CN113512236A - 一种氧化刺槐豆胶-卡拉胶微球及其制备方法 - Google Patents

一种氧化刺槐豆胶-卡拉胶微球及其制备方法 Download PDF

Info

Publication number
CN113512236A
CN113512236A CN202110562572.9A CN202110562572A CN113512236A CN 113512236 A CN113512236 A CN 113512236A CN 202110562572 A CN202110562572 A CN 202110562572A CN 113512236 A CN113512236 A CN 113512236A
Authority
CN
China
Prior art keywords
locust bean
bean gum
carrageenan
oxidized
microspheres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202110562572.9A
Other languages
English (en)
Inventor
林文浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Shangxin Purification Engineering Co ltd
Original Assignee
Guangzhou Shangxin Purification Engineering Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Shangxin Purification Engineering Co ltd filed Critical Guangzhou Shangxin Purification Engineering Co ltd
Priority to CN202110562572.9A priority Critical patent/CN113512236A/zh
Publication of CN113512236A publication Critical patent/CN113512236A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0087Glucomannans or galactomannans; Tara or tara gum, i.e. D-mannose and D-galactose units, e.g. from Cesalpinia spinosa; Tamarind gum, i.e. D-galactose, D-glucose and D-xylose units, e.g. from Tamarindus indica; Gum Arabic, i.e. L-arabinose, L-rhamnose, D-galactose and D-glucuronic acid units, e.g. from Acacia Senegal or Acacia Seyal; Derivatives thereof
    • C08B37/0093Locust bean gum, i.e. carob bean gum, with (beta-1,4)-D-mannose units in the main chain branched with D-galactose units in (alpha-1,6), e.g. from the seeds of carob tree or Ceratonia siliqua; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Emergency Medicine (AREA)
  • Botany (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明涉及一种氧化刺槐豆胶‑卡拉胶微球及其制备方法,该氧化刺槐豆胶是由天然刺槐豆胶(LBG)与TEMPO/NaBr/NaClO催化氧化体系合成,碱性条件下TEMPO试剂由中间价态的自由基氧化变成最高价态的亚硝基鎓离子,选择性氧化半乳甘露糖链上C‑6位伯羟基,得到的氧化刺槐豆胶与卡拉胶以戊二醛进行交联,于氯化钾溶液中进行固化得到微球;得到的微球可作为载药介质,应用在日化、医药相关领域,其生物相容性好,在胃酸条件下对药物具有缓释释效果,并具有良好的生物降解性。

