CN113521786B - 烷基化反应产物热耦合与热泵组合分离工艺及分离装置 - Google Patents

烷基化反应产物热耦合与热泵组合分离工艺及分离装置 Download PDF

Info

Publication number
CN113521786B
CN113521786B CN202110970436.3A CN202110970436A CN113521786B CN 113521786 B CN113521786 B CN 113521786B CN 202110970436 A CN202110970436 A CN 202110970436A CN 113521786 B CN113521786 B CN 113521786B
Authority
CN
China
Prior art keywords
tower
partition
reboiler
partition plate
rectifying tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110970436.3A
Other languages
English (en)
Other versions
CN113521786A (zh
Inventor
张耀昌
王二强
王洪彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Engineering Group Co Ltd
Original Assignee
China Petroleum and Chemical Corp
Sinopec Engineering Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Engineering Group Co Ltd filed Critical China Petroleum and Chemical Corp
Priority to CN202210964032.8A priority Critical patent/CN115317945B/zh
Priority to CN202110970436.3A priority patent/CN113521786B/zh
Publication of CN113521786A publication Critical patent/CN113521786A/zh
Application granted granted Critical
Publication of CN113521786B publication Critical patent/CN113521786B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/141Fractional distillation or use of a fractionation or rectification column where at least one distillation column contains at least one dividing wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/32Other features of fractionating columns ; Constructional details of fractionating columns not provided for in groups B01D3/16 - B01D3/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/32Other features of fractionating columns ; Constructional details of fractionating columns not provided for in groups B01D3/16 - B01D3/30
    • B01D3/322Reboiler specifications
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

本发明公开了一种烷基化反应产物热耦合与热泵组合分离工艺及分离装置,采用热耦合技术与热泵精馏技术相结合,实现烷基化反应产物的分离。该分离工艺通过调整分离顺序,实现了两种技术的完美结合。利用该分离工艺,在得到与现有流程相同的分离指标时,可以极大降低整个分离过程的能耗与操作费用,具有显著的实用性与技术经济性。在公用工程条件具备的情况下,增加中间再沸器,采用低品质的加热介质,可以进一步的降低操作费用。

Description

烷基化反应产物热耦合与热泵组合分离工艺及分离装置
技术领域
本发明涉及石油化工技术领域,具体而言,涉及一种烷基化反应产物热耦合与热泵组合分离工艺及分离装置。
背景技术
在石油炼制过程中,碳四烷基化是炼厂气加工的重要工艺过程,主要用于生产高辛烷值汽油调和组分。碳四烷基化装置是指在催化剂作用下,异丁烷和丁烯(或丙烯、丁烯、戊烯的混合物)发生反应,生成以异辛烷为主的烷基化油的工业设施。烷基化油具有辛烷值高、抗爆性好、蒸气压低、含硫低、不含烯烃和芳烃等特点,是理想的清洁汽油高辛烷值调和组分。
目前,国内烷基化油生产工艺多采用液体酸催化工艺,即以低碳烯烃(包括1-丁烯、2-丁烯、异丁烯等)和异丁烷为原料,在氢氟酸或浓硫酸催化下反应,脱酸后得到的烷基化产物中除了含有烷基化油产品外,还包括大量未反应的异丁烷和正丁烷,需对烷基化产物进行脱正丁烷和异丁烷处理,异丁烷作为反应原料循环使用,以增大反应体系的烷烯比,同时避免正丁烷在反应系统的累积。
硫酸烷基化是各种碳四烷基化技术中出现最早且至今仍在广泛使用的技术。硫酸烷基化技术使用的硫酸在安全性方面优于氢氟酸,且废酸问题得到了妥善解决,进入21世纪,随着中国汽油质量升级加快,对高辛烷值汽油调和组分的需求快速增长,因此近年来硫酸烷基化装置数量和加工能力得到快速发展。
硫酸烷基化装置主要包括五个单元:原料预处理单元、烷基化反应单元、压缩制冷单元、产品分馏单元以及化学处理单元。硫酸烷基化装置目前存在的主要问题之一是能耗较高,每吨原料耗能约138.2kg标油,其中分馏部分能耗约占装置总能耗的55%。
硫酸烷基化装置产品分馏单元是由两个常规精馏塔构成的直接序列流程,用以分离烷基化反应产物。从精馏塔T1塔顶首先得到循环用异丁烷,塔釜产品靠两塔压力差进入精馏塔T2,塔顶得到合格的正丁烷产品,塔底得到合格的烷基化油产品。两塔的塔釜温度均在100℃以上,其能耗主要来自两台塔重沸器所消耗的1.0MPa蒸汽,以20万吨/年的硫酸烷基化装置为例,两个分馏塔每小时消耗1.0MPa蒸汽25吨左右。
热耦精馏是二十世纪中期提出的主要用于三元混合物分离的一种复杂蒸馏技术。热耦合精馏塔在热力学上是最理想的系统结构,实现了热量的直接耦合,可以较大幅度提高热力学效率。隔板塔(DWC)属于热耦精馏的一种特殊形式,就是在常规精馏塔内竖立一块垂直的隔板,将常规精馏塔左右两个分开,在一个塔壳内实现两个常规精馏塔所起的作用。与常规精馏塔相比,能耗降低、节省投资、减少占地,技术优势非常明显。有基于完全热耦合的隔板精馏塔(中间隔板)和基于部分热耦合的隔板式侧线精馏塔(上隔板)、隔板式侧线提馏塔(下隔板)三种形式。
热泵(Heat Pump)是一种将低位热源的热能转移到高位热源的装置,也是全世界倍受关注的新能源技术。热泵精馏是将塔顶蒸气经压缩机绝热压缩后升温,重新作为再沸器的热源,回收塔顶蒸汽的冷凝潜热,使冷流体部分汽化,而压缩气体本身冷凝成液体;冷凝液经节流阀后一部分作为塔顶馏出液抽出,另一部分返回塔项作为回流液。除开工阶段外,可基本上不向塔底再沸器提供额外的热量,因而热泵精馏是一种良好的节能技术。热泵精馏具有一定的应用范围,需要根据精馏塔工艺要求,通过准确的经济评比决定是否使用热泵精馏。
中国专利CN205170706U公开的一种烷基化产物分离装置存在流程复杂、设备成本高、占地面积大等缺点。中国专利CN206521436U、CN208287526U公开的烷基化产物分离系统,其主要设备精馏塔中部装有竖直挡板,将精馏塔分成了公共精馏段、公共提馏段、预分馏段与侧线采出段四个部分,适合度存在问题,节能效果有限,且塔釜再沸器加热介质需要全部采用低压蒸汽等高品质热源,操作费用高。
鉴于此,特提出本发明。
发明内容
