CN113517373A - 一种碲基室温太赫兹探测器件 - Google Patents

一种碲基室温太赫兹探测器件 Download PDF

Info

Publication number
CN113517373A
CN113517373A CN202110525423.5A CN202110525423A CN113517373A CN 113517373 A CN113517373 A CN 113517373A CN 202110525423 A CN202110525423 A CN 202110525423A CN 113517373 A CN113517373 A CN 113517373A
Authority
CN
China
Prior art keywords
butterfly
tellurium
electrode layer
nanosheet
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110525423.5A
Other languages
English (en)
Inventor
高艳卿
黄志明
马万里
周炜
姚娘娟
江林
邱琴茜
李敬波
石艺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN202110525423.5A priority Critical patent/CN113517373A/zh
Publication of CN113517373A publication Critical patent/CN113517373A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0272Selenium or tellurium

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种碲基室温太赫兹探测器件,器件具有金属‑半导体‑金属结构,半导体选用碲纳米片材料,选用钛和金做金属电极。Te太赫兹探测器在室温下斩波频率1kHz,172GHz的工作频率下响应时间仅为9.7μs,响应率高达600kV/W,在1V偏置和1kHz调制频率下的NEP低于0.1pW/Hz0 . 5。探测器经过被两次加热至200℃20分钟再冷却后,响应基本保持不变。Te太赫兹探测器具有以下优点:1、结构简单;2、可室温工作;3、器件灵敏度高;4、响应速度快;5、稳定性好。

Description

一种碲基室温太赫兹探测器件
技术领域
本发明涉及太赫兹探测领域,具体是指一种碲基室温太赫兹探测器件。
背景技术
太赫兹(THz)覆盖0.1~10太赫兹的范围,是介于红外和微波之间的空隙波段[1]。太赫兹波具有穿透性强、使用安全性高、定向性好、带宽高等技术特性,有很大的潜在应用价值。目前红外和微波探测技术已经发展较成熟,而太赫兹波是人类迄今为止了解较少,开发较少的一个波段,亟需发展可高温工作、灵敏度高的太赫兹探测器。
碲(Te)是一种重要的p型窄带隙半导体,带隙为0.3eV,稳定性好。曾被制备成光电导型探测器,1961年理论上计算在3.4μm处的碲探测器的NEP值可以达到3.1×10-13W[2]。这种光电探测存在着波长(光子能量)选择性的问题,探测波段取决于带隙的大小,并且在中远红外电磁波段,由于热噪声能量的存在,热噪声激发与光学激发形成竞争机制,从而探测效率显著下降,需要低温(4.2K,77K)甚至是深低温(100-300mK)制冷。本发明基于新提出的光诱导势阱效应新机理,设计了一种基于Te材料的金属-半导体-金属(MSM)结构太赫兹探测器件[3]。当用0.7meV能量(远小于Te禁带宽度0.3eV)的光子入射到设计的金属-半导体-金属(MSM)结构上时,将在Te材料中诱导产生势阱。金属电极中的自由电子将进入半导体材料Te中,并被诱导产生的势阱束缚,使得Te中载流子浓度发生改变,材料的电导率也相应发生改变。通过外加偏置电场读出信号,进而实现太赫兹波段的室温高灵敏度探测。
以上涉及的参考文献如下:
1.B.Ferguson and X.-C.Zhang,Materials for terahertz science andtechnology,Nat.Mater.1,26–33(2002).
2.D.Genzow,Infrared Photovoltaic Radiation Detector with TelluriumSingle Crystals,Phys.Stat.Sol.(a)1,K77(1971).
3.Zhiming Huang,Wei Zhou,Jinchao Tong,Jingguo Huang,Cheng Ouyang,YueQu,Jing Wu,Yanqing Gao,and Junhao Chu,Extreme Sensitivity of Room-TemperaturePhotoelectric Effect for Terahertz Detection,Adv.Mater.28,112–117(2016).
发明内容
针对远红外太赫兹波段探测器探测率灵敏度低、结构复杂、需深低温制冷等问题,本发明设计了一种碲基室温太赫兹探测器件,该探测器可实现探测光子能量远小于碲的禁带宽度、探测器灵敏度高、响应速度快,稳定性好且可室温工作。
本发明一种碲基室温太赫兹探测器件采用高阻硅衬底1,衬底上有一层自然氧化的二氧化硅层2,将碲纳米片3转移到二氧化硅层2上,然后在碲纳米片上制备左右对称的蝶形正电极层4和蝶形负电极层5;
所述的高阻硅衬底1厚度为0.5mm,电阻率10000Ω·cm;
所述的自然氧化的二氧化硅2厚度25nm;
所述的碲纳米片3是用化学气相沉积法制备的单晶材料,纳米片厚度为300-500nm,宽度为5-10μm,长度为10-30μm;
所述的蝶形正电极层4和蝶形负电极层5都采用30nm厚的钛和300nm厚的金,先溅射钛再溅射金,由钛和金正负电极层覆盖在碲纳米片3形成的台阶的表面和边缘,形成金属-半导体-金属结构,并在接触处形成欧姆接触,其中大部分的电极层都生长在台阶两侧的表面上;蝶形正电极层4和蝶形负电极层5围绕器件两边分别呈
Figure BDA0003061420030000031
Figure BDA0003061420030000032
形状镜像对称分布;所述的蝶形正电极层4和蝶形负电极层5的上端面形成左右对称的蝶形天线,具体尺寸为:电极宽度w为500μm,两端总长度l为4000μm,电极间距a即敏感元长度为5-10μm,与敏感元接触处的电极宽度即敏感元宽度b为5-10μm。
探测器的俯视示意图如附图1所示,器件中心处的截面及平面示意图如图2所示,1为高阻硅,2为自然氧化的二氧化硅,3为碲纳米片,4为钛金正电极层,5为钛金负电极层。
本发明所设计的探测器结构通过以下具体的工艺步骤来实现:
1.衬底选择
选用高阻硅(Si)衬底,衬底表面有一层自然氧化的二氧化硅(SiO2)。
2.碲纳米片的制备和转移
采用化学气相沉积法制备了碲纳米片,通过机械剥离将碲纳米片转移到衬底表面。
3.光刻
在转移了碲纳米的硅衬底样品表面旋涂一层光刻胶,将样品放入干燥器中干燥,用蝶形掩膜板掩盖住电极后用光刻机进行曝光。
4.显影
将曝光好的样品放入配好的显影液中进行显影,显影好后取出样品放入干燥箱中进行后烘处理。
5.溅射电极
将样品放入双离子束溅射室中,依次溅射一定厚度的钛和金。
6.剥离
将样品放入装有丙酮溶液的烧杯中,在水浴中加热后,多余的金属膜会脱落。
附图说明
附图1为探测器俯视示意图。
附图2为器件中心处的截面及平面示意图。
附图中标号:1为高阻硅衬底,2为自然氧化的二氧化硅层,3为碲纳米片,4蝶形正电极层,5蝶形负电极层。
附图3为探测器在室温下斩波频率1kHz,172GHz的工作频率下响应波形图。
附图4为169-173GHz范围内的Te太赫兹探测器的响应度和噪声等效功率。
附图5为器件被两次加热至200℃20分钟再冷却后的波形图。
具体实施方式
依照附图1所示的结构,制作了三种类型实施例探测器件。
实施例探测器1采用高阻硅衬底,衬底厚度为0.5mm,电阻率10000Ω·cm,衬底上有一层25nm厚的二氧化硅层,将Te纳米片利用机械剥离的方法转移到二氧化硅层上,在转移了Te纳米片的样品表面,利用光刻及双离子束溅射制备蝶形正电极层和负电极层,溅射时先溅射30nm厚的钛,再溅射300nm厚的金,电极宽度为500μm,两端总长度为4000μm,电极间距即敏感元长度为5μm,与敏感元接触处的电极宽度即敏感元宽度为5μm。
实施例探测器2采用高阻硅衬底,衬底厚度为0.5mm,电阻率10000Ω·cm,衬底上有一层25nm厚的二氧化硅层,将Te纳米片利用机械剥离的方法转移到二氧化硅层上,在转移了Te纳米片的样品表面,利用光刻及双离子束溅射制备蝶形正电极层和负电极层,溅射时先溅射30nm厚的钛,再溅射300nm厚的金,电极宽度为500μm,两端总长度为4000μm,电极间距即敏感元长度为5μm,与敏感元接触处的电极宽度即敏感元宽度为10μm。
实施例探测器3采用高阻硅衬底,衬底厚度为0.5mm,电阻率10000Ω·cm,衬底上有一层25nm厚的二氧化硅层,将Te纳米片利用机械剥离的方法转移到二氧化硅层上,在转移了Te纳米片的样品表面,利用光刻及双离子束溅射制备蝶形正电极层和负电极层,溅射时先溅射30nm厚的钛,再溅射300nm厚的金,电极宽度为500μm,两端总长度为4000μm,电极间距即敏感元长度为10μm,与敏感元接触处的电极宽度即敏感元宽度为10μm。
下面提供通过介绍具体实验步骤对本发明作进一步的详细说明。
1.碲纳米片材料的制备
将氡前驱体放入石英舟中,然后将此石英舟放置在管式炉腔内的高温反应区;将倒置的Si/SiO2衬底放置在石英舟上,然后将此石英舟放置在低温生长区。抽真空后,抽入氩气,排出石英管中的残余空气。在反应过程中,氩气以40sccm的流速连续流入。在两个温度区,从室温到200℃需要20分钟,然后过30分钟,高温区可以到520℃,低温区到450℃。两个温度区域的温度保持180分钟。最后,经过50分钟后,温度下降到室温时即可将生长在衬底上的Te纳米片取出。
2.碲基室温太赫兹探测器的制备
利用机械剥离的方法将碲纳米片转移到高阻硅衬底上,在该样品上旋涂光致抗蚀剂AZ4330。旋涂参数:转速4000转/秒,时间30秒。然后将样品放入干燥器中干燥25分钟,温度为65℃。干燥后,使用掩模和紫外光刻机SUSS MJB4来制作电极,其中时间为6秒。用显影液进行显影,显影液比例按AZ400K:去离子水=1:4的比例配置,显影时间为30秒。显影后,将样品放入烘干机中进行烘干,参数与预烘相同。然后将样品放入双离子束溅射室中,分别溅射厚度为30nm和300nm的Ti和Au。然后将样品放入装有丙酮溶液的烧杯中,在水浴中加热至50℃。30分钟后,剥离多余的金属膜。
3.碲基室温太赫兹探测器的性能测试
利用太赫兹测试系统测试探测器的性能。调制的太赫兹垂直均匀地照射在探测器表面。源的出口距离探测器30厘米,探测器安装在测试箱上。在探测器检测到太赫兹波后,响应电压信号由前置放大器放大,最终由锁相放大器读出。图3为Te太赫兹探测器在室温下斩波频率1kHz,172GHz的工作频率下响应波形图,响应时间为9.7μs。
为了进一步表征器件性能,测量了室温下169-173GHz范围内的Te太赫兹探测器在不同偏压下的响应。在1kHz的调制频率和1V的偏压下,器件在172GHz范围内的响应高达90μV。器件的响应度和噪声等效功率是衡量器件性能的两个重要指标。这里,设备的响应度定义为Rv=Vph/(P×A),Vph是设备的电压响应值,P是辐射到设备表面的太赫兹源的功率密度,A是设备敏感元件的面积,NEP是每单位带宽的最低可检测功率,NEP=vn/Rv,vn是噪声电压的均方根,vn=(4kBTr+2eIdr2)0.5,kB是玻耳兹曼常数,r是器件的电阻,e是单位电荷,Id是偏置时的暗电流,这里是器件的偏置电流。170GHz的光功率密度P=0.15mW/cm2,根据计算,器件在172GHz下的响应率高达600kV/W,在1V偏置和1kHz调制频率下的NEP低于0.1pW/Hz0.5,如图4所示。
为了测试器件的稳定性,将光电探测器加热至200℃20分钟,探测器冷却后,响应基本保持不变;再将探测器加热至200℃20分钟,冷却后测试响应基本保持不变,如图5所示,因此,Te光电探测器在各种恶劣工作环境下表现出良好的稳定性。

Claims (1)

1.一种碲基室温太赫兹探测器件,其特征在于:
所述的器件采用高阻硅衬底(1),衬底上有一层自然氧化的二氧化硅层(2),将碲纳米片(3)转移到二氧化硅层(2)上,然后在碲纳米片上制备左右对称的蝶形正电极层(4)和蝶形负电极层(5);
所述的高阻硅衬底(1)厚度为0.5mm,电阻率10000Ω·cm;
所述的自然氧化的二氧化硅(2)厚度25nm;
所述的碲纳米片(3)是用化学气相沉积法制备的单晶材料,纳米片厚度为300-500nm,宽度为5-10μm,长度为10-30微米;
所述的蝶形正电极层(4)和蝶形负电极层(5)都采用30nm厚的钛和300nm厚的金,先溅射钛再溅射金,由钛和金正负电极层覆盖在碲纳米片(3)形成的台阶的表面和边缘,形成金属-半导体-金属结构,并在接触处形成欧姆接触,其中大部分的电极层都生长在台阶两侧的表面上;蝶形正电极层(4)和蝶形负电极层(5)围绕器件两边分别呈
Figure FDA0003061420020000011
Figure FDA0003061420020000012
形状镜像对称分布;所述的蝶形正电极层(4)和蝶形负电极层(5)的上端面形成左右对称的蝶形天线,具体尺寸为:电极宽度w为500μm,两端总长度l为4000μm,电极间距a即敏感元长度为5-10μm,与敏感元接触处的电极宽度即敏感元宽度b为5-10μm。
CN202110525423.5A 2021-05-12 2021-05-12 一种碲基室温太赫兹探测器件 Pending CN113517373A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110525423.5A CN113517373A (zh) 2021-05-12 2021-05-12 一种碲基室温太赫兹探测器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110525423.5A CN113517373A (zh) 2021-05-12 2021-05-12 一种碲基室温太赫兹探测器件

Publications (1)

Publication Number Publication Date
CN113517373A true CN113517373A (zh) 2021-10-19

Family

ID=78064328

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110525423.5A Pending CN113517373A (zh) 2021-05-12 2021-05-12 一种碲基室温太赫兹探测器件

Country Status (1)

Country Link
CN (1) CN113517373A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113823703A (zh) * 2021-11-24 2021-12-21 中国科学院苏州纳米技术与纳米仿生研究所 室温碲化铂阵列太赫兹探测器及其制备方法
CN114039201A (zh) * 2021-11-10 2022-02-11 中国科学院上海技术物理研究所 一种分形蝶形太赫兹天线

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114039201A (zh) * 2021-11-10 2022-02-11 中国科学院上海技术物理研究所 一种分形蝶形太赫兹天线
CN114039201B (zh) * 2021-11-10 2023-11-07 中国科学院上海技术物理研究所 一种分形蝶形太赫兹天线
CN113823703A (zh) * 2021-11-24 2021-12-21 中国科学院苏州纳米技术与纳米仿生研究所 室温碲化铂阵列太赫兹探测器及其制备方法
CN113823703B (zh) * 2021-11-24 2022-03-15 中国科学院苏州纳米技术与纳米仿生研究所 室温碲化铂阵列太赫兹探测器及其制备方法

Similar Documents

Publication Publication Date Title
Wang et al. A high-performance near-infrared light photovoltaic detector based on a multilayered PtSe 2/Ge heterojunction
Wei et al. High‐performance visible to near‐infrared broadband Bi2O2Se nanoribbon photodetectors
Das et al. Single Si nanowire (diameter≤ 100 nm) based polarization sensitive near-infrared photodetector with ultra-high responsivity
CN101866975B (zh) 一种半导体传感器及制备方法
CN103280484B (zh) p-型石墨烯薄膜/n-型Ge肖特基结近红外光电探测器及其制备方法
CN105514128B (zh) 一种石墨烯室温太赫兹波探测器及制备方法
CN113517373A (zh) 一种碲基室温太赫兹探测器件
JP6316955B2 (ja) 異方性熱電材料を利用するレーザーパワーおよびエネルギーセンサ
CN110085688A (zh) 基于石墨烯-氧化镓相结的自供电型光电探测结构、器件及制备方法
CN106024968B (zh) 石墨烯/碳纳米管薄膜肖特基结光电探测器及其制备方法
Wan et al. Junction‐Enhanced Polarization Sensitivity in Self‐Powered Near‐Infrared Photodetectors Based on Sb2Se3 Microbelt/n‐GaN Heterojunction
Chetri et al. Au/GLAD-SnO 2 nanowire array-based fast response Schottky UV detector
CN109244246A (zh) 一种基于拓扑绝缘体硒化铋电极的钙钛矿薄膜的宽波段光电探测器及其制备方法
An et al. Dual-band photodetector with a hybrid Au-nanoparticles/β-Ga 2 O 3 structure
Peng et al. High-performance UV–visible photodetectors based on ZnO/perovskite heterostructures
Augustine et al. MoS2/SnO2 heterojunction-based self-powered photodetector
CN110148643A (zh) 表面光伏性能良好的半导体量子点/石墨烯范德瓦尔斯结薄膜柔性器件的构筑方法
Rogalski Overestimating the performance of photon ultraviolet detectors
Hou et al. Hot-electron photocurrent detection of near-infrared light based on ZnO
CN215377428U (zh) 碲基室温太赫兹探测器件
CN113049096A (zh) 室温周期对数天线集成的碲化镍太赫兹探测器及制备方法
Luo et al. Enhanced performance in uncooled n-CdSe/p-PbSe photovoltaic detectors by high-temperature chloride passivation
Ge et al. Solar-blind UV photoelectric properties of pure-phase α-Ga2O3 deposited on m-plane sapphire substrate
CN211480068U (zh) 一种基于超短沟道石墨烯的光电探测器
CN107863412A (zh) 光探测器及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination