CN113521128A - 亚麻籽油在制备改善动脉粥样硬化症肠道菌群的药物中的应用 - Google Patents

亚麻籽油在制备改善动脉粥样硬化症肠道菌群的药物中的应用 Download PDF

Info

Publication number
CN113521128A
CN113521128A CN202110952772.5A CN202110952772A CN113521128A CN 113521128 A CN113521128 A CN 113521128A CN 202110952772 A CN202110952772 A CN 202110952772A CN 113521128 A CN113521128 A CN 113521128A
Authority
CN
China
Prior art keywords
acid
linseed oil
intestinal flora
atherosclerosis
improving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110952772.5A
Other languages
English (en)
Inventor
王浩
李一唯
张晓霞
贾绍斌
汪婷
柳媛媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningxia Medical University
Original Assignee
Ningxia Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningxia Medical University filed Critical Ningxia Medical University
Priority to CN202110952772.5A priority Critical patent/CN113521128A/zh
Publication of CN113521128A publication Critical patent/CN113521128A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/55Linaceae (Flax family), e.g. Linum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提供了亚麻籽油在制备改善动脉粥样硬化症肠道菌群的药物中的应用,属于生物医药技术领域。亚麻籽油具备调节动脉粥样硬化症肠道菌群的作用。小鼠动物模型试验显示,亚麻籽油能够改变动脉粥样硬化症肠道菌群,并改变肠道菌群代谢产物短链脂肪酸水平和代谢产物胆汁酸水平,同时,动脉粥样硬化症得到减轻,说明亚麻籽油能够通过调节肠道菌群来改善脉粥样硬化症。因此,可将亚麻籽油用作制备改善动脉粥样硬化症肠道菌群的药物,以缓解动脉粥样硬化症病程的发展。

Description

亚麻籽油在制备改善动脉粥样硬化症肠道菌群的药物中的 应用
技术领域
本发明属于生物医药技术领域,具体涉及亚麻籽油在制备改善动脉粥样硬化症肠道菌群的药物中的应用。
背景技术
动脉粥样硬化症(Atherosclerosis,AS)是心血管疾病的主要诱因,它是一种伴有脂质紊乱和斑块不稳定的慢性炎症性疾病,其特征是动脉壁内胆固醇过度沉积。动脉粥样硬化症也是一种全身性疾病,如果发生动脉粥样硬化病变,就意味着其他地方的血管也可能发生同样的病变。目前,动脉粥样硬化症发病机制十分复杂,具体病因还没有确切结论。
肠道菌群是寄居在人体肠道内的微生物群,细菌数目约40万亿个。肠道微生物构成肠道黏膜屏障,对机体正常生理功能起着重要的维持作用,包括调节营养物质的吸收和代谢,避免脂质代谢紊乱,调节免疫系统等。肠道菌群在机体的内外环境发生变化时,会发生失衡,从而引发多种疾病,如胃肠道疾病、代谢性疾病、神经系统疾病、心血管疾病等,对机体造成严重危害。已有研究证实,动脉粥样硬化症与肠道菌群关系密切,肠道菌群失调会导致代谢失调和炎症反应,从而导致斑块的形成和破裂,同时肠道菌群失调可以改变菌群代谢物水平从而影响动脉粥样硬化症的发病进程。
亚麻籽油(Flaxseed oil,FO)作为世界范围内主要食用油之一,是从亚麻籽中提取的主要成分,也是α-亚麻酸(α-linolenic acid,ALA,十八碳9,12,15-三烯酸)的重要植物来源。α-亚麻酸已被证实能够改善血脂、降低血压和减少炎症因子。亚麻籽油中的多不饱和脂肪酸(Polyunsaturated fatty acids,PUF As)的含量高达77.51%-92.39%,富含α-亚麻酸(53%-65%)。目前,亚麻籽油主要通过抗炎、抗氧化应激、调节脂质代谢、促进血管内皮细胞功能等改善动脉粥样硬化症。尚未有关于亚麻籽油通过调节肠道菌群改善动脉粥样硬化症的报道出现。
发明内容
有鉴于此,本发明的目的是提供亚麻籽油在制备改善动脉粥样硬化症肠道菌群的药物中的应用,扩展了亚麻籽油的应用范围。
本发明解决其技术问题所采用的技术方案如下:
本发明提供了亚麻籽油在制备改善动脉粥样硬化症肠道菌群的药物中的应用。
优选的,所述亚麻籽油通过调节肠道菌群及改变肠道菌群代谢产物短链脂肪酸水平和代谢产物胆汁酸水平,从而缓解动脉粥样硬化症。
优选的,所述肠道菌群包括Intestinimonas、Bilophila(嗜胆菌属)、Anaerotruncus(厌氧棍状菌属)、Oscillibacter、Negativibacillus、Lachnoclostridium和Enterorhabdus,所述亚麻籽油能够下调上述菌群。
优选的,所述亚麻籽油能够增加肠道菌群代谢产物短链脂肪酸中乙酸、丙酸、异戊酸、异丁酸及戊酸含量;所述亚麻籽油能够降低肠道菌群代谢产物胆汁酸中alloLCA(别石胆酸)、isoLCA(异羟胆酸)、7-ketoLCA(7-酮基石胆酸)、β-UDCA(3β-熊去氧胆酸)、CDCA(鹅去氧胆酸)及HDCA(猪去氧胆酸)含量,增加LCA(石胆酸)、ACA(别胆酸)、GCA(甘氨胆酸)及TCA(牛磺胆酸)含量。
一种改善动脉粥样硬化症肠道菌群的药物,所述药物主要由有效量的亚麻籽油和药学上可接受的辅料按常规制备方法制备而成。
优选的,所述药物的剂型包括片剂、胶囊剂、洗剂、颗粒剂或口服剂。
由上述技术方案可知,本发明的有益效果是:本发明提供了亚麻籽油在制备改善动脉粥样硬化症肠道菌群的药物中的应用。亚麻籽油具备调节动脉粥样硬化症肠道菌群的作用。通过严谨的科学试验证实了亚麻籽油能够调节动脉粥样硬化症肠道菌群,并改变肠道菌群代谢产物短链脂肪酸水平和代谢产物胆汁酸水平,同时,动脉粥样硬化症得到减轻,说明亚麻籽油能够通过调节肠道菌群改善脉粥样硬化症。因此,可将亚麻籽油用作制备改善动脉粥样硬化症肠道菌群的药物,以缓解动脉粥样硬化症病程的发展。
附图说明
图1为试验例各组小鼠的病理组织学染色结果,注:标尺:500μm。
图2为α多样性分析亚麻籽油对动脉粥样硬化症小鼠肠道菌群的影响。
图3为β多样性分析亚麻籽油对动脉粥样硬化症小鼠肠道菌群的影响。
图4为亚麻籽油对动脉粥样硬化症小鼠肠道菌群组成影响的门水平分析图。
图5为亚麻籽油对动脉粥样硬化症小鼠肠道菌群组成影响的属水平分析图。
图6为短链脂肪酸峰图及差异短链脂肪酸聚类热图。
图7为亚麻籽油对动脉粥样硬化症小鼠肠道菌群代谢产物短链脂肪酸的影响。
图8为胆汁酸峰图及差异胆汁酸聚类热图。
图9为亚麻籽油对动脉粥样硬化症小鼠肠道菌群代谢产物胆汁酸的影响。
具体实施方式
以下结合本发明的附图,对本发明的技术方案以及技术效果做进一步的详细阐述。
本发明提供了亚麻籽油在制备改善动脉粥样硬化症肠道菌群的药物中的应用。
进一步的,所述亚麻籽油通过调节肠道菌群及改变肠道菌群代谢产物短链脂肪酸水平和代谢产物胆汁酸水平,从而缓解动脉粥样硬化症。
进一步的,所述肠道菌群包括Intestinimonas、Bilophila(嗜胆菌属)、Anaerotruncus(厌氧棍状菌属)、Oscillibacter、Negativibacillus、Lachnoclostridium和Enterorhabdus,所述亚麻籽油能够下调上述菌群。
进一步的,所述亚麻籽油能够增加肠道菌群代谢产物短链脂肪酸中乙酸、丙酸、异戊酸、异丁酸及戊酸含量;所述亚麻籽油能够降低肠道菌群代谢产物胆汁酸中alloLCA(别石胆酸)、isoLCA(异羟胆酸)、7-ketoLCA(7-酮基石胆酸)、β-UDCA(3β-熊去氧胆酸)、CDCA(鹅去氧胆酸)及HDCA(猪去氧胆酸)含量,增加LCA(石胆酸)、ACA(别胆酸)、GCA(甘氨胆酸)及TCA(牛磺胆酸)含量。
一种改善动脉粥样硬化症肠道菌群的药物,所述药物主要由有效量的亚麻籽油和药学上可接受的辅料按常规制备方法制备而成。
进一步的,所述药物的剂型包括片剂、胶囊剂、洗剂、颗粒剂或口服剂。
为了证实亚麻籽油具有上述新功能,做了如下试验:
试验中的亚麻籽油采用榨油仪器按常规操作方式榨取,本试验中榨油仪器采用澳柯玛家用榨油机,型号AZ-B301,α-亚麻酸含量为59.58%±2.47。
试验例1、亚麻籽油对动脉粥样硬化症小鼠的影响
30只雄性ApoE-/-小鼠(8周龄)购买于北京维通利华试验动物技术有限公司(许可证号:SCXK(京)2016-0006),饲养于宁夏医科大学试验动物中心,研究通过了宁夏医科大学伦理委员会批准(2019-137)。小鼠适应性饲养1周后,按体重随机分为3组(10只/组),分别为:空白对照组(CON)、动脉粥样硬化症模型组(MOD)和亚麻籽油干预组(MOD/FO)。其中,空白对照组(CON)小鼠给予正常饮食,动脉粥样硬化症模型组(MOD)小鼠采用含1.25%(w/w)胆固醇的高脂饮食饲养,亚麻籽油干预组(MOD/FO)小鼠采用含10%(w/w)亚麻籽油(每kg饲料中用100g FO替代等热量可可脂)和1.25%(w/w)胆固醇的高脂饮食饲养。各组小鼠饮食剂量均相同,连续饲养12周。分别随机抓取饲养12周后的空白对照组(CON)、动脉粥样硬化症模型组(MOD)和亚麻籽油干预组(MOD/FO)的小鼠,将小鼠麻醉后剖开置于体式显微镜下,分离出主动脉及主动脉窦进行病理学染色。主动脉采用大体油红O染色;主动脉窦标本包埋于组织冷冻培养基中,在-20℃下连续切片成8mm厚的切片,分别采用HE染色、油红O染色及马松染色;将染色后的组织切片置于光学显微镜下观察各组病理状况,并采用Image J软件进行定量分析。
结果:请参看图1,图1中A为主动脉大体油红O染色结果图,B为主动脉中斑块的量化分析,C为各组的主动脉窦HE染色、马松染色及油红O染色结果图,D为主动脉窦斑块纤维化的量化分析,E为主动脉窦脂质斑块的量化分析。结果表明,与空白对照组(CON)相比,动脉粥样硬化症模型组(MOD)主动脉及主动脉窦脂质斑块显著增加,差异均有统计学意义(P<0.05)。在亚麻籽油干预组(MOD/FO)中,主动脉及主动脉窦脂质斑块减少,同时主动脉根部的血管壁明显增厚,管腔变窄,差异均有统计学意义(P<0.05)。马松染色结果表明,动脉粥样硬化症模型组(MOD)动脉血管纤维化水平显著加重(P<0.05);在亚麻籽油干预后,血管纤维化水平有所减轻。同时,常规病理HE染色表明,动脉粥样硬化症模型组(MOD)的动脉血管病理损害较为严重,亚麻籽油干预后,主动脉血管病理损害部分发生逆转。以上结果均证实,亚麻籽油的长期干预能显著减缓动脉粥样硬化血管斑块的脂质沉积,从而有助于改善动脉粥样硬化症。
试验例2、亚麻籽油对动脉粥样硬化症肠道菌群的影响
1.肠道菌群的检测及分析
采用无RNA酶的EP管分别收集空白对照组(CON)、动脉粥样硬化症模型组(MOD)和亚麻籽油干预组(MOD/FO)小鼠的粪便样本,将样本处于冷冻状态下送至诺禾致源公司进行16S rRNA测序。采用溴化十六烷基三甲铵(CT AB)法对粪便样本的基因组DNA进行提取,之后利用琼脂糖凝胶电泳检测DN A的纯度和浓度,取适量的样品于离心管中,使用无菌水稀释样品至1ng/μL。接着使用稀释后的基因组DNA作为模板,与引物及酶和缓冲液进行PCR扩增,并采用2%浓度的琼脂糖凝胶进行电泳检测。根据PCR产物浓度进行等质量混样,充分混匀后使用1×TAE浓度2%的琼脂糖胶电泳纯化PCR产物,割胶回收目标条带(产物纯化试剂盒使用Thermo Scientific公司GeneJET胶回收试剂盒)。最后使用Thermofisher公司的IonPlus Fragment Library Kit 48rxns建库试剂盒进行测序文库的构建,构建好的测序文库经过Qubit定量和文库检测合格后,使用Thermofisher公司的IonS5TMXL进行上机测序。
结果:首先,采用α-多样性分析各组肠道菌群中细菌群落的丰度和多样性,并通过观察物种指数和稀疏曲线来评价肠道菌群。请参看图2,图2中A为物种指数,B为稀释曲线。物种指数分析显示,与空白对照组(CON)相比,动脉粥样硬化症模型组(MOD)的肠道菌群丰度和多样性均发生了改变(P<0.05)。经亚麻籽油干预后,亚麻籽油干预组(MOD/FO)小鼠的肠道菌群丰度发生改变,但差异无统计学意义(P<0.05)。稀疏曲线可以直接反映测序数据量的合理性,并间接反映样品中物种的丰富度,当曲线趋向平坦时,说明测序深度已经基本覆盖到样品中所有的物种,从图2B可以看出,随着序列数的增加,各组样本曲线逐渐趋向平坦,说明测序深度已经基本覆盖到样品中所有的物种。
为了进一步验证上述结果,采用unweighted UniFrac(PCoA)和weighteddistance matrix(NMDS)及韦恩图分析细菌整体的群落结构。请参看图3,图3中A为PCoA结果,B为NMDS结果,C为韦恩图。PCoA分析发现动脉粥样硬化症模型组(MOD)和空白对照组(CON)之间的肠道菌群存在差异。亚麻籽油干预组(MOD/FO)与动脉粥样硬化症模型组(MOD)相比也存在不同的集群。同时,NMDS分析显示出相同的结果。表明,亚麻籽油的干预使动脉粥样硬化症小鼠肠道菌群发生改变。韦恩图显示,269种细菌为空白对照组(CO N)、动脉粥样硬化症模型组(MOD)和亚麻籽油干预组(MOD/FO)所共有,空白对照组(CON)、动脉粥样硬化症模型组(MOD)和亚麻籽油干预组(MO D/FO)特有的细菌分别为67、70、25种。
进一步对各组之间的差异菌进行分析,在门水平上比较了各组小鼠的菌群结构差异。如图4所示,图4中A为门水平微生物相对丰度,B为厚壁菌门/拟杆菌门(F/B)比值,C为门水平差异菌(CON与MOD)。发现在门水平上,Firmicutes(厚壁菌门)和Bacteroidetes(拟杆菌门)构成了所有类群的2个共同优势门(图4A)。厚壁菌门/拟杆菌门比值(F/B)的增加与肥胖密切相关。与空白对照组(CON)相比,动脉粥样硬化症模型组(MOD)Firmicutes(厚壁菌门)和Proteobacteria(变形菌门)的比例显著升高,Bacteroidetes(拟杆菌门)的比例显著降低(P<0.05)。动脉粥样硬化症模型组(MOD)厚壁菌门/拟杆菌门(F/B)比值升高(P<0.001)。亚麻籽油干预后,厚壁菌门/拟杆菌门(F/B)比值显著降低(P<0.001),说明在高脂饮食的状态下,亚麻籽油对动脉粥样硬化小鼠肠道内的厚壁菌门/拟杆菌门(F/B)比值有显著影响。
在属水平上,对排名前40位的物种进行了分析。请参看图5,图5中A为属水平微生物相对丰度,B为空白对照组(CON)与动脉粥样硬化症模型组(MOD)的属水平差异菌比较,C为动脉粥样硬化症模型组(MOD)与亚麻籽油干预组(MOD/FO)的属水平差异菌比较。结果表明,与空白对照组(CON)相比,动脉粥样硬化症模型组(MOD)菌群中的Intestinimonas、Bilophila(嗜胆菌属)、Anaerotruncus(厌氧棍状菌属)、Oscillibacter、Negativibacillus、Blauti a(布劳特氏菌属)、Parabacteroides(副杆菌属)、Muribaculum、Parasutterella(副萨特氏菌属)等相对丰度均增加(P<0.05),而Alistipes(另枝菌属)和Candidat us_Saccharimonas(候选单胞生糖菌属)的相对丰度减少,说明动脉粥样硬化症模型组(MOD)小鼠内肠道菌群结构发生改变。亚麻籽油干预组(MOD/FO)中Intestinimonas、Lachnoclostridium、Bilophila(嗜胆菌属)、Anaerotruncus(厌氧棍状菌属)、Oscillibacter、Enterorhabdus及Negativibacillus的相对丰度对比动脉粥样硬化症模型组(MOD)均降低(P<0.05),说明亚麻籽油能够下调Int estinimonas、Lachnoclostridium、Bilophila(嗜胆菌属)、Anaerotruncus(厌氧棍状菌属)、Oscillibacter、Enterorhabdus及Negativibacillus。上述结果表明,亚麻籽油能够改变动脉粥样硬化小鼠肠道中某些菌属的相对丰度,对动脉粥样硬化小鼠肠道菌群有调节作用。
2.亚麻籽油对肠道菌群代谢产物的影响
肠道菌群失调会导致菌群代谢产物水平发生改变,从而影响动脉粥样硬化症的发病进程。因此,在发现亚麻籽油能够调节肠道菌群后,本试验进一步检测了亚麻籽油对肠道菌群代谢产物如短链脂肪酸和胆汁酸的影响。
2.1亚麻籽油对肠道菌群代谢产物短链脂肪酸的影响
采用气相色谱-质普联用仪(Gas chromatography-mass spectrometer,GC-MS)检测短链脂肪酸。采用美国Thermo公司的TRACE 1310-ISQ LT气-质联用仪。色谱柱为AgilentHP-INNOWAX毛细管柱(30m×0.25mm ID×0.25μm)。分流进样,进样量1μL,分流比为10:1。进样口温度250℃,离子源温度230℃,传输线温度250℃,四极杆温度150℃。程序升温起始温度90℃,然后以10/mi n℃升温至120℃,再以5/min℃升温至150℃,最后以25/min℃升温至250℃维持2min。载气为氦气,载气流速1.0mL/min。质谱(MS)条件:电子轰击电离(EI)源,SIM扫描方式,电子能量70eV。标准品曲线的制作:称取适量的乙酸、丙酸、丁酸、异丁酸、戊酸、异戊酸、己酸标准品,用乙醚配分别配制成0.01、0.1、0.5、1、5、10、25、50、100、250、500μg/mL十一个标准浓度梯度。对标准液的浓度系列分别进行GC-MS检测,以标准品的浓度(X)为横坐标,标准品与内标的峰面积比值(Y)为纵坐标进行线性回归分析,绘制标准曲线。同时进行精密度、重复性、回收率、定量限的考察。
结果:请参看图6,图6中A为短链脂肪酸峰图,B为差异短链脂肪酸聚类热图。从短链脂肪酸峰图中可以清楚地分辨出每个单峰的短链脂肪酸,说明该方法和数据是可靠的。聚类热图表明空白对照组(CON)、动脉粥样硬化症模型组(MOD)和亚麻籽油干预组(MOD/FO)短链脂肪酸存在差异。进一步,分析了亚麻籽油对差异短链脂肪酸含量的影响。如图7所示,图7中A为乙酸含量结果,B为丙酸含量结果、C异戊酸含量结果、D异丁酸含量结果,E戊酸含量结果。从图7中可知,与空白对照组(CON)相比,动脉粥样硬化症模型组(MOD)中乙酸、丙酸和戊酸的含量下降(P<0.05)。与动脉粥样硬化症模型组(MOD)相比,亚麻籽油干预组(MOD/FO)中,乙酸、丙酸、异戊酸、异丁酸及戊酸含量均增加(P<0.05),而其他短链脂肪酸则无显著改变。上述结果表明,由动脉粥样硬化症引起的肠道菌群失调导致异常减少的代谢产物短链脂肪酸在亚麻籽油的干预下发生逆转。
2.2亚麻籽油对肠道菌群代谢产物胆汁酸(bile acids,BAs)的影响
肠道微生物的另一种代谢物胆汁酸也被报道与慢性代谢性疾病的进展有关。因此,通过液相色谱-质普联用仪(liquid chromatograph-mass spectrometer,LC-MS)以确定亚麻籽油对胆汁酸的影响。首先制备38种标准溶液用于检测胆汁酸的组成,将制备好的标准溶液储存在-20℃下备用。分别收集空白对照组(CON)、动脉粥样硬化症模型组(MOD)和亚麻籽油干预组(MOD/FO)的小鼠粪便样品各约100mg,加入0.3mL甲醇沉淀蛋白,涡旋振荡1min,在4℃离心10min(12000×g);取上清液稀释10倍,涡旋振荡1min,在4℃离心10min(12000×g),吸取上清液进行LC-MS分析。采用ACQUITY
Figure BDA0003219173450000101
BEH C18色谱柱(2.1×100mm,1.7μm,美国Waters公司)进行检测,进样量5μL,柱温40℃,流动相A-0.01%甲酸水,B-乙腈。梯度洗脱条件为0~4min,25%B;4~9min,25~30%B;9~14min,30~36%B;14~18min,36~38%B;18~24min,38~50%B;24~32min,50~75%B;32~35min,75~100%B;35~38min,100~25%B。流速0.25mL/min。质谱条件:电喷雾电离(ESI)源,负离子电离模式。离子源温度500℃,离子源电压-4500V,碰撞气6psi,气帘气30psi,雾化气和辅助气均为50psi,最后采用多重反应监测(MRM)进行扫描。
结果:请参看图8,图8中A为胆汁酸峰图,B为差异胆汁酸聚类热图。从胆汁酸峰图中可以清楚地分辨出每个单峰的胆汁酸,说明该方法和数据是可靠的。聚类热图显示了动脉粥样硬化症模型组(MOD)和亚麻籽油干预组(MOD/FO)胆汁酸含量的差异。由图9可知,经亚麻籽油干预后,alloLCA(别石胆酸)、isoLCA(异羟胆酸)、7-ketoLCA(7-酮基石胆酸)、β-UDCA(3β-熊去氧胆酸)、CDCA(鹅去氧胆酸)及HDCA(猪去氧胆酸)含量均降低(P<0.05),而LCA(石胆酸)、ACA(别胆酸)、GCA(甘氨胆酸)及TCA(牛磺胆酸)含量均升高。说明亚麻籽油能够改变肠道菌群代谢产物胆汁酸水平。
由上述试验例可知,本发明的动脉粥样硬化症小鼠模型经亚麻籽油干预后,通过组织学染色检测主动脉及主动脉窦窦脂质斑块情况及动脉血管纤维化水平、16S rRNA检测分析小鼠肠道菌群的丰度和多样性变化、气质联用和液质联用分别检测肠道菌群代谢产物短链脂肪酸和胆汁酸的变化,发现亚麻籽油能显著减缓动脉粥样硬化血管斑块的脂质沉积,并且能够使动脉粥样硬化症小鼠肠道菌群中的Intestinimonas、Bilophila(嗜胆菌属)、Anaerotruncus(厌氧棍状菌属)、Oscillibacter、Negativibacillus、Lachnoclostridium和Enterorhabdus发生下调,且改变肠道菌群代谢产物短链脂肪酸和代谢产物胆汁酸水平,说明亚麻籽油能够通过调节肠道菌群来改善脉粥样硬化症。因此,可将亚麻籽油用作制备改善动脉粥样硬化症肠道菌群的药物,以缓解动脉粥样硬化症的发展。所述药物包括有效量的亚麻籽油及药学上可接受的辅料或辅助性成分。所述药物可按照常规制备方法制备成片剂、胶囊剂、洗剂、颗粒剂或口服剂。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (6)

1.亚麻籽油在制备改善动脉粥样硬化症肠道菌群的药物中的应用。
2.如权利要求1所述的亚麻籽油在制备改善动脉粥样硬化症肠道菌群的药物中的应用,其特征在于:所述亚麻籽油通过调节肠道菌群及改变肠道菌群代谢产物短链脂肪酸水平和代谢产物胆汁酸水平,从而缓解动脉粥样硬化症。
3.如权利要求2所述的亚麻籽油在制备改善动脉粥样硬化症肠道菌群的药物中应用,其特征在于:所述肠道菌群包括Intestinimonas、Bilophila(嗜胆菌属)、Anaerotruncus(厌氧棍状菌属)、Oscillibacter、Negativibacillus、Lachnoclostridium和Enterorhabdus,所述亚麻籽油能够下调上述菌群。
4.如权利要求2所述的亚麻籽油在制备改善动脉粥样硬化症肠道菌群的药物中应用,其特征在于:所述亚麻籽油能够增加肠道菌群代谢产物短链脂肪酸中乙酸、丙酸、异戊酸、异丁酸及戊酸含量;所述亚麻籽油能够降低肠道菌群代谢产物胆汁酸中alloLCA(别石胆酸)、isoLCA(异羟胆酸)、7-ketoLCA(7-酮基石胆酸)、β-UDCA(3β-熊去氧胆酸)、CDCA(鹅去氧胆酸)及HDCA(猪去氧胆酸)含量,增加LCA(石胆酸)、ACA(别胆酸)、GCA(甘氨胆酸)及TCA(牛磺胆酸)含量。
5.一种改善动脉粥样硬化症肠道菌群的药物,其特征在于:所述药物主要由有效量的亚麻籽油和药学上可接受的辅料按常规制备方法制备而成。
6.如权利要求5所述的改善动脉粥样硬化症肠道菌群的药物,其特征在于:所述药物的剂型包括片剂、胶囊剂、洗剂、颗粒剂或口服剂。
CN202110952772.5A 2021-08-19 2021-08-19 亚麻籽油在制备改善动脉粥样硬化症肠道菌群的药物中的应用 Pending CN113521128A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110952772.5A CN113521128A (zh) 2021-08-19 2021-08-19 亚麻籽油在制备改善动脉粥样硬化症肠道菌群的药物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110952772.5A CN113521128A (zh) 2021-08-19 2021-08-19 亚麻籽油在制备改善动脉粥样硬化症肠道菌群的药物中的应用

Publications (1)

Publication Number Publication Date
CN113521128A true CN113521128A (zh) 2021-10-22

Family

ID=78091265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110952772.5A Pending CN113521128A (zh) 2021-08-19 2021-08-19 亚麻籽油在制备改善动脉粥样硬化症肠道菌群的药物中的应用

Country Status (1)

Country Link
CN (1) CN113521128A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113521085A (zh) * 2021-08-19 2021-10-22 宁夏医科大学 亚麻木酚素在制备改善多囊卵巢综合征肠道或生殖道菌群的药物中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104740090A (zh) * 2015-03-03 2015-07-01 中国农业科学院油料作物研究所 一种对动脉粥样硬化具有改善作用的功能性油脂组合物
CN109198044A (zh) * 2018-09-27 2019-01-15 华中科技大学同济医学院附属同济医院 一种具有预防动脉粥样硬化功效的食用油
CN113521085A (zh) * 2021-08-19 2021-10-22 宁夏医科大学 亚麻木酚素在制备改善多囊卵巢综合征肠道或生殖道菌群的药物中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104740090A (zh) * 2015-03-03 2015-07-01 中国农业科学院油料作物研究所 一种对动脉粥样硬化具有改善作用的功能性油脂组合物
CN109198044A (zh) * 2018-09-27 2019-01-15 华中科技大学同济医学院附属同济医院 一种具有预防动脉粥样硬化功效的食用油
CN113521085A (zh) * 2021-08-19 2021-10-22 宁夏医科大学 亚麻木酚素在制备改善多囊卵巢综合征肠道或生殖道菌群的药物中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZOUYAN HE等: "Fish Oil Is More Potent than Flaxseed Oil in Modulating Gut Microbiota and Reducing Trimethylamine‑N‑oxide-Exacerbated Atherogenesis", 《J. AGRIC. FOOD CHEM.》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113521085A (zh) * 2021-08-19 2021-10-22 宁夏医科大学 亚麻木酚素在制备改善多囊卵巢综合征肠道或生殖道菌群的药物中的应用

Similar Documents

Publication Publication Date Title
Wang et al. Metabolic urinary profiling of alcohol hepatotoxicity and intervention effects of Yin Chen Hao Tang in rats using ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry
Zhai et al. The gut microbiota-bile acids-TGR5 axis mediates Eucommia ulmoides leaf extract alleviation of injury to colonic epithelium integrity
Zhu et al. FAHFA footprint in the visceral fat of mice across their lifespan
Yuan et al. Improved colonic inflammation by nervonic acid via inhibition of NF-κB signaling pathway of DSS-induced colitis mice
Haigh et al. Identification of oxysterols in human bile and pigment gallstones
CN113521128A (zh) 亚麻籽油在制备改善动脉粥样硬化症肠道菌群的药物中的应用
Zhu et al. Modulation of the gut microbiota and lipidomic profiles by black chokeberry (Aronia melanocarpa L.) polyphenols via the glycerophospholipid metabolism signaling pathway
CN116410887A (zh) 毛螺菌科微生物菌株、预防或治疗代谢类疾病的药物及应用
Cha et al. Analysis of fatty acids in lung tissues using gas chromatography–mass spectrometry preceded by derivatization-solid-phase microextraction with a novel fiber
Duan et al. Comparative multiomics study of the effects of Ellagic acid on the gut environment in young and adult mice
Zhang et al. Effects of Atractylodes lancea extracts on intestinal flora and serum metabolites in mice with intestinal dysbacteriosis
de Hase et al. Dysosmobacter welbionis effects on glucose, lipid, and energy metabolism are associated with specific bioactive lipids
Volpp et al. Constituents and Metabolites of a French Oak Wood Extract (Robuvit®) in Serum and Blood Cell Samples of Women Undergoing Hysterectomy
Gao et al. Fuzi decoction treats chronic heart failure by regulating the gut microbiota, increasing the short-chain fatty acid levels and improving metabolic disorders
Liang et al. Tree peony seed oil alleviates hyperlipidemia and hyperglycemia by modulating gut microbiota and metabolites in high‐fat diet mice
TW202307428A (zh) 用於檢測生物樣品中之短鏈脂肪酸的方法
CN115856130A (zh) 一种鉴定二十二碳五烯酸的方法
Kim et al. The lipid content of amyloid fibrils purified by a variety of methods.
CN114010665A (zh) 罗伊氏乳杆菌在制备预防和/或治疗酒精性肝病的药物中的应用
Song et al. Effects of pine pollen wall on gut microbiota and biomarkers in mice with dyslipidemia
Zhang et al. Thyroid hormone receptor-beta agonist HSK31679 alleviates MASLD by modulating gut microbial sphingolipids
Fan et al. Lycium barbarum polysaccharides regulate the gut microbiota to modulate metabolites in high fat diet-induced obese rats
Gao et al. Effects of Bacillus coagulans TBC169 on gut microbiota and metabolites in gynecological laparoscopy patients
Wang et al. Aged garlic oligosaccharides modulate host metabolism and gut microbiota to alleviate high-fat and high-cholesterol diet-induced atherosclerosis in ApoE−/− mice
Zhang et al. Gualou-Xiebai-Banxia-Tang regulates liver-gut axis to ameliorate Metabolic Syndrome in HFD-fed mice

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211022