本发明的目的是为了克服上述现有技术存在的缺陷而提供一种烷基化反应产物热耦合与热泵组合分离工艺及分离装置。
本发明提供一种分离烷基化反应产物的热耦合与热泵组合分离工艺,该分离工艺采用一个下隔板精馏塔的流程。具体流程如下:
烷基化反应产物从隔板精馏塔的隔板左侧进料,隔板左侧塔底再沸器产生的上升蒸汽与隔板右侧塔底再沸器产生的上升蒸汽均进入隔板上方的公共精馏段,与塔顶回流液进行接触、传质传热进行分离,塔顶得到合格的循环用异丁烷产品;回流液到达隔板上方后,在隔板两侧按一定比例进行分配,隔板左侧的上升气相与分配来的回流液进行接触,传质传热进行分离,在隔板左侧的塔底得到合格的烷基化油产品;隔板右侧的上升气相与分配来的回流液进行接触、传质传热进行分离,在隔板右侧的塔底得到合格的正丁烷产品。采用蒸汽压缩机将隔板精馏塔塔顶采出的部分蒸汽增压提高温度,增压升温后的塔顶蒸汽经隔板右侧塔底再沸器与隔板右侧塔釜液相换热后全部液化,再经过调节阀(或其它减压设备)减压降温、部分汽化,然后与未增压升温的塔顶气相混合,经过冷凝器冷凝全部变为液相,一部分作为回流液返回塔内,一部分作为循环用异丁烷采出。
在具备热媒水或凝结水的情况下,隔板左侧进料口下方提馏段设置中间再沸器。
本发明是这样实现的:
本发明提供一种烷基化反应产物的热耦合与热泵组合的分离装置,包括隔板精馏塔、冷凝器、蒸汽压缩机、调节阀和第一再沸器、第二再沸器,隔板精馏塔内中下部设置一块垂直的隔板,将隔板精馏塔的塔内部分为隔板段I、隔板段II和公共精馏段III三个工作段,隔板段I侧设置原料进料口,隔板精馏塔的隔板段I的塔底出料口与烷基化油出料管线相连接,第一再沸器液相进口与隔板精馏塔的隔板段I的塔釜相连接,第一再沸器出口与隔板精馏塔的隔板段I的塔身相连接;隔板段II的塔底出料口与正丁烷出料管线相连接,隔板精馏塔的公共精馏段III的塔顶蒸汽出口管线一分为二,一路与蒸汽压缩机入口相连,蒸汽压缩机出口与隔板精馏塔的隔板段Ⅱ塔底的第二再沸器热源入口相连,第二再沸器热源出口与调节阀的入口相连,调节阀出口管线与自隔板精馏塔的公共精馏段III的塔顶蒸汽出口管线的另一路汇合后与冷凝器入口相连,冷凝器出口管线一分为二,一路连接至隔板精馏塔塔顶的回流口,另一路作为循环用异丁烷出料管线。第二再沸器液相进口与隔板段II的塔釜通过管线连接,第二再沸器出口与隔板段II的塔身相连接,第二精馏塔塔底的液相物料出料口与正丁烷出料管线相连接。
作为本发明优选方式,该分离装置还可以包括第三再沸器,第三再沸器位于所述隔板精馏塔的隔板段I的进料口下方,第三再沸器具有进料口和出料口,进料口用于将隔板精馏塔隔板左侧塔中的液相物料输送至第三再沸器中,出料口用于将汽液混合物料从第三再沸器中输送回隔板精馏塔隔板左侧塔中。
本发明具有以下有益效果:
本发明提供一种烷基化反应产物的热耦合与热泵组合分离工艺,该分离工艺采用一个下隔板精馏塔的流程用于实现硫酸烷基化反应产物的分离。采用一个下隔板精馏塔取代原流程中的两个常规精馏塔,缩短了流程。
本发明所提到的分离方法充分利用了热偶合技术与热泵技术,利用本发明提出的分离工艺方法,在得到与现有流程相同的分离指标的同时,可以极大降低整个分离过程的能耗,极大节省装置操作费用。以实施例进行对比,热负荷可以降低36~40%,冷负荷可以降低50%以上。
在条件具备的情况下,采用本发明优选方式所提到的隔板左侧中间再沸器,加热介质可用低品质热源,进一步降低隔板左侧塔底高品质热源的消耗量,进一步降低操作费用。本发明具有显著的实用性以及技术经济性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明装置的主要设备和管线,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明实施例1采用热偶合与热泵组合分离工艺分离烷基化油,主要分离设备采用下隔板精馏塔,不设置中间再沸器的分离装置的示意图;
图2为本发明实施例2采用热偶合与热泵组合分离工艺分离烷基化油,主要分离设备采用下隔板精馏塔,设置中间再沸器的分离装置的示意图;
图3为对比例1中硫酸烷基化分馏单元分离烷基化油的工艺流程示意图;
附图编号:隔板精馏塔-T1,冷凝器-E1,第一再沸器- H1,第二再沸器-H2,第三再沸器-H3,蒸汽压缩机-C1、调节阀-V1。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行较为清楚、完整地描述。显然,所描述的实施例是本发明的部分实施例,而不是全部。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。此外,术语“水平”、“竖直”等术语并不表示要求部件绝对水平或悬垂,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以视具体情况理解上述术语在本发明中的具体含义。
本发明提供了一种热耦合与热泵组合分离工艺,用于实现硫酸烷基化反应产物的分离。本发明的具体实施方式是这样的:
实施例采用本发明提供的图1所示的一种烷基化反应产物的热耦合与热泵组合的分离装置。该分离装置包括隔板精馏塔T1、冷凝器E1、蒸汽压缩机C1、调节阀V1和第一再沸器H1、第二再沸器H2。隔板精馏塔T1内中下部设置一块竖直的隔板,将隔板精馏塔T1的塔内部分为隔板段I、隔板段II和公共精馏段III三个工作段,隔板段I侧设置原料进料口,隔板精馏塔T1的隔板I的塔底出料口与烷基化油出料管线相连接,第一再沸器H1液相进口与隔板精馏塔T1的隔板段I的塔釜相连接,第一再沸器H1出口与隔板精馏塔T1的隔板段I的塔身相连接;隔板段II的塔底出料口与正丁烷出料管线相连接,隔板精馏塔T1的公共精馏段III的塔顶蒸汽出口管线一分为二,一路与蒸汽压缩机C1入口相连,蒸汽压缩机C1出口与隔板精馏塔T1的隔板段II塔底的第二再沸器H2热源入口相连,第二再沸器H2热源出口与调节阀V1的入口相连,调节阀V1出口管线与自隔板精馏塔T1的公共精馏段III的塔顶蒸汽出口管线的另一路汇合后与冷凝器E1入口相连,冷凝器E1出口管线一分为二,一路连接至隔板精馏塔T1塔顶的回流口,另一路作为循环用异丁烷出料管线。第二再沸器H2液相进口与隔板段II的塔釜通过管线连接,第二再沸器H2出口与隔板段II的塔身相连接,第二精馏塔T2塔底的液相物料出料口与正丁烷出料管线相连接。
作为本发明优选的实施方式,在公用工程条件具备的情况下,该分离装置还可以包括第三再沸器H3,参见图2。第三再沸器H3位于所述隔板精馏塔的隔板段I的进料口下方,第三再沸器H3具有进料口和出料口,进料口用于将物料从所述隔板精馏塔隔板左侧的塔板中将物料输送至第三再沸器H3中,出料口用于将物料从第三再沸器H3中输送回所述隔板精馏塔隔板左侧的塔板中。
具体实施时,隔板精馏塔T1可以用板式塔,也可以用填料塔,还可以是两者的任意组合。隔板精馏塔T1的隔板段I和隔板段II的理论塔板数均为20-60,公共精馏段III的理论塔板数为8-40,其中,隔板段I和隔板段II的塔板数可以相同,也可以不同。隔板精馏塔T1中的隔板可以中心设置,也可以偏心设置,根据原料组成及分离指标计算确定。
具体实施时,隔板精馏塔T1的塔顶温度为40-60℃,塔顶压力为0.42-0.6MPa(g),隔板左侧塔底温度高于80℃,隔板右侧塔底温度为50-70℃。
具体实施时,第一再沸器H1的加热介质可以用低压蒸汽、导热油等,第二再沸器H2、第三再沸器H3的加热介质可以用低压蒸汽、导热油、凝结水、热媒水等,优选热媒水与凝结水等低温廉价加热介质。
具体实施时,当进料组成中含有轻组分时,塔顶可以采出不凝组分,异丁烷出料口位于隔板精馏塔T1塔顶向下2-10块塔板的位置。
以下结合实施例对本发明的特征和性能作进一步的详细描述。
以某炼厂20万吨/年的烷基化装置为例,用实施例和对比例分离其硫酸烷基化反应产物,其原料组成如下表1所示,要求循环用异丁烷摩尔分数达到90%,正丁烷产品摩尔分数达到99%,烷基化油产品中正丁烷含量不超过500ppm。
表1
成分 质量分数
0.0000
丙烷 0.0032
异丁烷 0.4811
正丁烷 0.1515
异戊烷 0.0000
正戊烷 0.0196
正己烷 0.0136
2,2-二甲基戊烷 0.0129
正庚烷 0.0172
2,4-二甲基己烷 0.0393
2,2,4-三甲基戊烷 0.2617
实施例1
本例采用热耦合与热泵组合分离工艺进行分离,采用图1所示工艺流程。第一再沸器H1的加热介质采用1.0MPa饱和蒸汽,价格以200元/吨计。冷凝器E1的冷却介质用循环冷却水,价格以0.2元/吨计。入口温度30℃,出口温度40℃。
硫酸烷基化反应产物原料在泡点状态下,以65800kg/h的质量流率从隔板左侧适当位置进料,采用合适的塔结构与优化操作条件,产品质量达标。计算结果如下:
第一再沸器H1的加热量为6944.22 kw,耗用蒸汽量为11.36吨/时。
压缩机C1功耗为1020.39kw,折合热能能耗2550.98kw,折合蒸汽耗量为4.17吨/时。
冷凝器E1的能耗为-6445.99kw,冷却水消耗量为556.44吨/时。
实施例2
本例采用热耦合与热泵组合分离工艺的优选方式进行分离,,采用图2所示工艺流程。第三再沸器H3的加热介质采用凝结水,价格以10元/吨计,入口温度110℃,出口温度70℃。产品质量达标后计算结果如下:
第一再沸器H1的加热量为5443.95kw,蒸汽耗量为8.9吨/时,第三再沸器H3的加热量为1500kw,消耗凝结水32.15吨/时。
压缩机C1电耗为1020.39kw,折合蒸汽耗量为4.17吨/时。
冷凝器E1的能耗为-6445.99kw,冷却水耗量为556.44吨/时。
对比例1
采用现有常规精馏塔直接序列方式分离的工艺流程,整个工艺包括两个常规精馏塔,如图3所示。
硫酸烷基化反应产物原料在泡点状态下,以65800kg/h的质量流率从适当位置进入精馏塔T1,塔顶馏出物为循环用异丁烷,其摩尔分数为90%。精馏塔T1的塔釜馏出物靠自压进入精馏塔T2,塔顶馏出物为正丁烷产品,其摩尔分数为99%;塔釜馏出物为烷基化油产品,正丁烷含量为500ppm。流程充分优化后计算结果如下:
精馏塔T1的塔釜加热量为12819.92kw,耗用蒸汽量为20.59吨/时,精馏塔T2的塔釜加热量为2131.46kw,耗用蒸汽量为3.42吨/时。
精馏塔T1的塔顶冷凝器能耗为-12369.57kw,循环冷却水耗量为1067.79吨/时。精馏塔T2的塔顶冷凝器能耗为-1703.92kw,循环冷却水耗量为146.91吨/时。
将实施例1和对比例1的能耗结果进行对比,如表2所示:
表2
对比项 对比例1 实施例1 能量节省值 能量节省比例
热负荷(kw) 14951.38 9495.19 5456.19 36.49%
冷负荷(kw) -14073.49 -6445.99 -7627.50 54.20%
通过上表可以看出:采用本发明提供的热耦与热泵组合的新型分离提纯工艺进行分离的实施例1与采用现有常规精馏塔直接序列方式分离的工艺进行分离的对比例1相比,极大节省了能耗。核算到整个装置,整个硫酸烷基化装置能耗降低约20%,具有极佳的节能效果。此结果为压缩机效率为0.7的计算值,若是压缩机效率提高,节能效果可达到40%以上。
将实施例1和对比例1的操作费用进行对比,如表3所示:
表3
公共工程类别 对比例1 实施例1 节省值 价格(元/吨) 节省费用(元/h)
1.0MPa蒸汽耗量(T/H) 24.01 15.53 8.48 200.00 1696.00
冷却水耗量(T/H) 1214.88 556.44 658.44 0.20 131.69
合计 1827.69
通过上表3可以看出:采用本发明提供的热耦与热泵组合的新型分离提纯工艺进行分离的实施例1与采用现有常规精馏塔直接序列方式分离的工艺进行分离的对比例1相比,极大节省了操作费用。
将实施例2和对比例1的节能量换算成操作费用来对比,如表4所示:
表4
公共工程类别 对比例1 实施例2 节省值 价格(元/吨) 节省费用(元/h)
1.0MPa蒸汽耗量(T/H) 24.01 13.08 10.93 200.00 2186
凝结水耗量(T/H) 0 32.15 -32.15 10 -321.5
冷却水耗量(T/H) 1214.88 556.44 658.44 0.20 131.69
合计 1996.19
通过上表4可以看出:采用本发明提供的热耦与热泵组合的新型分离工艺的优选实施型式,极大节省了操作费用。通过表3与表4对比可以看出,增加中间再沸器,采用凝结水作为加热介质,进一步节省了操作费用。
将实施例1和对比例1进行对比,原有工艺流程的两塔可以变为一个塔,塔高基本没有变化,塔径略有增加,节省了一个塔顶冷凝器、塔顶回流罐、塔顶回流泵两台。新型工艺增加一台1100kw的压缩机、节流阀等。装置投资稍有增加,以实施例1中的规模来看,粗估增加投资约为600万元。以节省的操作费用来计,一个季度左右即可收回投资。
与现有技术相比,本发明实施例具有以下的有益效果:
(1)、本发明的新型工艺可以达到现有工艺同样的分离效果。
(2)、本发明的新型工艺极大节省了能量消耗和操作费用。
(3)、本发明的新型工艺增加的投资成本可以很快收回,实用性非常好。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种烷基化反应产物的热耦合与热泵组合分离工艺,其特征在于,采用热耦合技术与热泵精馏技术组合,公用工程条件具备情况下,辅以中间再沸器,实现烷基化反应产物的分离;该工艺流程包括以下步骤:烷基化反应产物从隔板精馏塔的隔板左侧进料,在隔板左侧的塔底得到合格的烷基化油产品,在隔板右侧的塔底得到合格的正丁烷产品,塔顶得到合格的循环用异丁烷产品;隔板两侧的上升气相汇于隔板上方的公共精馏区域,隔板上方的回流液在隔板两侧按一定比例进行分配;利用蒸汽压缩机将隔板精馏塔塔顶采出的部分蒸汽增压升温,作为隔板右侧塔底再沸器的热源,与隔板右侧塔釜液相换热后,再经过减压降温;然后与未增压升温的塔顶气相混合后全部冷凝变为液相,一部分作为回流液返回塔内,一部分作为循环用异丁烷采出。
2.根据权利要求1所述的分离工艺,其特征在于,所述隔板精馏塔为下隔板精馏塔,即在精馏塔内中下部设置一块竖直隔板,将塔内部分为隔板左侧、隔板右侧和隔板上方三个工作段;隔板左右两侧塔底均设有再沸器,隔板左侧塔底再沸器产生的上升蒸汽与隔板右侧塔底再沸器产生的上升蒸汽均进入隔板上方的公共精馏段;回流液到达隔板上方后,在隔板两侧按一定比例进行分配。
3.根据权利要求1所述的分离工艺,其特征在于,利用蒸汽压缩机将隔板精馏塔塔顶采出的部分蒸汽进行增压,增压后的气相作为隔板右侧塔底再沸器的热源,充分利用塔顶蒸汽的冷凝潜热。
4.根据权利要求1所述 的分离工艺,其特征在于,在具备热媒水或凝结水的情况下,隔板左侧进料口下方提馏段设置中间再沸器。
5.一种用于烷基化反应产物的热耦合与热泵组合的分离装置,其特征在于,包括隔板精馏塔(T1)、冷凝器(E1)、蒸汽压缩机(C1)、调节阀(V1)和第一再沸器(H1)、第二再沸器(H2),隔板精馏塔(T1)内中下部设置一块竖直的隔板,将隔板精馏塔(T1)的塔内部分为隔板段I、隔板段II和公共精馏段III三个工作段,隔板段I侧设置原料进料口,隔板精馏塔(T1)的隔板段I的塔底出料口与烷基化油出料管线相连接,第一再沸器(H1)液相进口与隔板精馏塔(T1)的隔板段I的塔釜相连接,第一再沸器(H1)出口与隔板精馏塔(T1)的隔板段I的塔身相连接;隔板段II的塔底出料口与正丁烷出料管线相连接;隔板精馏塔(T1)的公共精馏段III的塔顶蒸汽出口管线一分为二,一路与蒸汽压缩机(C1)入口相连,蒸汽压缩机(C1)出口与隔板精馏塔(T1)的隔板段II塔底的第二再沸器(H2)热源入口相连,第二再沸器(H2)热源出口与调节阀(V1)的入口相连,调节阀(V1)出口管线与自隔板精馏塔(T1)的公共精馏段III的塔顶蒸汽出口管线的另一路汇合后与冷凝器(E1)入口相连,冷凝器(E1)出口管线一分为二,一路连接至隔板精馏塔(T1)塔顶的回流口,另一路作为循环用异丁烷出料管线,第二再沸器(H2)液相进口与隔板段II的塔釜通过管线连接,第二再沸器(H2)出口与隔板段II的塔身相连接,第二精馏塔(T2)塔底的液相物料出料口与正丁烷出料管线相连接;
所述隔板精馏塔(T1)中的隔板为中心设置或偏心设置;所述隔板精馏塔(T1)的隔板段I和隔板段II的理论塔板数均为20-60,公共精馏段III的理论塔板数为8-40,所述隔板段I和所述隔板段II的塔板数相同或不同;所述隔板精馏塔(T1)为板式塔、填料塔或者两者的任意组合,当进料组成中含有轻组分时,塔顶采出不凝组分,异丁烷出料口位于隔板精馏塔T1塔顶向下2-10块塔板的位置。
6.根据权利要求5所述的分离装置,其特征在于,作为优选方式之一,所述分离装置还包括第三再沸器(H3);第三再沸器(H3)位于所述隔板精馏塔(T1)的隔板段I的进料口下方,第三再沸器(H3)具有进料口和出料口,进料口用于从所述隔板精馏塔(T1)隔板左侧的塔中将物料输送至第三再沸器(H3)中,出料口用于将汽液混合物料从第三再沸器(H3)中输送回所述隔板精馏塔(T1)隔板左侧的塔中。
7.根据权利要求1所述的分离工艺,当采用权利要求5或6的分离装置分离烷基化反应产物时,其特征在于,所述隔板精馏塔(T1)的塔顶温度为40-60℃,塔顶压力为0.42-0.6MPa,隔板左侧塔底温度高于80℃,隔板右侧塔底温度为50-70℃。
CN202110970436.3A 2021-08-23 2021-08-23 烷基化反应产物热耦合与热泵组合分离工艺及分离装置 Active CN113521786B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210964032.8A CN115317945B (zh) 2021-08-23 2021-08-23 烷基化反应产物两塔热耦合与热泵组合分离工艺及分离装置
CN202110970436.3A CN113521786B (zh) 2021-08-23 2021-08-23 烷基化反应产物热耦合与热泵组合分离工艺及分离装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110970436.3A CN113521786B (zh) 2021-08-23 2021-08-23 烷基化反应产物热耦合与热泵组合分离工艺及分离装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202210964032.8A Division CN115317945B (zh) 2021-08-23 2021-08-23 烷基化反应产物两塔热耦合与热泵组合分离工艺及分离装置

Publications (2)

Publication Number Publication Date
CN113521786A CN113521786A (zh) 2021-10-22
CN113521786B true CN113521786B (zh) 2023-03-24

Family

ID=78122822

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210964032.8A Active CN115317945B (zh) 2021-08-23 2021-08-23 烷基化反应产物两塔热耦合与热泵组合分离工艺及分离装置
CN202110970436.3A Active CN113521786B (zh) 2021-08-23 2021-08-23 烷基化反应产物热耦合与热泵组合分离工艺及分离装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202210964032.8A Active CN115317945B (zh) 2021-08-23 2021-08-23 烷基化反应产物两塔热耦合与热泵组合分离工艺及分离装置

Country Status (1)

Country Link
CN (2) CN115317945B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115105851B (zh) * 2022-07-15 2024-04-16 中国石油化工股份有限公司 一种硫酸烷基化反应产物的分离工艺及分离装置
CN115138091A (zh) * 2022-07-27 2022-10-04 中国石油化工股份有限公司 一种烷基化反应产物的节能分离工艺及装置
CN115121000A (zh) * 2022-07-27 2022-09-30 中国石油化工股份有限公司 一种硫酸烷基化反应产物的节能分离工艺及装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5806339A (en) * 1996-04-05 1998-09-15 Manley; David B. Multiple effect and distributive separation of isobutane and normal butane
DE19805716A1 (de) * 1998-02-12 1999-08-19 Basf Ag Verfahren zur Herstellung von Propen und gegebenenfalls 1-Buten
US6479720B1 (en) * 1999-12-29 2002-11-12 Uop Llc Alkylaromatic process using efficient prefractionation
CN102030335B (zh) * 2010-11-16 2013-06-12 天津大学 双塔热耦反应精馏除去氯硅烷体系中硼杂质的方法和装置
CN205170706U (zh) * 2015-08-21 2016-04-20 惠州宇新化工有限责任公司 一种烷基化产物分离装置
CN105363235B (zh) * 2015-12-07 2017-07-04 中建安装工程有限公司 一种脱除mtbe中硫化物的热泵精馏装置及方法
CN205635418U (zh) * 2016-05-27 2016-10-12 天津海成能源工程技术有限公司 一种节能的丁烯-1分离装置
CN107814679A (zh) * 2016-09-13 2018-03-20 河北新欣园能源股份有限公司 用于碳四分离的热泵精馏工艺
CN207627960U (zh) * 2016-12-21 2018-07-20 中国石油化工股份有限公司 烷基化反应产物分离装置及烷基化反应装置
CN106748758A (zh) * 2016-12-21 2017-05-31 常州大学 热泵分隔壁反应精馏塔制备乙酸异丙酯的装置
CN206858467U (zh) * 2017-06-14 2018-01-09 天津如有科技有限公司 一种碳4热泵精馏装置
CN111170824A (zh) * 2020-01-13 2020-05-19 安徽实华工程技术股份有限公司 一种异丁烷分离时的精馏工艺
CN111187140A (zh) * 2020-01-14 2020-05-22 石化盈科信息技术有限责任公司 一种用于脱异丁烷塔的节能方法及装置

Also Published As

Publication number Publication date
CN115317945B (zh) 2024-04-19
CN113521786A (zh) 2021-10-22
CN115317945A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
CN113521786B (zh) 烷基化反应产物热耦合与热泵组合分离工艺及分离装置
CN216536963U (zh) 一种硫酸烷基化反应产物的分离系统
CN100584421C (zh) 差压低能耗精馏方法及设备
CN112266799B (zh) 一种实现吸收稳定系统能耗降低的延迟焦化方法
CN113563917A (zh) 一种硫酸烷基化反应产物的分离工艺及分离装置
CN218306233U (zh) 一种硫酸烷基化反应产物的节能分离装置
CN105647583B (zh) 一种新型吸收稳定工艺及系统
CN102423539A (zh) 一种催化反应精馏过程的节能工艺及装置
CN111187140A (zh) 一种用于脱异丁烷塔的节能方法及装置
CN216536970U (zh) 一种脱异丁烷塔节能分离系统
CN216062073U (zh) 一种硫酸烷基化反应产物的分离装置
CN106631657A (zh) 一种用异丁烷、丁烯烷基化反应制备异辛烷的生产线
CN106495980A (zh) 基于前、后脱丙烷双塔流程的气分装置及方法
CN113563916A (zh) 一种烷基化反应产物的分离工艺及分离装置
CN201686667U (zh) 一种裂解汽油全馏分加氢装置
CN106854126A (zh) 一种用异丁烷、丁烯烷基化反应制备异辛烷的生产装置
CN216062074U (zh) 一种烷基化反应产物的分离装置
CN218306234U (zh) 一种烷基化反应产物的节能分离装置
CN115105851B (zh) 一种硫酸烷基化反应产物的分离工艺及分离装置
CN215691754U (zh) 一种硫酸烷基化反应产物的分离系统
CN215691753U (zh) 一种硫酸烷基化反应产物的分离装置
CN210560267U (zh) 重整油分馏塔塔顶热量回收再利用的装置
CN111334325B (zh) 将工业萘系统改造为洗油提纯系统的方法
CN111187641B (zh) 一种催化裂化装置和加氢装置联合节能工艺流程
CN115121000A (zh) 一种硫酸烷基化反应产物的节能分离工艺及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant