及装置
技术领域
本发明涉及一种铰接车辆转向控制方法及装置,属于智能驾驶控制技术领域。
背景技术
自动驾驶作为科技前沿领域,一直是国内外科技发展的热门选项,随着人工智能等技术的进步,自动驾驶汽车逐渐变为现实。环境感知作为自动驾驶的第一环节,利用传感器获取道路、车辆位置和障碍物等周围环境信息,并将这些信息提供给车载控制中心,使车辆更好地模拟人类驾驶员的感知能力,理解自身和周边的驾驶态势,做出正确的驾驶行为决策,实现车辆的自动驾驶。
在现有环境感知模块中,基于激光雷达的环境感知技术被普遍应用。利用激光雷达扫描周围环境得到大量点云数据,通过对点云数据的处理获取目标障碍物的位置、速度、形状等特征量,实现车辆与周围环境的信息交互,引导车辆做出正确的驾驶行为决策。然而在大量的点云数据中,有很多障碍物数据距离车辆较远,对车辆的行驶并不造成影响,因此为了提高运算速度,需要对车辆的目标区域进行划分,只挑出目标区域内的障碍物点云数据进行计算。
现有技术中对车辆目标区域的划分一般都是通过识别道路上的车道线或者其他边界信息,但是这种方法在无车道线或道路边界信息情况下,无法对障碍物信息进行有效过滤。为此,有人提出以车辆的车头为坐标原点,通过计算后划分出车辆的目标区域,进而对障碍物数据进行筛选,但是对于铰接车辆这种大型的车辆而言,在铰接车辆转向的情况下,铰接车辆前、后车体不在同一条直线,这种方法无法兼顾后车体,目标区域划分的误差较大,导致车辆出现判断失误,不能很好地满足车辆的行为决策需求。
发明内容
本申请的目的在于提供一种铰接车辆转向控制方法,用以解决现有目标区域划分方法不准确而导致车辆行为决策失误的问题;同时还提出一种铰接车辆转向控制装置,用以解决现有目标区域划分方法不准确而导致车辆行为决策失误的问题。
为实现上述目的,本申请提出了一种铰接车辆转向控制方法的技术方案,包括以下步骤:
1)铰接车辆转向时,获取前车体和后车体的铰接角、以及障碍物信息;所述障碍物信息为车辆坐标系下的全部障碍物信息;
2)确定一个转向坐标系,转向坐标系的坐标原点为前车体中心点横向延长线和后车体中心点横向延长线的交点;
3)根据铰接角确定前车体的转向半径和后车体的转向半径;
4)根据前车体的转向半径确定最小半径;根据后车体的转向半径确定最大半径,以所述坐标原点为圆心,将最小半径扫过的扇形区域和最大半径扫过的扇形区域之间的扇环区域确定为目标区域;
5)将所述障碍物信息转换到所述转向坐标系,从而定位在目标区域中的障碍物或障碍物部分,进而进行铰接车辆的转向控制。
另外,本申请还提出一种铰接车辆转向控制装置的技术方案,包括处理器、存储器以及存储在所述存储器中并可在处理器上运行的计算机程序,所述处理器在执行所述计算机程序时实现上述铰接车辆转向控制方法的技术方案。
本发明的铰接车辆转向控制方法及装置的技术方案的有益效果是:本发明在铰接车辆转向时,根据前车体中心点和后车体中心点建立前车体和后车体的统一坐标系,并将障碍物信息转化在该坐标系下,同时在该坐标系下进行障碍物目标区域的划分,兼顾了障碍物对于不在一条直线上行驶的前车体和后车体的影响,保证了目标区域划分的准确,进而引导铰接车辆做出正确的行为决策,保证铰接车辆转向的安全性。
进一步的,上述铰接车辆转向控制方法及装置中,为了提高转向控制的准确性,还包括以下步骤:计算目标区域中的障碍物或障碍物部分的边界点距离铰接车辆的弧长,找出弧长最小值对应的点,并且根据该点的弧长计算出该点距离铰接车辆的实际横向距离、实际纵向距离。
进一步的,上述铰接车辆转向控制方法及装置中,若实际纵向距离小于纵向距离下限时,控制铰接车辆停车制动;若实际横向距离大于横向距离下限、且实际纵向距离大于纵向距离下限、且满足本车道行驶时,控制铰接车辆避障返回;若实际横向距离大于横向距离下限、且实际纵向距离大于纵向距离下限、且不满足本车道行驶时,控制铰接车辆避障换道。
进一步的,上述铰接车辆转向控制方法及装置中,为了更加精确的得到前车体的转向半径和后车体的转向半径,车体的转向半径和后车体的转向半径的计算过程为:
R_f=(L_f*cosγ+L_r)/(sinγ);
R_r=(L_f+L_r*cosγ)/(sinγ);
其中,R_f为前车体的转向半径;R_r为后车体的转向半径;L_f为前车体中心点到铰接点的距离;L_r为后车体中心点到铰接点的距离;γ为铰接角。
进一步的,上述铰接车辆转向控制方法及装置中,为了准确的获得障碍物的信息,通过激光雷达获取障碍物信息。
进一步的,上述铰接车辆转向控制方法及装置中,为了简单、准确的确定最小半径,最小半径=前车体的转向半径-前车体宽度/2。
进一步的,上述铰接车辆转向控制方法及装置中,为了简单、准确的确定最大半径,最大半径=后车体的转向半径+后车体宽度/2。
附图说明
图1是本发明铰接车辆转向控制方法流程图;
图2是本发明铰接车辆基于转向坐标系的示意图;
图3是本发明目标区域示意图;