Description

一种氧化刺槐豆胶-卡拉胶微球及其制备方法
技术领域
本发明属于高分子材料领域,具体涉及一种氧化刺槐豆胶-卡拉胶微球及其制备方法。
技术背景
刺槐豆胶(LBG)是一种天然的中性半乳甘露聚糖,分子量约30万道尔顿,其结构主要以D-甘露聚糖在1,6位上以β-(1,4)糖苷键连接α-D-吡喃半乳糖,其中半乳糖和甘露糖比例为1:4,是甘露糖含量较多的天然植物籽多糖。据报道,它具有生物相容性、生物吸附性、生物可降解性、非致畸性和非致突变性,表现为粘液粘附行为,其降解产物很容易被排出体外,除了用作增稠剂、稳定剂、乳化剂和胶凝剂之外,也可用于药物制剂和生物医学应用上的赋形剂。
目前报道,天然刺槐豆胶生物相容性好,可生物降解,具有耐酸性,较瓜尔胶更好,因此可作为一种潜在的缓释胃溶或肠溶靶向药物输送系统;但由于其黏度高,部分水不溶,导致其利用度不高,因此对其进行改性同时可提高药物负载率,作为一种潜在的药物缓释运输载体。
发明内容
为了解决上述的技术问题,本发明提供了一种氧化刺槐豆胶-卡拉胶微球的结构和制备方法,本发明的另一个目的在于提供的微球可作为胃溶型载药介质;
所述的氧化刺槐豆胶-卡拉胶微球的结构式如(I)所示:
Figure BDA0003079541860000011
所述的一种氧化刺槐豆胶-卡拉胶微球的制备步骤为:
1)取2~10g天然刺槐豆胶在80℃下水合2~6h,转移到反应器中,磁力搅拌下,将反应温度升到45~60℃,加入0.1~1g TEMPO试剂和0.5~5gNaBr搅拌均匀后,将pH为9(2MHCl调节)35mL 10~25%(w/v)的NaClO于恒压滴液漏斗中,缓慢滴加,用0.1M等当量的NaOH维持pH为9,滴加完成后继续反应4~7h,加入0.05~0.2g硼氢化钠搅拌30min停止反应,将pH调至8,加入含有NaCl的1~2%反应液体积的乙醇终止反应,布氏漏斗过滤,去离子水多次洗涤至中性,用无水乙醇洗涤3次,将固体物质置于50℃下真空干燥,得到固体氧化刺槐豆胶,4~10℃存储;
其反应流程如(II)所示:
Figure BDA0003079541860000021
2)将5g混合比例为1:4的氧化刺槐豆胶和卡拉胶粉末加入至90~150mL蒸馏水中搅拌,磁力搅拌逐渐加热升温至50℃,分散均匀后继续升温至80~90℃,并保温0.5~1h,采用真空脱气装置进行高温脱气,除泡0.5~1h,并降温至50~60℃;将模型药物双氯芬酸钠分散于胶液中形成浓度为25%(w/v)的混合溶液,分散均匀后,加入1~5%(w/v)的戊二醛,反应1~2h得胶粘液,静置24h,得到待用胶液;
3)将胶液从21-Ga.针头挤入含0.05%~0.1%(w/v)吐温80的90~150mL的氯化钾溶液中(0.1~0.5%(w/v)),将得到的液滴温育10~60min,并通过过滤收集微水凝胶颗粒(I),用两次蒸馏水洗涤过量的表面盐或离子,风干。
所述步骤(1)中天然刺槐豆胶与催化氧化体系的添加比为1:0.675~1.12;
优选地,天然刺槐豆胶与催化氧化体系的添加比为1:0.995;
优选地,所述步骤中所述制备步骤(1)中氧化时间为6h;
优选地,所述步骤中所述制备步骤(2)混合溶液中戊二醛浓度为4%(w/v);
与现有技术相比,本发明具有如下有益效果:
(1)本发明的氧化刺槐豆胶其羧基含量达3200meq/100g,分子量下降,水溶性和生物相容性好;
(2)本发明的氧化刺槐豆胶-卡拉胶在戊二醛交联剂下,载药率达68.5%,药物释放时间为28~40min左右。
附图说明
图1氧化刺槐豆胶-卡拉胶微球的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
实施例1氧化刺槐豆胶的制备
取8g LBG在80℃下水合6h,转移到反应器中,磁力搅拌下,将反应温度升到50℃,加入0.16g TEMPO试剂和0.8gNaBr搅拌均匀后,将pH为9(2M HCl调节)的35mL 10~25%(w/v)的NaClO于恒压滴液漏斗中,缓慢滴加,用0.1M等当量的NaOH维持pH为9,滴加完成后继续反应6h,加入0.1g硼氢化钠搅拌30min停止反应,将pH调至8,加入含有NaCl的2%反应液体积的乙醇终止反应,布氏漏斗过滤,去离子水多次洗涤至中性,用无水乙醇洗涤3次,将固体物质置于50℃下真空干燥,得到氧化刺槐豆胶,4~10℃存储;
其中LBG与催化氧化体系的具体添加量见表1;
表1:LBG与TEMPO、NaBr、NaClO的添加量
Figure BDA0003079541860000031
对上述五组样品进行羧基含量、产物得率、数均分子量(Mn)、均重分子量(Mw)、多分散指数(PdI),回转半径(Rg)进行测定,其测定条件如下:
1)羧基含量:按照TAPPI T237 cm-98(2006)标准测定氧化纤维素中多糖羧基含量。本发明取适量氧化刺槐豆胶,以0.1mol/L盐酸溶液处理2h,随后用去离子水洗涤至滤液呈中性,准确量取定量溶液置于锥形瓶中,迅速向锥形瓶中加入50mL事先配好的NaHCO3-NaCl溶液,反应1h后抽滤,取25mL滤液,向其中加入1~2滴甲基红指示剂,随后使用0.01mol/L的盐酸溶液进行滴定。以公式(1)计算羧基含量:
(meq/100g)={B-[A+(A×C/50)]}×N×(200/W) (1)
其中,A为滴定25mL滤液时盐酸溶液的用量,mL;B为滴定NaHCO3-NaCl
溶液时盐酸溶液的用量,m L;C为溶液中水的质量,g;N为滴定所用盐酸溶液的实际浓度mol/L;W为样品绝干质量,g;
2)氧化刺槐豆胶产物得率:通过过滤收集步骤(1)的水不溶部分,并进行充分洗涤除去杂质,小心转移至密封袋中并称重,取样进行水分测试,氧化产物得率按照公式(2)计算:
Y(%)=(W2-W1)×100% (2)
其中,W1为氧化前原料的绝干质量,g;W2为氧化纤维素水不溶部分的绝干质量,g;
3)数均分子量(Mn)、均重分子量(Mw)、多分散指数(PdI),回转半径(Rg):采用三重检测凝胶渗透色谱法(GPC/SEC3),在一个模块化系统进行,该系统包括脱气器、HPLC泵(K-1001)和RI检测器(K-2300)、粘度计(Trisec 270型双检测器)和RALLS组成以及两根PL-aquagel-OH凝胶色谱柱(8μm、300×7.5mm);纯化过程中洗脱液为0.2MNaNO3,0.01MNaH2PO4,0.1%w/v NaN3,pH=7,流速为1mL/min;
按上述测定方法得到的结果见表2;
表2:氧化刺槐豆胶的测定结果
Figure BDA0003079541860000041
LBG与催化氧化体系的添加比如表1结果可知,在氧化过程中,天然刺槐豆胶与催化氧化体系的添加比为1:0.675~1.12,随着催化氧化体系的添加量增加,LBG的氧化程度增加,羧基含量由2.0k增加至3.2k,分子量较空白LBG明显下降,表明氧化过程中,大分子链会解聚,因此分散度和回转半径同时下降,直到LBG与催化氧化体系比为1:0.995(1-4)反应最充分。
实施例2氧化刺槐豆胶的制备
取8g LBG在80℃下水合6h,转移到反应器中,磁力搅拌下,将反应温度升到50℃,加入0.16g TEMPO试剂和0.8g NaBr搅拌均匀后,将pH为9(2M HCl调节)的35mL 20%(w/v)的NaClO于恒压滴液漏斗中,缓慢滴加,用0.1M等当量的NaOH维持pH为9,滴加完成后继续反应4、5、6、7h(记为2-1、2-2、2-3、2-4),加入0.1g硼氢化钠搅拌30min停止反应,将pH调至8,加入含有NaCl的2%反应液体积的乙醇终止反应,布氏漏斗过滤,去离子水多次洗涤至中性,用无水乙醇洗涤3次,将固体物质置于50℃下真空干燥,得到氧化刺槐豆胶,4~10℃存储;
对上述五组样品进行羧基含量、产物得率、数均分子量(Mn)、均重分子量(Mw)、多分散指数(PdI),回转半径(Rg)进行测定,其测定条件同实施例1,得到的结果见表3;
表3:氧化刺槐豆胶的测定结果
Figure BDA0003079541860000051
上述五组样品的氧化结果由表2可见,随着氧化时间的增加,羧基含量由1.8k增加至3.2k,分子量较空白LBG明显下降,表明氧化过程中,大分子链会解聚,因此分散度和回转半径同时下降,直到氧化时间为6h反应最充分,继续增加氧化时间,氧化程度不再发生明显变化。
实施例3微球的制备
将5g混合比例为1:4的氧化刺槐豆胶和卡拉胶粉末加入至100mL蒸馏水中搅拌,磁力搅拌逐渐加热升温至50℃,分散均匀后继续升温至80~90℃,并保温0.5~1h,采用真空脱气装置进行高温脱气,除泡0.5~1h,并降温至50~60℃;将模型药物双氯芬酸钠分散于胶液中形成浓度为25%(w/v)的混合溶液,分散均匀后,分别加入戊二醛形成浓度为的1、2、3、4、5%(w/v)混合溶液(记为3-1、3-2、3-3、3-4、3-5),反应2h得胶粘液,静置24h,将该胶液从21-Ga.针头挤入含0.05%(w/v)吐温80的100mL的氯化钾溶液中0.2%(w/v),将液滴温育45min,并通过过滤收集微水凝胶颗粒(I),用两次蒸馏水洗涤过量的表面盐或离子,风干;
对上述五组样品进行药物负载率以及完全释放时间考察,其测定条件如下:
1)药物负载率:将10mg微球颗粒粉碎,放入100mL的模拟胃液中过夜,使负载药物完全溶解,悬浮液过滤,滤液在276nm处用紫外分光光度计分析,根据式(3)计算药物负载率,取三次平均值:
Figure BDA0003079541860000061
2)完全释放时间:测试微水凝胶在模拟胃液中的即刻释放行为,将50mg样品放入500mL 0.1N的HCl溶液(pH=1.5)中,(50rpm、37±0.5℃),记录粒子完全崩解所需的时间,取三次平均值。
按上述测定方法得到的测定结果见表4;
表4:氧化刺槐豆胶-卡拉胶微球的测定结果
Figure BDA0003079541860000062
戊二醛的添加使得氧化刺槐豆胶与卡拉胶的交联情况可由表3中微球的负载率反映,实施例3中戊二醛的添加量为1~5%,随着戊二醛含量增加,药物负载率由38.5%增加至68.5%,且药物在模拟胃液中的释放时间由28min增加至40min,表明戊二醛使得体系的交联程度增加,药物负载量大且牢固,在酸性模拟胃液中微球崩解的速率下降,可作为胃溶型缓释药物载体。

Claims (7)

1.一种氧化刺槐豆胶-卡拉胶微球,其特征在于,所述微球的结构式如(I)所示:
Figure FDA0003079541850000011
2.根据权利要求1所述的一种氧化刺槐豆胶-卡拉胶微球,其特征在于:所述的氧化刺槐豆胶-卡拉胶微球可作为胃溶型载药介质。
3.一种氧化刺槐豆胶-卡拉胶微球的制备方法,其特征在于,所述微球制备步骤为:
1)取2~10g天然刺槐豆胶在80℃下水合2~6h,转移到反应器中,磁力搅拌下,将反应温度升到45~60℃,加入0.1~1g TEMPO试剂和0.5~5gNaBr搅拌均匀后,将pH为9(2M HCl调节)35mL 10~25%(w/v)的NaClO于恒压滴液漏斗中,缓慢滴加,用0.1M等当量的NaOH维持pH为9,滴加完成后继续反应4~7h,加入0.05~0.2g硼氢化钠搅拌30min停止反应,将pH调至8,加入含有NaCl的1~2%反应液体积的乙醇终止反应,布氏漏斗过滤,去离子水多次洗涤至中性,用无水乙醇洗涤3次,将固体物质置于50℃下真空干燥,得到固体氧化刺槐豆胶,4~10℃存储;
2)将5g混合比例为1:4的氧化刺槐豆胶和卡拉胶粉末加入至90~150mL蒸馏水中搅拌,磁力搅拌逐渐加热升温至50℃,分散均匀后继续升温至80~90℃,并保温0.5~1h,采用真空脱气装置进行高温脱气,除泡0.5~1h,并降温至50~60℃;将模型药物双氯芬酸钠分散于胶液中形成浓度为25%(w/v)的混合溶液,分散均匀后,加入1~5%(w/v)的戊二醛,反应1~2h得胶粘液,静置24h,得到待用胶液;
3)将待用胶液从21-Ga.针头挤入含0.05%~0.1%(w/v)吐温80的90~150mL的氯化钾溶液中,将得到的液滴温育10~60min,并通过过滤收集微水凝胶颗粒(I),用两次蒸馏水洗涤过量的表面盐或离子,风干。
4.根据权利要求3所述的一种氧化刺槐豆胶-卡拉胶微球的制备方法,其特征在于:所述步骤(1)中天然刺槐豆胶与催化氧化体系的添加比为1:0.675~1.12。
5.根据权利要求3或4所述的一种氧化刺槐豆胶-卡拉胶微球的制备方法,其特征在于:所述步骤(1)中天然刺槐豆胶与催化氧化体系的添加比为1:0.995。
6.根据权利要求3所述的一种氧化刺槐豆胶-卡拉胶微球的制备方法,其特征在于:所述步骤中所述制备步骤(1)中氧化时间为6h。
7.根据权利要求3所述的一种氧化刺槐豆胶-卡拉胶微球的制备方法,其特征在于:所述步骤中所述制备步骤(2)混合溶液中戊二醛浓度为4%(w/v)。
CN202110562572.9A 2021-05-24 2021-05-24 一种氧化刺槐豆胶-卡拉胶微球及其制备方法 Withdrawn CN113512236A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110562572.9A CN113512236A (zh) 2021-05-24 2021-05-24 一种氧化刺槐豆胶-卡拉胶微球及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110562572.9A CN113512236A (zh) 2021-05-24 2021-05-24 一种氧化刺槐豆胶-卡拉胶微球及其制备方法

Publications (1)

Publication Number Publication Date
CN113512236A true CN113512236A (zh) 2021-10-19

Family

ID=78064883

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110562572.9A Withdrawn CN113512236A (zh) 2021-05-24 2021-05-24 一种氧化刺槐豆胶-卡拉胶微球及其制备方法

Country Status (1)

Country Link
CN (1) CN113512236A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087083A1 (en) * 2013-12-13 2015-06-18 Cipla Limited Intranasal pharmaceutical compositions of polymeric nanoparticles
CN112300449A (zh) * 2020-11-03 2021-02-02 赵书敏 一种改性刺槐豆胶-kappa型卡拉胶凝胶及其制备方法
CN112314935A (zh) * 2020-11-19 2021-02-05 华中农业大学 一种胶原蛋白-多糖复合水凝胶制备方法及其产品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087083A1 (en) * 2013-12-13 2015-06-18 Cipla Limited Intranasal pharmaceutical compositions of polymeric nanoparticles
CN112300449A (zh) * 2020-11-03 2021-02-02 赵书敏 一种改性刺槐豆胶-kappa型卡拉胶凝胶及其制备方法
CN112314935A (zh) * 2020-11-19 2021-02-05 华中农业大学 一种胶原蛋白-多糖复合水凝胶制备方法及其产品

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CAROLINE NOVAK SAKAKIBARA等: "TEMPO-mediated oxidation on galactomannan: Gal/Man ratio and chain flexibility dependence", 《CARBOHYDRATE POLYMERS》 *
PASCAL AUDET等: "Immobilized growing lactic acid bacteria with x-carrageenan — locust bean gum gel", 《APPL MICROBIOL BIOTECHNOL》 *
SABYASACHI MAITI等: "Novel gastroulcer protective micro(hydro)gels of sulfated locust bean gum-aluminium complex for immediate release of diclofenac sodium", 《JOURNAL OF DRUG TARGETING》 *
郑迪等: "响应面法优化卡拉胶-刺槐豆胶软胶囊胶皮的制备工艺", 《食品工业科技》 *

Similar Documents

Publication Publication Date Title
George et al. Guar gum: Versatile natural polymer for drug delivery applications
Nayak et al. Trigonella foenum-graecum L. seed mucilage-gellan mucoadhesive beads for controlled release of metformin HCl
Anwar et al. Alginate-polyvinyl alcohol based interpenetrating polymer network for prolonged drug therapy, optimization and in-vitro characterization
Nayak et al. Tamarind seed polysaccharide–gellan mucoadhesive beads for controlled release of metformin HCl
Nayak et al. Blends of jackfruit seed starch–pectin in the development of mucoadhesive beads containing metformin HCl
Song et al. Self-assembled micelles based on hydrophobically modified quaternized cellulose for drug delivery
Nayak et al. Development of pectinate-ispagula mucilage mucoadhesive beads of metformin HCl by central composite design
Kaloti et al. Kinetics of coacervation transition versus nanoparticle formation in chitosan–sodium tripolyphosphate solutions
CN106543454B (zh) 一种低溶胀可生物降解医用光聚合型水凝胶及其制备方法
Pan et al. Novel multi-responsive and sugarcane bagasse cellulose-based nanogels for controllable release of doxorubicin hydrochloride
Messaoud et al. Influence of internal composition on physicochemical properties of alginate aqueous-core capsules
Kamoun et al. Influence of degree of substitution and folic acid coinitiator on pullulan-HEMA hydrogel properties crosslinked under visible-light initiating system
Ganie et al. Preparation, characterization, release and antianemic studies of guar gum functionalized iron complexes
Malviya et al. Synthesis of Aloevera/Acrylonitrile based Nanoparticles for targeted drug delivery of 5-Aminosalicylic acid
Cassano et al. Preparation, characterization and in vitro activities evaluation of curcumin based microspheres for azathioprine oral delivery
Işıklan et al. Development and characterization of dual sensitive poly (N, N-diethyl acrylamide) grafted alginate microparticles
Chen et al. Chemical modification of alginate via the oxidation-reductive amination reaction for the development of alginate derivative electrospun composite nanofibers
Nayak et al. Particulate matrices of ionotropically gelled alginate-and plant-derived starches for sustained drug release
CN113512236A (zh) 一种氧化刺槐豆胶-卡拉胶微球及其制备方法
Raj et al. Formulation and evaluation of chitosan prazosin beads by ionotropic gelation method
CN106581647A (zh) 一种pH响应胰岛素缓释纳米粒及其制备方法和应用
Panda et al. Process optimization, Formulation and evaluation of hydrogel {Guargum-G-Poly (Acrylamide)} based Doxofylline microbeads
CN114605600B (zh) 一种酯酶响应的两亲性线性聚合物及其制备方法与应用
CN104906040A (zh) K+响应型靶向胞内释药的两亲嵌段共聚物载药胶束及其制备方法
CN111410757B (zh) 一种可降解及环境响应性复合物微凝胶的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20211019

WW01 Invention patent application withdrawn after publication