CN113511672B - 一种铬掺杂硫镓银晶体实现多光子吸收的方法 - Google Patents

一种铬掺杂硫镓银晶体实现多光子吸收的方法 Download PDF

Info

Publication number
CN113511672B
CN113511672B CN202110670042.6A CN202110670042A CN113511672B CN 113511672 B CN113511672 B CN 113511672B CN 202110670042 A CN202110670042 A CN 202110670042A CN 113511672 B CN113511672 B CN 113511672B
Authority
CN
China
Prior art keywords
doped
aggas
powder
absorption
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110670042.6A
Other languages
English (en)
Other versions
CN113511672A (zh
Inventor
彭文豪
陈平
李彬彬
施凯旋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Dianji University
Original Assignee
Shanghai Dianji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Dianji University filed Critical Shanghai Dianji University
Priority to CN202110670042.6A priority Critical patent/CN113511672B/zh
Publication of CN113511672A publication Critical patent/CN113511672A/zh
Application granted granted Critical
Publication of CN113511672B publication Critical patent/CN113511672B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • H01L31/0323Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2 characterised by the doping material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种铬掺杂硫镓银晶体实现多光子吸收的方法,具体通过Cr掺杂在宿主材料AgGaS2的阳离子Ga位,以此形成的半导体化学分子式为AgGa1‑xCrxS2,式中0.008<x<0.1。与现有技术相比,本发明引入一条金属性的半占据中间带,中间带主要由Cr的3d态价电子构成。因为这一金属性的中间带出现,实现了多种低能光子吸收,提高了光生电子空穴对的数量,故其光子能量能够很好地覆盖太阳光谱的可见光范围,有效利用了太阳光,极大地提高了可见光的光学吸收效率,进而有效提升太阳能电池的光电转换效率和光解水制氢活性,因此本材料有望改进传统半导体光学效率低下的问题,并有望成为新一代光催化制氢材料。