图4是本发明目标区域切割障碍物前的示意图;
图5是本发明目标区域切割障碍物后的示意图;
图6是本发明铰接车辆转向控制装置的结构示意图。
具体实施方式
铰接车辆转向控制方法实施例:
铰接车辆转向控制方法的主要构思在于,对于铰接车辆转向时,出现前车体和后车体不在一条直线上的情况,通过建立前车体和后车体统一的坐标系,可以准确的对整车的目标区域进行划分,提高了铰接车辆转向控制的安全性。
具体的,铰接车辆转向控制方法,如图1所示,包括以下步骤:
1)铰接车辆转向时,获取前车体和后车体的铰接角、以及障碍物信息。
本步骤中,障碍物信息为通过激光雷达扫描周围的环境得到点云数据,对点云数据进行处理得到障碍物的位置、速度、形状等信息,并且这里的信息为车辆坐标系下(这里的车辆坐标系可以为前车体坐标系,也可以为后车体坐标系,由铰接车辆设定而定)的激光雷达能扫描到的全部障碍物信息;
前车体和后车体的铰接角γ可以通过转角传感器获得,或者为了铰接角γ更加准确可以通过实时计算得出,铰接角γ的获取为现有技术,这里不做过多赘述。
2)在实施步骤1)的同时,确定一个转向坐标系。
转向坐标系即为前车体和后车体统一的坐标系,如图2所示,根据前车体的坐标系和后车体的坐标系得到,前车体的坐标系o-x-y以前车体中心点为坐标原点o,前车体纵向行驶的方向为y轴,前车体横向行驶的方向为x轴;后车体的坐标系以后车体中心点为坐标原点,后车体的纵向行驶方向为y轴,后车体的横向行驶方向为x轴;转向坐标系o1-x1-y1的坐标原点o1为前车体中心点横向延长线和后车体中心点横向延长线的交点;后车体中心点与坐标原点o1连线形成横坐标x1,与横坐标x1垂直且朝向铰接车辆行驶方向的形成纵坐标y1。
3)根据步骤1)中得到的铰接角确定前车体的转向半径和后车体的转向半径。
图2中,γ为前车体和后车体的铰接角,N为铰接点,L_f为前车体到铰接点的距离,L_r为后车体到铰接点的距离,γ_f为前车体航向角,γ_r为后车体航向角,通过几何关系计算出前车体的转向半径R_f和后车体的转向半径R_r:
R_f=(L_f*cosγ+L_r)/(sinγ);
R_r=(L_f+L_r*cosγ)/(sinγ);
同时可以计算得到前车体中心点在转向坐标系下的坐标(f_cx,f_cy)和后车体中心点在转向坐标系下的坐标(r_cx,r_cy):
f_cx=R_f*cos(γ);
f_cy=R_f*sin(γ);
r_cx=R_r;
r_cy=0。
4)根据步骤3)中得到的前车体的转向半径确定最小半径;根据步骤3)中得到的后车体的转向半径确定最大半径,根据最小半径和最大半径确定目标区域。
目标区域即为影响铰接车辆转向行驶的障碍物所在的区域,也可以说是一个范围,那么需要找出这个范围的边界以准确的划分出目标区域;
边界对应的即为铰接车辆转向时,以转向坐标系的坐标原点为原点的最小半径和最大半径扫过的区域边界,将最小半径扫过的扇形区域和最大半径扫过的扇形区域之间的扇环区域确定为目标区域。
最大半径和最小半径可以通过计算得出,如图3所示,图中W_f为前车体宽度,W_r为后车体宽度,则目标区域对应的最小半径R_in和最大半径R_out为:
R_in=R_f-W_f/2;
R_out=R_r+W_r/2;
实际计算过程中可根据实际场景通过最大半径、最小半径调整扇环区域的大小。
5)将步骤1)中获取的障碍物信息转换到转向坐标系,从而定位在目标区域中的障碍物或障碍物部分。
为了准确的进行后续的步骤,将障碍物信息进行坐标转换,从车辆坐标系转换为转向坐标系,通常是将障碍物的位置信息进行坐标转换,例如:车辆坐标系下障碍物的坐标为(X,Y),按照运动学关系转化为转向坐标系下的坐标为(x_o,y_o),转换关系如下:
当γ>0时,x_o=-X*sin(γ)-Y*cos(γ)+f_cx;
y_o=X*cos(γ)-Y*sin(γ)+f_cy;
当γ<0时,x_o=-(-X*sin(γ)+Y*cos(γ)+f_cx;
y_o=X*cos(γ)+Y*sin(γ)+f_cy。
为了对步骤1)中得到的全部障碍物信息进行过滤,定位目标区域中的障碍物和障碍物部分,将转向坐标系下的障碍物信息进行分割,分割的思路为,求出目标区域的曲线方程和障碍物的直线方程的交点,这些交点即为切割的分界线,具体如下:
利用上述得出的最小半径R_in和最大半径R_out得到目标区域以转向坐标的坐标原点为圆心的内圈和外圈的曲线方程;
x2+y2=R_in2
x2+y2=R_out2
内圈对应附图4、图5的A曲线,外圈对应附图4、图5的B曲线,图中obs1、obs2、obs3、obs4、obs5是激光雷达获取的不同形状的障碍物信息,每个障碍物对应有4个顶点,通过四个顶点信息求出障碍物的4条边的直线方程,两点确定一条直线,例如:点(x1,y1),点(x2,y2)确定的直线方程为:
(y-y2)/(y1-y2)=(x-x2)/(x1-x2);
求得内、外圈的曲线和直线方程的交点,将得到的交点替换目标区域外的点,进而定位目标区域中的障碍物和障碍物部分。例如:障碍物obs1在转向坐标系下四个顶点坐标为m1(-24,4),m2(-24,6),m3(-17,6),m4(-17,4),则目标区域中的障碍物obs1部分的顶点坐标为n1(-21.63,4),n2(-21.17,6),n3(-19.08,6),n4(-19.6,4)。
6)根据步骤5)中的目标区域中的障碍物或障碍物部分进行铰接车辆转向的控制。
从附图4和附图5看出,障碍物的形状各不相同并且有一定的大小,因此需要找出障碍物中离铰接车辆最近的点,以最近的点的位置信息为判断车辆转向控制的依据,具体为:
a.计算目标区域中的障碍物或障碍物部分的边界点距离铰接车辆的弧长,由于障碍物一般在铰接车辆的前方,那么距离铰接车辆的弧长也即距离前车体的弧长。以转向坐标系下的某个点的坐标为(x_o,y_o),半径为
Figure BDA0002450382880000051
为例说明弧长的求解过程,某个点(x_o,y_o)到与前车体的夹角θ=cos-1((x_o*R+y_o*0)/(R*R)),则该点到前车体的弧长D=R*θ;
b.得到所有边界点距离铰接车辆的弧长后,找出弧长最小值对应的点,并且根据该点的弧长计算出该点距离铰接车辆的实际横向距离Llat、实际纵向距离Llon
Llon=min(D)
Llat=Rmin(D)-Rveh
其中:Llat有正有负,为正表示障碍物最近点在车辆左侧,为负表示障碍物最近点在车辆右侧。
c.根据得到的实际横向距离Llat和实际纵向距离Llon进行铰接车辆转向的控制,铰接车辆转向的控制包括停车制动、避障换道和避障返回;
设定最小横向距离(即横向距离下限)为Lat_min,最小纵向距离(即纵向距离下限)为Lon_min,若Llon<Lon_min,控制铰接车辆停车制动;若Llon>Lonmin、且Llat>Lat_min、且满足在本车道行驶时,控制铰接车辆避障返回;若Llon>Lon_min、且Llat>Lat_min、且不满足本车道行驶时,控制铰接车辆避障换道。
上述实施例中,步骤1)中通过激光雷达获取障碍物的第一信息,作为其他实施方式,也可以采用超声波传感器、红外传感器获取障碍物的第一信息,本发明对此不做限制。
上述实施例中,对于步骤4)中目标区域的最小半径和最大半径是根据前车体宽度和后车体宽度计算得到的,可以更好的满足车辆的需求,作为其他实施方式,也可以根据需要进行设定,比如为了避免移动的障碍物对车辆控制的影响,将目标区域进行扩大等。
上述实施例中,步骤6)中为了控制的准确性,将障碍物信息距离铰接车辆最近的点找出,作为其他实施方式,在障碍物非常小的情况下,也可以任选障碍物的其中一个点作为车辆控制的依据,本发明对此不做限制。
本发明通过统一前车体和后车体的坐标系,解决了车辆不在一条直线上行驶时的准确的目标区域的划分,从而引导车辆做出正确的行为决策,提高车辆转向控制的安全性。
铰接车辆转向控制装置实施例:
铰接车辆转向控制装置,如图6所示,包括处理器、存储器以及存储在所述存储器中并可在处理器上运行的计算机程序,所述处理器在执行所述计算机程序时实现铰接车辆转向控制方法。
铰接车辆转向控制方法的具体实施过程以及效果在上述铰接车辆转向控制方法实施例中介绍,这里不做赘述。
也就是说,以上铰接车辆转向控制方法实施例中的方法应理解可由计算机程序指令实现方法的流程。可提供这些计算机程序指令到处理器(如通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备等),使得通过处理器执行这些指令产生用于实现上述方法流程所指定的功能。
本实施例所指的处理器是指微处理器MCU或可编程逻辑器件FPGA等的处理装置;
本实施例所指的存储器用于存储实现铰接车辆转向控制方法而形成的计算机程序指令,包括用于存储信息的物理装置,通常是将信息数字化后再以利用电、磁或者光学等方式的媒体加以存储。例如:利用电能方式存储信息的各式存储器,RAM、ROM等;利用磁能方式存储信息的的各式存储器,硬盘、软盘、磁带、磁芯存储器、磁泡存储器、U盘;利用光学方式存储信息的各式存储器,CD或DVD。当然,还有其他方式的存储器,例如量子存储器、石墨烯存储器等等。
通过上述存储有实现铰接车辆转向控制方法而形成的计算机程序指令的存储器、处理器构成的铰接车辆转向控制装置,在计算机中由处理器执行相应的程序指令来实现,计算机可使用windows操作系统、linux系统、或其他,例如使用android、iOS系统程序设计语言在智能终端实现,以及基于量子计算机的处理逻辑实现等。
作为其他实施方式,铰接车辆转向控制装置还可以包括其他的处理硬件,如数据库或多级缓存、GPU等,本发明并不对铰接车辆转向控制装置的结构做具体的限定。

Claims (8)

1.一种铰接车辆转向控制方法,其特征在于,包括以下步骤:
1)铰接车辆转向时,获取前车体和后车体的铰接角、以及障碍物信息;所述障碍物信息为车辆坐标系下的全部障碍物信息;
2)确定一个转向坐标系,转向坐标系的坐标原点为前车体中心点横向延长线和后车体中心点横向延长线的交点;
3)根据铰接角确定前车体的转向半径和后车体的转向半径;
4)根据前车体的转向半径确定最小半径;根据后车体的转向半径确定最大半径,以所述坐标原点为圆心,将最小半径扫过的扇形区域和最大半径扫过的扇形区域之间的扇环区域确定为目标区域;
5)将所述障碍物信息转换到所述转向坐标系,从而定位在目标区域中的障碍物或障碍物部分,进而进行铰接车辆的转向控制。
2.根据权利要求1所述的铰接车辆转向控制方法,其特征在于,还包括以下步骤:计算目标区域中的障碍物或障碍物部分的边界点距离铰接车辆的弧长,找出弧长最小值对应的点,并且根据该点的弧长计算出该点距离铰接车辆的实际横向距离、实际纵向距离。
3.根据权利要求2所述的铰接车辆转向控制方法,其特征在于,若实际纵向距离小于纵向距离下限时,控制铰接车辆停车制动;若实际横向距离大于横向距离下限、且实际纵向距离大于纵向距离下限、且满足本车道行驶时,控制铰接车辆避障返回;若实际横向距离大于横向距离下限、且实际纵向距离大于纵向距离下限、且不满足本车道行驶时,控制铰接车辆避障换道。
4.根据权利要求1所述的铰接车辆转向控制方法,其特征在于,前车体的转向半径和后车体的转向半径的计算过程为:
R_f=(L_f*cosγ+L_r)/(sinγ);
R_r=(L_f+L_r*cosγ)/(sinγ);
其中,R_f为前车体的转向半径;R_r为后车体的转向半径;L_f为前车体中心点到铰接点的距离;L_r为后车体中心点到铰接点的距离;γ为铰接角。
5.根据权利要求1所述的铰接车辆转向控制方法,其特征在于,通过激光雷达获取障碍物信息。
6.根据权利要求1或4所述的铰接车辆转向控制方法,其特征在于,最小半径=前车体的转向半径-前车体宽度/2。
7.根据权利要求1或4所述的铰接车辆转向控制方法,其特征在于,最大半径=后车体的转向半径+后车体宽度/2。
8.一种铰接车辆转向控制装置,其特征在于,包括处理器、存储器以及存储在所述存储器中并可在处理器上运行的计算机程序,所述处理器在执行所述计算机程序时实现如权利要求1-7中任一项所述的铰接车辆转向控制方法。
CN202010290996.XA 2020-04-14 2020-04-14 一种铰接车辆转向控制方法及装置 Active CN113525509B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010290996.XA CN113525509B (zh) 2020-04-14 2020-04-14 一种铰接车辆转向控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010290996.XA CN113525509B (zh) 2020-04-14 2020-04-14 一种铰接车辆转向控制方法及装置

Publications (2)

Publication Number Publication Date
CN113525509A true CN113525509A (zh) 2021-10-22
CN113525509B CN113525509B (zh) 2022-12-13

Family

ID=78119938

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010290996.XA Active CN113525509B (zh) 2020-04-14 2020-04-14 一种铰接车辆转向控制方法及装置

Country Status (1)

Country Link
CN (1) CN113525509B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114115260A (zh) * 2021-11-22 2022-03-01 河北优控新能源科技有限公司 自动驾驶铰接车的车辆模型搭建及路径跟踪控制方法
CN114265412A (zh) * 2021-12-29 2022-04-01 深圳创维数字技术有限公司 车辆控制方法、装置、设备及计算机可读存储介质
CN115014375A (zh) * 2022-06-06 2022-09-06 北京京深深向科技有限公司 碰撞检测方法、装置及电子设备、存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010025612A1 (de) * 2010-06-30 2011-03-10 Daimler Ag Verfahren und Vorrichtung zur Kollisionswarnung
US20140297135A1 (en) * 2011-11-18 2014-10-02 Atlas Copco Rock Drills Ab Method And System For Driving A Mining And/Or Construction Machine
DE102015121353A1 (de) * 2015-12-08 2017-06-08 Valeo Schalter Und Sensoren Gmbh Verfahren zum Erkennen einer möglichen Kollision zwischen einem Kraftfahrzeug und einem Objekt unter Berücksichtigung einer räumlichen Unsicherheit, Steuereinrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
CN107169468A (zh) * 2017-05-31 2017-09-15 北京京东尚科信息技术有限公司 用于控制车辆的方法和装置
US20170297619A1 (en) * 2016-04-13 2017-10-19 Ford Global Technologies, Llc Target-based trailer backup collision mitigation
CN108399394A (zh) * 2018-03-12 2018-08-14 海信集团有限公司 障碍物预警方法、装置及终端
CN108873890A (zh) * 2017-05-16 2018-11-23 通用汽车环球科技运作有限责任公司 轨迹规划方法
CN109572689A (zh) * 2017-09-25 2019-04-05 郑州宇通客车股份有限公司 一种基于雷达识别障碍物的整车控制方法及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010025612A1 (de) * 2010-06-30 2011-03-10 Daimler Ag Verfahren und Vorrichtung zur Kollisionswarnung
US20140297135A1 (en) * 2011-11-18 2014-10-02 Atlas Copco Rock Drills Ab Method And System For Driving A Mining And/Or Construction Machine
DE102015121353A1 (de) * 2015-12-08 2017-06-08 Valeo Schalter Und Sensoren Gmbh Verfahren zum Erkennen einer möglichen Kollision zwischen einem Kraftfahrzeug und einem Objekt unter Berücksichtigung einer räumlichen Unsicherheit, Steuereinrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
US20170297619A1 (en) * 2016-04-13 2017-10-19 Ford Global Technologies, Llc Target-based trailer backup collision mitigation
CN108873890A (zh) * 2017-05-16 2018-11-23 通用汽车环球科技运作有限责任公司 轨迹规划方法
CN107169468A (zh) * 2017-05-31 2017-09-15 北京京东尚科信息技术有限公司 用于控制车辆的方法和装置
CN109572689A (zh) * 2017-09-25 2019-04-05 郑州宇通客车股份有限公司 一种基于雷达识别障碍物的整车控制方法及系统
CN108399394A (zh) * 2018-03-12 2018-08-14 海信集团有限公司 障碍物预警方法、装置及终端

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
窦凤谦: "地下矿用铰接车路径跟踪与智能避障控制研究", 《中国博士学位论文全文数据库(电子期刊)》 *
赵京、孙玉麟: "铰接式车辆最小转弯半径及转弯通道宽度的影响因素", 《矿用汽车》 *
黄天勇、王伟、魏会生: "《计算机二级考试教程》", 29 February 2020, 上海交通大学出版社 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114115260A (zh) * 2021-11-22 2022-03-01 河北优控新能源科技有限公司 自动驾驶铰接车的车辆模型搭建及路径跟踪控制方法
CN114265412A (zh) * 2021-12-29 2022-04-01 深圳创维数字技术有限公司 车辆控制方法、装置、设备及计算机可读存储介质
CN114265412B (zh) * 2021-12-29 2023-10-24 深圳创维数字技术有限公司 车辆控制方法、装置、设备及计算机可读存储介质
CN115014375A (zh) * 2022-06-06 2022-09-06 北京京深深向科技有限公司 碰撞检测方法、装置及电子设备、存储介质
CN115014375B (zh) * 2022-06-06 2023-11-03 北京京深深向科技有限公司 碰撞检测方法、装置及电子设备、存储介质

Also Published As

Publication number Publication date
CN113525509B (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
CN110949374B (zh) 基于两段二阶贝塞尔曲线的自动平行泊车路径规划方法
CN109927715B (zh) 垂直泊车方法
CN113525509B (zh) 一种铰接车辆转向控制方法及装置
CN109270933B (zh) 基于圆锥曲线的无人驾驶避障方法、装置、设备及介质
CN111089594B (zh) 一种适用于多场景的自主泊车轨迹规划方法
WO2020135740A1 (zh) 自动驾驶车辆的换道方法、系统及车辆
US10839524B2 (en) Systems and methods for applying maps to improve object tracking, lane-assignment and classification
CN110806744A (zh) 使用分层选项马尔可夫决策过程的交叉路口自主驾驶决策
CN112327830B (zh) 车辆自动驾驶变道轨迹的规划方法及电子设备
CN112639849A (zh) 路径选择方法和路径选择装置
CN112141091B (zh) 解决车位偏移和定位偏移的二次泊车方法、系统及车辆
CN111016886B (zh) 一种基于b样条理论的自动泊车路径规划方法
CN113267199A (zh) 行驶轨迹规划方法及装置
CN111795699B (zh) 无人车的路径规划方法、装置和计算机可读存储介质
CN110789530B (zh) 一种四轮独立转向-独立驱动车辆轨迹跟踪方法和系统
CN111121777A (zh) 无人驾驶设备轨迹规划方法、装置、电子设备和存储介质
CN111591288B (zh) 基于距离变换图的碰撞检测方法及装置
CN113619574A (zh) 一种车辆避让方法、装置、计算机设备和存储介质
US20220266903A1 (en) Vehicle control method, vehicle control system, and vehicle
CN110502004A (zh) 一种面向智能车辆激光雷达数据处理的行驶区域重要性权值分布建模方法
CN115230729A (zh) 一种自动驾驶避障方法及系统、存储介质
CN114185337A (zh) 一种车辆、车辆预碰撞检测方法及装置
CN115542899A (zh) 车辆路径跟踪的方法、装置、车辆、电子设备及介质
CN116331264A (zh) 一种未知障碍物分布的避障路径鲁棒规划方法及系统
CN112660147A (zh) 控制车辆调头的方法、装置、设备和存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: No. 6, Yutong Road, Guancheng Hui District, Zhengzhou, Henan 450061

Applicant after: Yutong Bus Co.,Ltd.

Address before: No.1, Shibali Heyu Road, Guancheng Hui District, Zhengzhou City, Henan Province

Applicant before: ZHENGZHOU YUTONG BUS Co.,Ltd.

GR01 Patent grant
GR01 Patent grant