CN113510239A - 一种基于银包覆的金纳米棒、其制备方法及应用 - Google Patents

一种基于银包覆的金纳米棒、其制备方法及应用 Download PDF

Info

Publication number
CN113510239A
CN113510239A CN202110766154.1A CN202110766154A CN113510239A CN 113510239 A CN113510239 A CN 113510239A CN 202110766154 A CN202110766154 A CN 202110766154A CN 113510239 A CN113510239 A CN 113510239A
Authority
CN
China
Prior art keywords
solution
gold nanorods
concentration
silver
agno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110766154.1A
Other languages
English (en)
Other versions
CN113510239B (zh
Inventor
高凤丽
王伍璇
黄决策
张丽文
王明玥
胡康阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huanghe Science and Technology College
Original Assignee
Huanghe Science and Technology College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huanghe Science and Technology College filed Critical Huanghe Science and Technology College
Priority to CN202110766154.1A priority Critical patent/CN113510239B/zh
Publication of CN113510239A publication Critical patent/CN113510239A/zh
Application granted granted Critical
Publication of CN113510239B publication Critical patent/CN113510239B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Chemically Coating (AREA)

Abstract

本发明公开一种基于银包覆的金纳米棒、其制备方法及应用,属于环境功能材料及有害离子检测技术领域,制备过程如下:以金纳米棒作为模板,将制备的金纳米棒离心浓缩,重新溶解于5mM的CTAB溶液中,依次迅速加入0.01M AgNO3(10‑30μL)和与AgNO3等体积的0.1M AA溶液,混合均匀。随后加入2μL 1M NaOH,混合均匀后,震荡。通过改变加入的AgNO3的体积,可以得到不同厚度的Au@Ag NR。本发明制备的材料对硫离子有很好还原能力,且该材料绿色环保,有很好的循环性,还原效率高,不会造成污染。

Description

一种基于银包覆的金纳米棒、其制备方法及应用
技术领域
本发明属于环境功能材料及有害离子检测领域,具体公开了一种银包裹的金纳米棒、其制备方法及应用。
背景技术
目前,各种形式的污染直接影响着人类赖以生存的生态环境,威胁着人类的健康。环境污染的监测及其防治已成为国家加快现代化步伐,坚持可持续发展战略的重要环节,而对工业污水中污染物的检测及处理正是此环节中的关键。近年来,含硫污水的排放造成了严重的后果:水体含有的硫化物不仅直接影响人体的健康, 还会和水体或空气中的某些物质发生化学反应,生成H2S、SO2等有害气体,它们不但会污染大气,还会造成酸雨等一系列较严重的污染。本研究项目旨在实现一种可视化,高效,便捷的检测溶液中S2-的传感检测方式。通过使用制备的银包覆的金纳米棒(即Au@Ag NR)作为纳米探针,引起Au-Ag纳米探针光学信号发生变化。通过监测纳米探针的紫外光谱的位移和颜色变化来实时快速高效的检测S2-。建立实验理想模型,表明通过动力学方法测量纳米探针的光谱位移来间接确定硫离子浓度,首次展示纳米级别硫离子在水质中水平局部变化的实时图谱。
银包金纳米金棒(Au@Ag NR)具有极高的消光系数和强的距离相关光学特性,直径为 1~100 nm 的金的缔合胶体,具有非常独特的物理化学性质,在各种形态的金纳米粒的研究中,银包金金纳米棒因具有优异的光学和催化性能,在化学、生物、医药等领域具有广泛的应用前景。
发明内容
本发明的目的在于提供一种银包裹的金纳米棒、其制备方法及应用。通过种子法制备了金纳米棒,利用制备的银包覆的金纳米棒(Au@Ag NR)作为探针绘制活细胞中硫化物的动力学映射。在这个纳米探针中,Ag壳作为与硫化物反应的传感剂,而AuNR核具有信号报告器的作用,当硫化银形成时,其光谱会移到更长的波长。虽然硫化银形成反应是不可逆的,就像大多数报道的硫化氢传感反应一样,本研究在实验和理论上证明了反应速率,因此,Au-Ag核壳纳米粒子探针的诱导光谱位移的速率与周围的硫化物浓度有关。
本发明通过透射电镜证明了得到的纳米复合结构具有棒状结构,具有良好的分散性和均一性。通过XRD表征了复合材料的晶体结构。同时通过紫外-可见吸收光谱证明了复合材料对硫离子的吸附和还原作用。
基于上述目的,本发明采取的技术方案如下:
一种银包裹的金纳米棒的制备方法,包括如下步骤:
(1)金纳米棒的制备
金纳米棒(Au nanorods, AuNRs)的制备方法采用利用种子介导生长法。首先是制备种子,取9.75mL CTAB溶液加入0.25mLHAuCl4溶液,0.6mL冰 NaBH4溶液,溶液变为茶色后置于烘箱,在23℃~30℃烘箱内静置生长2h,得到晶种溶液 (seed solution)。
向40mLCTAB溶液加入 2mL 的 HAuCl4 溶液和0.4mL AgNO3溶液(VAgNO3),加入0.32mL、浓度为1mol/L抗坏血酸溶液(AA)(VAA)和 0.05ml 晶种溶液(VSEED)搅拌均匀 2min,23℃~30℃避光静置生长24 h,制备大长径比金纳米棒。
(2)银包裹的金纳米棒的制备
将制备的金纳米棒离心浓缩两倍,将制备的金纳米棒原溶液离心浓缩至原体积的二分之一,重新溶解于和浓缩后等体积的CTAB溶液中,依次迅速加入0.01mol/L AgNO3(10-30uL)和与AgNO3等体积的0.1mol/L AA溶液,混合均匀,随后加入2μL 1mol/L NaOH溶液调节pH为8~9,混合均匀后,55~65℃震荡25min~35min,通过改变加入的AgNO3的体积,可以得到不同厚度的Au@Ag NR。
进一步地,所述步骤(1)中CTAB的浓度为0.01mol/L,冰 NaBH4溶液的浓度为0.01mol/L,步骤(2)中CTAB的浓度为5m mol/L,步骤(1)和步骤(2)中氯金酸的浓度均为0.01mol/L,AgNO3溶液(VAgNO3)的浓度均为0 .01mol/L。
进一步地,所述冰硼氢化钠的制备过程如下:称取硼氢化钠0.01134g,加入提前准备好的30ml冰纯水中,直接摇晃混匀后,滴入试管中使用。
上述制备方法制得的银包裹的金纳米棒。
上述银包裹的金纳米棒在作为2价硫离子检测探针以及吸附2价硫离子中的应用。
本发明通过种子法制备的纳米金棒,同时实现化学反应方法得到复合银包裹的金纳米棒材料, 该材料对硫离子有明显的吸收和还原作用,避免了二次污染,材料有良好的循环性,为含过重硫废水的处理提供了绿色有效的方法。
附图说明
图1为实施例1制得的金纳米棒的电镜扫描照片;
图2为实施例2不同浓度(0-50μL)的硝酸银对Au@Ag NR的紫外-可见光谱图;
图3为实施例3加入5μL~50μL不同体积的0.01M AgNO3得到的不同包裹银层厚度的金纳米棒在单位长度100nm的电镜扫描照片;a、b、c、d、e分别代表加入0.01M AgNO3 5μL、15uL、30μL、45μL、 50μL时得到的Au@Ag NR的TEM照片;
图4为实施例3不同浓度(5-50ul)的硝酸银对Au@Ag NR的紫外-可见光谱图; a图代表不同浓度(5-50ul)的硝酸银对S2-的加入所引起的Au@Ag NR的紫外-可见光谱图;b图代表加入不同浓度(5-50ul)的硝酸银的纳米金棒前后紫外-可见光谱图波长的差值大小;
图5为实施例4添加不同硫离子对Au@Ag NR的紫外-可见光谱图;a.硫离子的浓度分别为0,50,100,150,200,250,300,350,400(单位μM)及其标准曲线;b.图a中标准曲线的放大图;
图6为实施例5 Au@Ag NR溶液在765 nm处加入不同离子前后(S2-,NH3,SO4 2-,AcO-,Cl-,Na+,Cu2+,Fe3+等离子)吸收峰波长的变化差值(加入离子后吸收峰的波长减去加入前的Au@Ag NR溶液在765 nm处的吸收峰波长)。
具体实施方式
下面对本发明的实施方案进行详细的说明,但不应作为对本发明技术方案的限制。
实施例1
一种银包裹的金纳米棒的制备方法,包括如下步骤:
(1)纳米金棒的制备:
金纳米棒(Au nanorods, AuNRs)的制备方法采用利用种子介导生长法。首先是制备种子,取9.75mL 浓度为0.1mol·L-1 CTAB(溶于纯水配制而成),向CTAB溶液中加入0.25mL浓度为0.01mol·L-1HAuCl4溶液、0.6mL浓度为0.01 mol·L-1的冰 NaBH4溶液,溶液变为茶色后置于烘箱,在30℃烘箱内静置生长2h,制备待用晶种溶液(seed solution)。
向40mL浓度为0.1mol·L-1CTAB加入2.0 mL浓度为0.01mol·L-1的 HAuCl4 溶液和的0.4 mL 浓度为0.01mol·L-1 AgNO3溶液(VAgNO3),加入0.32mL 浓度为1 mol·L-1 的 抗坏血酸溶液(AA)和 0.05 mL 晶种溶液搅拌(90r/min)均匀 2min,剧烈搅拌1分钟后(180r/min),30℃烘箱内静置生长24 h,制备大长径比金纳米棒。将产品离心,用超纯水在离心机下洗涤3~4次,并在60℃的干燥箱内进行干燥后取出进行扫描电镜测试,结果如图1所示,所制备的金纳米棒的尺寸为长55 nm,宽20nm,长径比为2.75。金纳米棒的制备需在23℃以上的室温的环境内完成实验操作,防止CTAB析出。所述冰硼氢化钠的制备过程如下:称取硼氢化钠0.01134g,加入提前准备好的30ml冰纯水中,直接摇晃混匀后,滴入试管中使用。硼氢化钠制备需要添加冰水防止过快水解。
实施例2
将制备的金纳米棒(原溶液40mL)离心后浓缩两倍(现溶液20mL),重新溶解于20mL的CTAB(5mmol·L-1)溶液中,分别加入0 μL、5 μL、10μL 、15 μL、20μL 、25μL 、30 μL、35μL、40 μL 、45 μL 、50 μL的 0.01 mol/L AgNO3和与AgNO3等体积的0.1 mol/L AA溶液,混合均匀。随后加入2μL 1 mol/L NaOH(调节pH为8~9,能让银更快的沉到金棒表面),混合均匀后,60℃震荡30min,测试不同加入体积AgNO3的紫外-可见光谱图,如图2所示,通过对AgNO3加入体积的筛选,从吸收度来看30μL 0.01 mol/L AgNO3在中间位置,且接近1.0,便于后期计算包裹银前后变化的波长差值。从波峰来看,30μL0.01 mol/L AgNO3处对应纳米金棒的两峰值较为合理,不出现极度过高和偏低的现象。
实施例3
银包裹的金纳米棒的制备:
将制备的金纳米棒(原溶液40mL)离心后浓缩两倍(现溶液20mL),重新溶解于20mL的CTAB (5mmol·L-1) 溶液中,依次迅速加入5 μL、15μL、30 μL、μL 、50 μL 0.01M AgNO3和与AgNO3等体积的0.1 mol/L AA溶液,混合均匀。随后加入2μL 1M NaOH,混合均匀后,60℃震荡30min,得到不同银包裹层厚度的金纳米棒。通过TEM表征了不同硝酸银体积下的Au@Ag的形貌,如图3所示,加入5 μL、15μL、30 μL、45μL 、50 μL 0.01M AgNO3时得到的Au@Ag NR的TEM照片,包裹的银层厚度为2nm、12nm、15nm、20nm、24nm,产品尺寸大小分别为50nm、62nm、56nm、73nm、80nm,通过图3可知通过改变加入的AgNO3的体积,可以得到不同厚度的Au@Ag NR,当加入AgNO3的体积越多,在金棒表面沉积的银纳米壳层越厚。对得到的不同银包裹层的Au@Ag NR进行紫外测试,如图4所示,随着银壳层厚度的增加,Au@Ag的紫外最大吸收峰发生了不同程度的红移现象与单纯的金纳米棒相比。
实施例4
硫离子的检测:
取加入30μL浓度为0.01mol/L AgNO3制备的1mL Au@Ag NR离心,溶解于2mL超纯水中,向其中加入不同浓度的S2-,使其在溶液中体积间隔浓度梯度分别是50μL,具体地对应S2-在溶液中的浓度0、50μM、100μM、150μM、200μM、250μM、300μM、350μM、400μM,混合30min后离心,进行紫外光谱扫描。如图5所示,随着 S2-加入当量的增加,Au@Ag NR和S2-进行反应,反应30分钟后进行紫外-可见光光谱扫描,测吸光度,直到吸光度没有明显变化为止,以浓度为横坐标,吸光度之比为纵坐标进行做图,得如图所述的线性方程。从图5可以看出,随着硫离子的加入,Au@Ag探针的紫外吸收逐渐发生了红移现象与不加入硫离子相比。这是因为,Ag与溶液中的S2-反应(4Ag+2S2-+O2+4H2O→2Ag2S+4OH-),生成Ag2S附着在Au@Ag探针表面所引起的。而且,随着S2-浓度越大,所生成的Ag2S越来越多的附着在探针表面,所以如图中所示会引起最大的Δλ(波长变化)可达到60nm。将由S2-加入所引起的波长变化与其浓度做成了一条线性曲线,发现硫离子浓度范围0-300μM期间,其浓度与波长位移变化具有良好的线性关系,其线性方程为y=2.43x+0.18,经计算此方法对硫离子的检出限为0.2×10-6mol/L。
实施例5
硫离子的特异性检测:
为了评价Au@Ag NR在其它离子存在下对S2-的选择性,将体积均为100μL、浓度均为200μM的NH3,SO4 2-,S2O3 2-,AcO-,Cl-,Na+,Cu2+,Fe3+等不同离子分别加入3mL Au@Ag NR原溶液(由30μL浓度为0.01mol/L AgNO3制备而成)混合反应30min,离心,进行紫外光谱扫描。同时也将100μL 、10μM的S2-加入3mL Au@Ag NR原溶液(由30μL浓度为0.01mol/L AgNO3制备而成)混合反应30min,之后进行紫外光谱扫描。如图6所示,在干扰离子浓度比S2-浓度高的出20倍的情况下,Au@Ag NR探针溶液在765 nm处对S2-的所引起的波长位移变化远远大于其它干扰离子。干扰离子几乎对Au@Ag NR探针没有引起任何波长位移的变化。表明所制备的探针对硫离子具有较高的特异性,可以用来实施特异性检测硫离子。
以上所述是本发明的优选实施方案,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应该视为本发明的保护范围。

Claims (7)

1.一种银包裹的金纳米棒的制备方法,其特征在于,包括如下步骤:
(1)金纳米棒的制备:利用种子介导生长法制备金纳米棒;
(2)银包裹的金纳米棒的制备:将制备的金纳米棒原溶液离心浓缩至原体积的二分之一,重新溶解于和浓缩后等体积的CTAB溶液中,加入10-30μL AgNO3和与AgNO3等体积的抗坏血酸溶液,混合均匀,随后加入NaOH溶液调节pH为8~9,混合均匀后,55~65℃震荡25min~35min得到不同厚度的银包裹的金纳米棒。
2.根据权利要求1所述银包裹的金纳米棒的制备方法,其特征在于,步骤(1)的具体过程如下:
S1.首先制备晶种溶液,取9.75ml CTAB溶液,向CTAB溶液中加入0.25mL HAuCl4溶液、0.6mL冰 NaBH4溶液,溶液变为茶色后置于烘箱,在23℃~30℃烘箱内静置生长2h,得到晶种溶液;
S2.向40mL CTAB溶液中加入2.0 mL HAuCl4 溶液和0.4 mL AgNO3溶液,加入0.32mL抗坏血酸溶液和 0.05 mL 晶种溶液搅拌均匀,23℃~30℃避光静置生长24 h。
3.根据权利要求1所述银包裹的金纳米棒的制备方法,其特征在于,步骤(2)中CTAB溶液浓度为5mmol/L,抗坏血酸溶液浓度为0.1mol/L,AgNO3浓度为0.01mol/L。
4.根据权利要求2所述银包裹的金纳米棒的制备方法,其特征在于,所述步骤S1中,冰NaBH4溶液的浓度为0 .01mol/L,步骤S2中,AgNO3溶液的浓度为0 .01mol/L,抗坏血酸溶液的浓度为1mol/L,步骤S1和S2中CTAB的浓度均为0.1mol/L,氯金酸的浓度均为0.01mol/L。
5.根据权利要求2所述银包裹的金纳米棒的制备方法,其特征在于,所述冰硼氢化钠的制备过程如下:称取硼氢化钠0.01134g,加入提前准备好的30ml冰纯水中,直接摇晃混匀后,滴入试管中使用。
6.权利要求1至5任一所述的制备方法制得的银包裹的金纳米棒。
7.权利要求6所述银包裹的金纳米棒在作为2价硫离子检测探针以及吸附2价硫离子中的应用。
CN202110766154.1A 2021-07-07 2021-07-07 一种基于银包覆的金纳米棒、其制备方法及应用 Expired - Fee Related CN113510239B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110766154.1A CN113510239B (zh) 2021-07-07 2021-07-07 一种基于银包覆的金纳米棒、其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110766154.1A CN113510239B (zh) 2021-07-07 2021-07-07 一种基于银包覆的金纳米棒、其制备方法及应用

Publications (2)

Publication Number Publication Date
CN113510239A true CN113510239A (zh) 2021-10-19
CN113510239B CN113510239B (zh) 2022-12-09

Family

ID=78066688

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110766154.1A Expired - Fee Related CN113510239B (zh) 2021-07-07 2021-07-07 一种基于银包覆的金纳米棒、其制备方法及应用

Country Status (1)

Country Link
CN (1) CN113510239B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023097664A1 (zh) * 2021-12-03 2023-06-08 深圳先进技术研究院 机器人辅助纳米晶自动表征加速材料的智能化逆向设计

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068448A (ja) * 2003-08-25 2005-03-17 Mitsubishi Materials Corp 銀含有金ナノロッドとその製造方法等
WO2009096569A1 (ja) * 2008-02-01 2009-08-06 Kyushu University, National University Corporation 金属ナノ材料の製造方法およびそれにより得られる金属ナノ材料
JP2010255037A (ja) * 2009-04-23 2010-11-11 Chung-Shan Inst Of Science & Technology Armaments Bureau Ministry Of National Defense 銀ナノワイヤーの連続的製造方法
JP2013057605A (ja) * 2011-09-08 2013-03-28 Kyushu Univ 銀シェル金ナノロッドを用いる分析方法
CN104209533A (zh) * 2014-07-21 2014-12-17 苏州大学 一种快速制备金纳米棒的方法
US20160082418A1 (en) * 2014-09-19 2016-03-24 Georgia Tech Research Corporation Silver nanowires, methods of making silver nanowires, core-shell nanostructures, methods of making core-shell nanostructures, core-frame nanostructures, methods of making core-frame nanostructures
US20160153975A1 (en) * 2013-10-15 2016-06-02 Board Of Trustees Of The University Of Arkansas Nanocomposites, methods of making same, and applications of same for multicolor surface enhanced raman spectroscopy (sers) detections
CN105842181A (zh) * 2016-06-03 2016-08-10 盐城工学院 一种基于金纳米棒检测氰根离子的方法
CN106404765A (zh) * 2016-08-30 2017-02-15 中南林业科技大学 银包金纳米棒比色探针的制备方法及其检测铜离子的方法
WO2018069646A1 (fr) * 2016-10-13 2018-04-19 Universite Paris Diderot Synthese de nanoparticules cœur-coquille et applications de ces nanoparticules pour la spectroscopie raman exaltee de surface
CN108672716A (zh) * 2018-05-23 2018-10-19 厦门斯贝克科技有限责任公司 一种银包金纳米棒的制备方法
CN112823978A (zh) * 2020-12-30 2021-05-21 杭州苏铂科技有限公司 一种银包覆金纳米星的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068448A (ja) * 2003-08-25 2005-03-17 Mitsubishi Materials Corp 銀含有金ナノロッドとその製造方法等
WO2009096569A1 (ja) * 2008-02-01 2009-08-06 Kyushu University, National University Corporation 金属ナノ材料の製造方法およびそれにより得られる金属ナノ材料
JP2010255037A (ja) * 2009-04-23 2010-11-11 Chung-Shan Inst Of Science & Technology Armaments Bureau Ministry Of National Defense 銀ナノワイヤーの連続的製造方法
JP2013057605A (ja) * 2011-09-08 2013-03-28 Kyushu Univ 銀シェル金ナノロッドを用いる分析方法
US20160153975A1 (en) * 2013-10-15 2016-06-02 Board Of Trustees Of The University Of Arkansas Nanocomposites, methods of making same, and applications of same for multicolor surface enhanced raman spectroscopy (sers) detections
CN104209533A (zh) * 2014-07-21 2014-12-17 苏州大学 一种快速制备金纳米棒的方法
US20160082418A1 (en) * 2014-09-19 2016-03-24 Georgia Tech Research Corporation Silver nanowires, methods of making silver nanowires, core-shell nanostructures, methods of making core-shell nanostructures, core-frame nanostructures, methods of making core-frame nanostructures
CN105842181A (zh) * 2016-06-03 2016-08-10 盐城工学院 一种基于金纳米棒检测氰根离子的方法
CN106404765A (zh) * 2016-08-30 2017-02-15 中南林业科技大学 银包金纳米棒比色探针的制备方法及其检测铜离子的方法
WO2018069646A1 (fr) * 2016-10-13 2018-04-19 Universite Paris Diderot Synthese de nanoparticules cœur-coquille et applications de ces nanoparticules pour la spectroscopie raman exaltee de surface
CN108672716A (zh) * 2018-05-23 2018-10-19 厦门斯贝克科技有限责任公司 一种银包金纳米棒的制备方法
CN112823978A (zh) * 2020-12-30 2021-05-21 杭州苏铂科技有限公司 一种银包覆金纳米星的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WEIJUAN LIU等: "Shell surface sulfidation mediated the plasmonic response of Au@Ag NPs for colorimetric sensing of sulfide ions and sulfur", 《APPLIED SURFACE SCIENCE》 *
张艳萍等: "核壳型Au-Ag纳米材料的合成及其光学性能表征", 《广东化工》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023097664A1 (zh) * 2021-12-03 2023-06-08 深圳先进技术研究院 机器人辅助纳米晶自动表征加速材料的智能化逆向设计

Also Published As

Publication number Publication date
CN113510239B (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
Rao et al. Gamma irradiation route to synthesis of highly re-dispersible natural polymer capped silver nanoparticles
Asfaram et al. Synthesis of magnetic γ-Fe2O3-based nanomaterial for ultrasonic assisted dyes adsorption: modeling and optimization
Guo et al. Hollow, porous, and yttrium functionalized ZnO nanospheres with enhanced gas-sensing performances
Li et al. Synthesis and characterization of ZnO–Ag core–shell nanocomposites with uniform thin silver layers
Zhang et al. MCo2O4 (M= Ni, Cu, Zn) nanotubes: template synthesis and application in gas sensors
Bonet et al. Study of interaction of ethylene glycol/PVP phase on noble metal powders prepared by polyol process
Zhu et al. Photochemical synthesis and characterization of PbSe nanoparticles
Xia et al. Photocatalytic performance and antibacterial mechanism of Cu/Ag-molybdate powder material
Won et al. Preparation of porous silver particles using ammonium formate and its formation mechanism
Zou et al. Controlled growth of silver nanoparticles in a hydrothermal process
Chunfa et al. Sodium alginate mediated route for the synthesis of monodisperse silver nanoparticles using glucose as reducing agents
Kortidis et al. Detailed understanding on the relation of various pH and synthesis reaction times towards a prominent low temperature H2S gas sensor based on ZnO nanoplatelets
Duo et al. One-step hydrothermal synthesis of ZnO microflowers and their composition-/hollow nanorod-dependent wettability and photocatalytic property
CN113510239B (zh) 一种基于银包覆的金纳米棒、其制备方法及应用
KR20190002814A (ko) 다중 가지를 갖는 금 나노입자 코어-코발트 기반 금속/유기 복합 다공체 쉘 혼성 구조체 및 그 합성방법
Cai et al. CuS hierarchical hollow microcubes with improved visible-light photocatalytic performance
Sun et al. Au-doped ZnO@ ZIF-7 core-shell nanorod arrays for highly sensitive and selective NO2 detection
Liu et al. Biopolymer-assisted construction and gas-sensing study of uniform solid and hollow ZnSn (OH) 6 spheres
CN101104206A (zh) Ni和Ni/NiO核-壳纳米颗粒
Khan et al. Cobalt@ silver bimetallic nanoparticles: Solution based seedless surfactant assisted synthesis, optical properties, and morphology
Maity et al. Synthesis and characterization of nanomaterials for electrochemical sensors
Zhang et al. One-step synthesis of silver nanoparticles in self-assembled multilayered films based on a Keggin structure compound
Huang et al. Application status of zeolitic imidazolate framework in gas sensors
Yi et al. Green, one-step and template-free synthesis of silver spongelike networks via a solvothermal method
Zheng et al. Facile synthesis of magnetic resorcinol–formaldehyde (RF) coated carbon nanotubes for methylene blue removal

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20221209