Description

一种铬掺杂硫镓银晶体实现多光子吸收的方法
技术领域
本发明涉及半导体光电材料领域,尤其是涉及一种Cr掺杂AgGaS2实现多光子吸收的方法。
背景技术
近年来,人民生活水平不断提高,社会不断发展,各行业对于电能的需求也不断提高,然而,电气能源紧缺却逐渐成为阻碍电气行业稳定发展的关键因素。尽管近几年新能源发展迅猛,但化石能源在我国能源供应中依旧占有主体地位。同时,化石能源所带来的环境污染问题日趋严重,以牺牲环境为代价的社会发展不是长远之计,中国如要可持续发展,就必须在发展与环境之间做好平衡。因此,大力发展清洁能源迫在眉睫。
近年来,新能源和可再生能源快速发展,如核电、风电、太阳能、潮汐能等,但核电和风电对环境和安全都具有十分高的要求,而太阳能具有普遍性,无害且安装便利等优点,故太阳能发展具有广阔前景。目前,太阳能电池主要分为三大类:硅基太阳能电池、化合物薄膜太阳能电池、第三代太阳能电池。而由于硅基太阳能电池制作工艺复杂,成本高,故限制了其自身的发展,而薄膜太阳电池相比硅基太阳电池轻便,但是其效率受限于Shockley-Queisser极限。
第三代太阳电池是一种高效率,低成本的太阳电池,由于中间带的存在,它比单带隙的光子吸收范围更广,理论光电转换效率能突破S-Q极限,因此受到了广泛的关注。目前获得中间带主要有几种方法:第一是设计量子点中间带,缺点是中间带来自导带中的有限电子态,因此缺乏足够的态密度;第二种是高失配合金,但对于高度不匹配合金的生长,需要昂贵的外延或脉冲激光熔化技术。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种Cr掺杂AgGaS2实现多光子吸收的方法,利用过渡金属元素Cr掺杂来引入金属性的半占据中间能带,从而实现半导体材料的多个低能光子吸收,提升光学吸收效率。
作为本技术方案的构思起点,通过杂质引入中间带是目前最佳的提高光学吸收效率的方法。
本发明的目的可以通过以下技术方案来实现:
本申请的目的是保护一种Cr掺杂AgGaS2实现多光子吸收的方法,通过Cr掺杂在宿主材料AgGaS2的阳离子Ga位,以此形成的半导体化学分子式为AgGa1-xCrxS2,式中0.008<x<0.1。x≥0.1时会显著出现杂相,x≤0.008时会因为Cr含量太低,吸收较弱。
进一步优选地,其中x的范围为0.008<x≤0.03。
进一步优选地,其中x的范围为0.01≤x≤0.03,该范围为实验证明的无杂相且吸收最为适宜的区间。
进一步地,所述Cr掺杂在宿主材料AgGaS2的阳离子Ga位的过程为:
S1:按照将化学计量比将Ag粉,Ga块,S粉进行真空烧结,烧结温度范围为700~900℃,得到AgGaS2粉体;
S2:将将化学计量比将Ag粉,Cr粉,S粉进行真空烧结,烧结温度范围为700~900℃,得到AgCrS2粉体;
S3:将S1和S2中真空烧结得到的AgGaS2和AgCrS2粉体打碎,研磨混料后得到理想的粉体材料,进行真空烧结,烧结温度范围为700~900℃,取出,再次研磨,得到AgGa1-xCrxS2
进一步地,S1、S2、S3中真空烧结的过程为:将待烧结物封装于石英玻璃管中,将石英管置于马弗炉中烧结,加热速度为10℃/min,加热至900℃后保温48小时,等待炉内温度都冷却至室温即可取出。
进一步地,Cr掺杂过程中,利用过渡金属元素Cr成键的离域特性引入中间带。
进一步地,Cr掺杂后,Cr在宿主材料中形成金属性的半占据中间带,且具有三重光学吸收,参见图1。
进一步地,Cr掺杂后,金属性中间带由Cr-3d、Ag-4d态和S-3p态组成。
进一步地,Cr掺杂后,金属性中间带为孤立结构。
进一步地,Cr掺杂后,得到的AgGa1-xCrxS2半导体材料随着掺杂元素Cr的浓度升高,光学吸收越强。
与现有技术相比,本发明具有以下技术优势:
1)黄铜矿结构的硫化物大多都具有较低的带宽,这对于形成理想的中间带材料具有十分重要的作用。本发明针对Si基半导体光学吸收效率低和光解水活性低的问题,通过过渡金属元素Cr掺杂AgGaS2黄铜矿材料,引入一条金属性的半占据中间带,中间带主要由Cr的3d态价电子构成。因为这一金属性的中间带出现,实现了多种低能光子吸收,提高了光生电子空穴对的数量,故其光子能量能够很好地覆盖太阳光谱的可见光范围,有效利用了太阳光,极大地提高了可见光的光学吸收效率,进而有效提升太阳能电池的光电转换效率和光解水制氢活性。因此本材料有望改进传统半导体光学效率低下的问题,并有望成为新一代光催化制氢材料。
2)本技术方案中AgGa1-xCrxS2材料的合成方法为二步法,减少了杂质生成和降低了反应温度,有利于工业化推广改善目前太阳能电池光学吸收效率低下和光催化领域中光解水制氢活性的问题。
附图说明
图1为金属性中间带三重光学吸收示意图。
图2为AgGa1-xCrxS2(x=0,0.01,0.02,0.03)系列样品的XRD 图谱。
图3为AgGaS2末掺杂(左)和已掺杂(右)样品的能带结构图。
图4为Cr掺杂AgGaS2的电子分波态密度图(PDOS)。
图5为不同掺杂浓度AgGa1-xCrxS2的太阳吸收光谱。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
在技术方案的构思上,发现过渡金属元素有许多种,因此如何找到一种合适的元素掺杂到AgGaS2并得到良好的光学性质是关键,该构思过程是本领域人员需要重视的。申请人经过大量实验研究,最终发现过渡金属元素Cr掺杂AgGaS2实现多光子吸收可以达到提高光学吸收效率的目的。
本发明所涉及的半导体材料为AgGaS2,是多元硫族黄铜矿化合物,是迄今为止最主要的近红外非线性光学材料,其在光催化、光电子以及生物传感器等领域都有着广阔的应用前景。在太阳能电池领域,AgGaS2半导体材料具有与太阳光谱非常匹配的直接带隙,其光学带隙值约为2.51-2.73eV,接近理想中间带半导体材料的禁带宽度,并且对可见光有较高的吸收系数以及较好的热、电、环境稳定性。又因为AgGaS2具有宽带隙,高透光率和低双折射率,因此,通过选择合适的方法来扩大AgGaS2对太阳光谱的吸收范围,并以此来制成高效率太阳能电池具有重要的实际意义。而在光催化领域,AgGaS2半导体材料在光催化制氢和光催化降解有机染料这两个方面有重要应用。在光催化过程中,经过光的照射,半导体内部电子被激发,产生电子-空穴对,部分电子和空穴会发生复合,另外一部分电子和空穴会发生分离,分离出来的光生电子到催化剂表面发生还原反应,将氢离子还原为氢气,而被分离出来的空穴到催化剂表面发生氧化反应,将水氧化成氧气。中国发明专利(CN110422873A)公开了利用元素Sn掺杂AgGaS2引入一条杂质能带以提高光学吸收能力。
然而,根据目前国内外研究现状,还没有关于选择过渡金属元素Cr掺杂AgGaS2来实现多光子吸收的报道。本发明经过大量的理论研究和实验探索,发现过渡金属元素Cr取代AgGaS2的Ga阳离子位可得到一条半占据态的金属性中间带,并且随着掺杂浓度的提高,在可见光低能范围内出现多个吸收峰,这说明由于该中间带的存在实现了不同能量的光子吸收,并能导致电子和空穴对数目增加。因此该材料有望改进传统半导体光学效率低下的问题,并有望成为新一代光催化制氢材料。
本发明利用真空固态反应烧结方法制备Cr掺杂的化合物,并通过能带分析,态密度分析和光谱分析验证了AgGa1-xCrxS2掺杂化合物的形成,观察到多光子的吸收,并且在掺杂过程中无其他杂质生成相,其良好的光学吸收性质达到了本发明的预期。
实施例1~3
AgGa1-xCrxS2(x=0,0.01,0.02,0.03)材料采用真空固态烧结反应方法制备,具体流程如下所述:
步骤一:首先按照将化学计量比将Ag粉(4N),Ga块(5N),S粉(5N)真空封装于石英玻璃管中,然后将石英管置于马弗炉中烧结,烧结温度范围为700~900℃,加热速度为10℃/min,在900℃保温48小时之后,等待炉内温度都冷却至室温即可将实验样品取出,将试样做好标记装袋。
步骤二:将将化学计量比将Ag粉(4N),Cr粉(4N),S粉(5N)真空封装于石英玻璃管中,然后将石英管置于马弗炉中烧结,烧结温度范围为700~900℃,加热速度为10℃/min,在900℃保温48小时之后,等待炉内温度都冷却至室温即可将实验样品取出,将试样做好标记装袋。
步骤三:真空烧结得到的反应产物是AgGaS2和AgCrS2粉体,将所得样品打碎,研磨混料后得到理想的粉体材料,并将其重新真空封装,升温至900℃保温后再次烧结至最高温并保温48小时,等待炉内温度都冷却至室温即可将实验样品取出,于玛瑙研钵中再次研磨,得到最终的样品。
材料的X射线衍射图谱采用Bruker D8 ADVANCE X射线衍射仪测得,采用 Cu Ka1射线(0.15405 nm),扫描电压为40 kV,扫描电流为40 mA。材料的紫外-可见-近红外吸收光谱由在Hitachi U4100 UV-Vis-NIR分光光度计上测得。
制备的AgGa1-xCrxS2半导体材料表征
AgGa1-xCrxS2(x=0,0.01,0.02,0.03)粉末样品XRD图谱与标准卡片(JCPDS #27-0615)一致(附图2),表明所制得的样品无其他杂质相,且Cr已成功掺杂到阳离子Ga位。对样品粉末进行能带分析,通过未掺杂前的宿主材料能带图与掺杂后样品能带图(附图3)的比较可以看出,掺杂样品能带图中出现了金属性的半占据中间带,且为孤立的。
从样品粉末的分波态密度图(PDOS)中可以看到(附图4),引入的中间带主要由Cr的3d态,Ag的4d态和S的3p态组成(黑—s态,红—p态,蓝—d态)。从样品粉末的光学吸收图(附图5)可以看出在可见光范围内,低能和高能区域都可以观察到有额外的吸收峰出现,并且从图中可以看出,Cr掺杂后的样品与未掺杂前样品相比其吸收系数明显提高,并且随着掺杂浓度的升高,吸收系数也随之上升,这证明了该样品存在多种能量光子的吸收。
综上所述,AgGaS2材料光学吸收增强的原因是过渡金属元素Cr掺杂引入了金属性的半占据中间带,而这金属性的半占据中间带主要是由过渡金属元素Cr的d态电子组成的,并且在掺杂过程中无其他杂质相生成。从吸收光谱可以看出掺杂后的吸收曲线出现了额外的吸收峰,因而证明了存在不同能量的光子吸收,又因为存在多光子的吸收,电子和空穴对的数量增加。因此,通过在AgGaS2中掺杂Cr元素制作高效光子吸收的太阳能电池材料和通过多光子吸收来提高光解水制氢活性是可行的。
从AgGa1-xCrxS2粉末样品的能带图可以看到(附图4)由于Cr的掺杂,样品能带图中出现了一个金属性的半占据中间带,且主要由过渡金属Cr的d态价电子组成,这让掺杂后的材料吸收多光子成为可能。从光学吸收图(附图5可以看出,吸收曲线在低能和高能范围内都出现了明显的吸收峰,掺杂体系与未掺杂体系相比吸收曲线明显上升,在可见光范围内吸收系数明显增强,这恰恰说明了该金属性的半占据中间带导致了多光子的吸收,使得电子空穴对数目增多,从而令吸收系数大大提升。并且随着掺杂浓度的增大,吸收曲线逐渐上升,吸收系数明显提高。
本发明提供了一种新的实现AgGaS2多光子吸收的方法,成功增大了其在太阳光谱的吸收范围,提高可见光的利用效率,故该材料在太阳能电池、光催化光解水制氢、光电传感器等领域具有十分巨大的应用前景。
对比例1
CN110422873A公开了一种AgGaS2基中间带半导体材料及其制备方法,利用VI族元素Sn掺杂本征半导体AgGaS2的Ga位,通过真空固相反应烧结工艺,在母体化合物AgGaS2的Ga位掺杂元素Sn形成了杂质带;相比于传统太阳能电池材料,上述材料拓宽了吸收光谱的能力。
与本发明对应的实施例1~3相比,实施例1~3实现AgGaS2半导体多光子吸收的方法中,利用过度金属元素Cr掺杂宿主材料,引入一条金属性的半占据中间带,可有效抑制非辐射复合,并通过成相稳定性分析进一步确保中间带是由过渡金属元素Cr掺杂所引起的而并非其他杂质相,从而证明了是由于该金属性中间带的引入实现了多光子的吸收,增加了电子空穴对的数目,并且随着掺杂浓度的升高其光子吸收能力也随之增强,这对于提高太阳能吸收效率和光解水制氢活性上具有重要作用。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (6)

1.一种Cr掺杂AgGaS2实现多光子吸收的方法,其特征在于,通过Cr掺杂在宿主材料AgGaS2的阳离子Ga位,以此形成的半导体化学分子式为AgGa1-xCrxS2,式中0.008<x<0.1;
Cr掺杂过程中,利用过渡金属元素Cr成键的离域特性引入中间带;
Cr掺杂后,Cr在宿主材料中形成金属性的半占据中间带,且具有三重光学吸收;
Cr掺杂后,金属性中间带由Cr-3d、Ag-4d态和S-3p态组成;
Cr掺杂后,金属性中间带为孤立结构。
2.根据权利要求1所述的一种Cr掺杂AgGaS2实现多光子吸收的方法,其特征在于,其中x的范围为0.008<x≤0.03。
3.根据权利要求2所述的一种Cr掺杂AgGaS2实现多光子吸收的方法,其特征在于,其中x的范围为0.01≤x≤0.03。
4.根据权利要求1所述的一种Cr掺杂AgGaS2实现多光子吸收的方法,其特征在于,所述Cr掺杂在宿主材料AgGaS2的阳离子Ga位的过程为:
S1:按照将化学计量比将Ag粉,Ga块,S粉进行真空烧结,烧结温度范围为700~900℃,得到AgGaS2粉体;
S2:将将化学计量比将Ag粉,Cr粉,S粉进行真空烧结,烧结温度范围为700~900℃,得到AgCrS2粉体;
S3:将S1和S2中真空烧结得到的AgGaS2和AgCrS2粉体打碎,研磨混料后进行真空烧结,烧结温度范围为700~900℃,取出,再次研磨,得到AgGa1-xCrxS2
5.根据权利要求4所述的一种Cr掺杂AgGaS2实现多光子吸收的方法,其特征在于,S1、S2、S3中真空烧结的过程为:将待烧结物封装于石英玻璃管中,将石英管置于马弗炉中烧结,加热速度为10℃/min,加热至900℃后保温48小时,等待炉内温度都冷却至室温即可取出。
6.根据权利要求1所述的一种Cr掺杂AgGaS2实现多光子吸收的方法,其特征在于,Cr掺杂后,得到的AgGa1-xCrxS2半导体材料随着掺杂元素Cr的浓度升高,光学吸收越强。
CN202110670042.6A 2021-06-17 2021-06-17 一种铬掺杂硫镓银晶体实现多光子吸收的方法 Active CN113511672B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110670042.6A CN113511672B (zh) 2021-06-17 2021-06-17 一种铬掺杂硫镓银晶体实现多光子吸收的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110670042.6A CN113511672B (zh) 2021-06-17 2021-06-17 一种铬掺杂硫镓银晶体实现多光子吸收的方法

Publications (2)

Publication Number Publication Date
CN113511672A CN113511672A (zh) 2021-10-19
CN113511672B true CN113511672B (zh) 2022-11-15

Family

ID=78065756

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110670042.6A Active CN113511672B (zh) 2021-06-17 2021-06-17 一种铬掺杂硫镓银晶体实现多光子吸收的方法

Country Status (1)

Country Link
CN (1) CN113511672B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102326257A (zh) * 2009-02-20 2012-01-18 国立大学法人京都工芸纤维大学 光吸收材料及使用该光吸收材料的光电转换元件
CN103633165B (zh) * 2013-11-27 2016-02-10 中国科学院上海硅酸盐研究所 黄铜矿结构中间带太阳能电池吸收层材料及其制备方法
CN110422873B (zh) * 2019-07-08 2022-04-05 上海电机学院 一种AgGaS2基中间带半导体材料及其制备方法

Also Published As

Publication number Publication date
CN113511672A (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
Ma et al. Doping in inorganic perovskite for photovoltaic application
CN107138161B (zh) 一种掺杂黑色二氧化钛的制备方法
Sheng et al. Mixed (5-AVA) x MA 1− x PbI 3− y (BF 4) y perovskites enhance the photovoltaic performance of hole-conductor-free printable mesoscopic solar cells
CN106865506B (zh) 一种组成可控的镍钴化合物纳米线及其制备方法与应用
Wang et al. Electrodeposition of Mg doped ZnO thin film for the window layer of CIGS solar cell
CN105289657B (zh) 石墨烯‑硫化锑纳米棒复合可见光催化剂的制备方法
CN112480911B (zh) 一种高荧光效率无机非铅钙钛矿材料及制备方法
Shah et al. Recent advances and emerging trends of rare-earth-ion doped spectral conversion nanomaterials in perovskite solar cells
Al-Zahrani et al. Enhanced photoelectrochemical performance of Bi2S3/Ag2S/ZnO novel ternary heterostructure nanorods
CN104810159B (zh) 一种锡掺杂磷化铟量子点敏化太阳能电池的制备方法
CN112941557A (zh) 一种Ce-BiVO4/g-C3N4光解水制氢复合材料及其制备方法
Khakpour et al. Synthesis and deposition of hematite nanoparticles on Fluorine-doped Tin Oxide (FTO) glass substrates
Ding et al. Electrochemical synthesis of annealing-free and highly stable black-phase CsPbI 3 perovskite
Santos et al. Prospects of copper–bismuth chalcogenide absorbers for photovoltaics and photoelectrocatalysis
Liu et al. Constructing 1D/0D Sb2S3/Cd0. 6Zn0. 4S S-scheme heterojunction by vapor transport deposition and in-situ hydrothermal strategy towards photoelectrochemical water splitting
CN113511672B (zh) 一种铬掺杂硫镓银晶体实现多光子吸收的方法
Kumari et al. Zinc Oxide: A fascinating material for photovoltaic applications
CN110965073B (zh) 一种含缺陷的wo3光电极的制备方法
CN116532135A (zh) 钴离子掺杂改性的上转换光催化剂及其制备方法与应用
Li et al. Vitamin needed: Lanthanides in optoelectronic applications of metal halide perovskites
CN110422873B (zh) 一种AgGaS2基中间带半导体材料及其制备方法
CN101935880A (zh) 新型硫属化合物半导体材料
CN107988615A (zh) 一种氮化碳修饰ZnO/CdS光阳极材料的制备及应用
CN102623567B (zh) Cu2FeSnS4纳米晶薄膜的水浴制备方法
He et al. Influence of Mg2+ substitution for Sn4+ on electronic structure and optical properties of SnO2

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant