CN113507250B - 一种内置式永磁同步电机电流谐波抑制方法 - Google Patents

一种内置式永磁同步电机电流谐波抑制方法 Download PDF

Info

Publication number
CN113507250B
CN113507250B CN202110797655.6A CN202110797655A CN113507250B CN 113507250 B CN113507250 B CN 113507250B CN 202110797655 A CN202110797655 A CN 202110797655A CN 113507250 B CN113507250 B CN 113507250B
Authority
CN
China
Prior art keywords
harmonic
current
voltage
order
characteristic quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110797655.6A
Other languages
English (en)
Other versions
CN113507250A (zh
Inventor
史婷娜
陈志伟
林治臣
王志强
阎彦
夏长亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Zhejiang University Advanced Electrical Equipment Innovation Center
Original Assignee
Zhejiang University ZJU
Zhejiang University Advanced Electrical Equipment Innovation Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, Zhejiang University Advanced Electrical Equipment Innovation Center filed Critical Zhejiang University ZJU
Priority to CN202110797655.6A priority Critical patent/CN113507250B/zh
Publication of CN113507250A publication Critical patent/CN113507250A/zh
Application granted granted Critical
Publication of CN113507250B publication Critical patent/CN113507250B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/12Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/50Reduction of harmonics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Abstract

本发明公开了一种内置式永磁同步电机电流谐波抑制方法。提取出电机的d、q电流中的6次电流谐波特征量;将6次电流谐波特征量分别通过PI控制器处理;对PI控制器输出结果添加上前馈解耦项获得6次电压谐波特征量;对6次电压谐波特征量进行电压修正;将修正后的6次电压谐波特征量转换为6次电压扰动的形式,注入到内置式永磁同步电机的控制中。本发明能够实现电流谐波的抑制,以消除内置式永磁同步电机中的电流谐波。

Description

一种内置式永磁同步电机电流谐波抑制方法
技术领域
本发明涉及电机控制领域的一种电机控制方法,更具体的说,是涉及一种内置式永磁同步电机电流谐波抑制方法。
背景技术
内置式永磁同步电机(IPMSM)具有结构紧凑、功率密度高等优点,被广泛应用于电动汽车驱动系统当中。理想情况下,电机的相电流应为标准的正弦波形。然而实际运行过程中,非理想因素会使电机的相电流中包含一定量的谐波,从而会引起额外的电机损耗。因此有效的抑制电流谐波,对保证IPMSM的稳态运行品质十分重要。
近年来有学者提出了基于多倍频同步旋转坐标变换(MSRFT)的电流谐波抑制策略,该策略以提取相电流中某一频次的电流谐波特征量为目标。该策略由电流谐波特征量的提取和谐波电压注入两个部分组成。
而电压谐波注入是电流谐波抑制方法的关键。目前的方法一般通常将提取得到的5、7次电流谐波特征量经过四个PI调节器来产生期望的6次电压谐波,然后将其注入到控制系统当中。然而由于提取的5、7次电流谐波特征量相互耦合,因此PI调节器之间会相互影响。其次,5、7次电流谐波特征量与控制系统中的6次电压扰动之间的数学关系尚不清晰。实际上除了电机本身永磁体磁链谐波和逆变器死区会带来电压扰动外,矢量控制系统中的电流调节器也会引入额外的电压扰动,从而进一步影响电机电流谐波。
发明内容
本发明的目的是克服现有技术中的不足,提供一种内置式永磁同步电机电压谐波注入方法,以实现电流谐波的抑制,以消除内置式永磁同步电机中的电流谐波。
如图2所示,本发明的目的是通过以下技术方案实现的:
本发明涉及内置式永磁同步电机、两电平逆变器和控制器,内置式永磁同步电机和两电平逆变器连接,内置式永磁同步电机和两电平逆变器均和控制器连接。
本发明通过对推导内置式永磁同步电机电流环中,6次电流谐波特征量和6次电压谐波特征量的关系,从而生成6次注入的6次电压谐波进行控制,以消除内置式永磁同步电机中的电流谐波。
方法包括以下步骤:
1)提取出内置式永磁同步电机的d、q电流中的6次电流谐波特征量Id6cosμd6、Id6sinμd6、Iq6cosμq6和Iq6sinμq6;其中,Id6cosμd6表示d轴电流中6次电流谐波余弦分量,Id6sinμd6表示d轴电流中6次电流谐波正弦分量,Iq6cosμq6表示q轴电流中6次电流谐波余弦分量,Iq6sinμq6表示q轴电流中6次电流谐波正弦分量;
2)将步骤1)得到的6次电流谐波特征量分别通过PI控制器处理;
3)对步骤2)的PI控制器输出结果添加上前馈解耦项获得6次电压谐波特征量;
4)对步骤3)得到的6次电压谐波特征量进行电压修正;
5)将修正后的6次电压谐波特征量转换为6次电压扰动的形式,注入到内置式永磁同步电机的控制当中。具体是将生成的电压谐波扰动加到内置式永磁同步电机的电流环中电流控制器的输出上,进而生成PWM调制信号对内置式永磁同步电机进行反馈控制。
本发明中建立以下6次电流谐波特征量和6次电压谐波特征量之间的关系,具体如下:
Figure BDA0003163425190000021
Figure BDA0003163425190000022
其中,
Figure BDA0003163425190000023
Figure BDA0003163425190000024
式中,Vd6cosγd6*为d轴电流中6次电流谐波余弦分量;Vd6sinγd6*为d轴电流中6次电流谐波正弦分量;Vq6cosγq6*为q轴电流中6次电流谐波余弦分量;Vq6sinγq6*为q轴电流中6次电流谐波正弦分量;Id6、Iq6、μd6和μq6分别为6次电流谐波的幅值和初始相位角;χd和χq为d、q轴的6次电流谐波幅值与6次电压扰动幅值之间的比值;Δδd和Δδq为d、q轴的6次电流谐波的相位角与6次电压扰动的相位角之间的差值。R为内置式永磁同步电机的定子电阻;ωe为内置式永磁同步电机的电角速度;Ld和Lq为内置式永磁体同步电机的d、q轴电感;kid、kpd、kiq和kpq分别为电流环PI控制器的PI参数。
所述的步骤3)具体为:
首先建立前馈解耦项为:
Figure BDA0003163425190000031
Figure BDA0003163425190000032
式中,ΔVd1、ΔVd2分别为d轴的第一、第二前馈解耦项;ΔVq1、ΔVq2分别为q轴的第一、第二前馈解耦项。
然后按照以下方式在PI控制器输出结果基础上添加前馈解耦项获得6次电压谐波特征量Vd6cosγd6*、Vd6sinγd6*、Vq6cosγq6*和Vq6sinγq6*:
Figure BDA0003163425190000033
Figure BDA0003163425190000034
式中,Id6、Iq6分别为6次电流谐波的幅值;μd6*和μq6*分别为6次电流谐波的初始相位角;Δδd和Δδq为d、q轴的6次电流谐波的相位角与6次电压扰动的相位角之间的差值,χd和χq为d、q轴的6次电流谐波幅值与6次电压扰动幅值之间的比值;Vd6cosγd6*表示前馈解耦后的d轴电流中6次电压谐波余弦分量,Vd6sinγd6*表示前馈解耦后的d轴电流中6次电压谐波正弦分量,Vq6cosγq6*表示前馈解耦后的q轴电流中6次电压谐波余弦分量,Vq6sinγq6*表示前馈解耦后的q轴电流中6次电压谐波正弦分量。
Figure BDA0003163425190000041
分别为四个6次电流谐波特征量Id6cosμd6、Id6sinμd6、Iq6cosμq6和Iq6sinμq6分别输入到PI控制器后获得的PI控制器的输出结果。
所述的步骤4)中,按照以下方式对6次电压谐波特征量进行修正,获得修正后的6次电压谐波特征量Vd6cosγd6 IN、Vd6sinγd6 IN、Vq6cosγq6 IN、Vq6sinγq6 IN
Figure BDA0003163425190000042
Figure BDA0003163425190000043
其中,Vd6cosγd6 IN表示修正后的d轴电流中6次电压谐波余弦分量,Vd6sinγd6 IN表示修正后的d轴电流中6次电压谐波正弦分量,Vq6cosγq6 IN表示修正后的q轴电流中6次电压谐波余弦分量,Vq6sinγq6 IN表示修正后的q轴电流中6次电压谐波正弦分量;φTD为数字控制延时和一个控制周期内转子位置变化造成的电压扰动相位角的误差值;
所述的误差值φTD计算为:
φTD=2Tse
式中,Ts为控制周期;ωe为内置式永磁同步电机的电角速度;k表示d、q电流中谐波的阶次,具体实施中取为6。
所述的步骤5)中,6次电压谐波特征量转换到6次电压扰动,具体表示为:
Figure BDA0003163425190000044
式中,Δvd6_in和Δvq6_in分别为注入到内置式永磁同步电机的电压谐波扰动。
上述方法形成的控制系统如图1所示。
本发明的有益效果是:
(1)本发明可以有效的抑制内置式永磁同步电机矢量控制系统中的d、q轴电流中的6次电流谐波;
(2)本发明中的电流谐波抑制方法可以适用于内置式永磁同步电机控制的暂稳态过程,不需要暂稳态的切换过程。不会影响基波电流的控制性能;
(3)本发明将有效的减少内置式永磁同步电机的谐波层次的损耗。
附图说明
图1为内置式永磁同步电机矢量控制电流谐波抑制系统框图。
图2为本发明提出的电压谐波注入框图。
图3为未实施本发明提出的电流谐波抑制策略时的d、q轴电流波形图。
图4为实施本发明提出的电流谐波抑制策略后的d、q轴电流波形图。
具体实施方式
以下结合附图和具体实施方案对本发明进一步详细说明。
如图2所示,本发明包括以下步骤:
1)提取出内置式永磁同步电机的d、q电流中的6次电流谐波特征量Id6cosμd6、Id6sinμd6、Iq6cosμq6和Iq6sinμq6;其中,Id6cosμd6表示d轴电流中6次电流谐波余弦分量,Id6sinμd6表示d轴电流中6次电流谐波正弦分量,Iq6cosμq6表示q轴电流中6次电流谐波余弦分量,Iq6sinμq6表示q轴电流中6次电流谐波正弦分量;
2)将步骤1)得到的6次电流谐波特征量分别通过PI控制器处理;
3)对步骤2)的PI控制器输出结果添加上前馈解耦项获得6次电压谐波特征量;
首先建立前馈解耦项为:
Figure BDA0003163425190000051
Figure BDA0003163425190000052
然后按照以下方式在PI控制器输出结果基础上添加前馈解耦项获得6次电压谐波特征量Vd6cosγd6*、Vd6sinγd6*、Vq6cosγq6*和Vq6sinγq6*:
Figure BDA0003163425190000053
Figure BDA0003163425190000054
4)对步骤3)得到的6次电压谐波特征量进行电压修正;
按照以下方式对6次电压谐波特征量进行修正,获得修正后的6次电压谐波特征量Vd6cosγd6 IN、Vd6sinγd6 IN、Vq6cosγq6 IN、Vq6sinγq6 IN
Figure BDA0003163425190000061
Figure BDA0003163425190000062
所述的误差值φTD计算为:
φTD=2Tse
具体实施中k取为6。
5)将修正后的6次电压谐波特征量转换为6次电压扰动的形式,注入到内置式永磁同步电机的控制当中。具体是将电压谐波扰动加到内置式永磁同步电机的电流环中电流控制器的输出上,进而输入到逆变器生成PWM调制信号对内置式永磁同步电机进行反馈控制。
步骤5)中,6次电压谐波特征量转换到6次电压扰动,具体表示为:
Figure BDA0003163425190000063
以上所述仅是本发明的较佳实施方式,故凡依本发明专利申请范围所述的构造、特征及原理所做的等效变化或修饰,均包括于本发明专利申请范围内。
为了验证所提出电流谐波特征量提取方法的可行性,在Matlab/Simulik平台上进行仿真验证,并在内置式永磁同步电机的实验平台上进行了实验验证。图3为图3为未实施本发明提出的电流谐波抑制策略时的d、q轴电流波形。图4为实施本发明提出的电流谐波抑制策略后的d、q轴电流波形。从结果中可以看出提出的方法可以有效的消除电流谐波,取得了突出显著的技术效果。

Claims (1)

1.一种内置式永磁同步电机电流谐波抑制方法,其特征在于:方法包括以下步骤:
1)提取出内置式永磁同步电机的d、q电流中的6次电流谐波特征量Id6cosμd6、Id6sinμd6、Iq6cosμq6和Iq6sinμq6;其中,Id6cosμd6表示d轴电流中6次电流谐波余弦分量,Id6sinμd6表示d轴电流中6次电流谐波正弦分量,Iq6cosμq6表示q轴电流中6次电流谐波余弦分量,Iq6sinμq6表示q轴电流中6次电流谐波正弦分量;
2)将步骤1)得到的6次电流谐波特征量分别通过PI控制器处理;
3)对步骤2)的PI控制器输出结果添加上前馈解耦项获得6次电压谐波特征量;
所述的步骤3)具体为:
首先建立前馈解耦项为:
Figure FDA0004057309510000011
Figure FDA0004057309510000012
式中,ΔVd1、ΔVd2分别为d轴的第一、第二前馈解耦项;ΔVq1、ΔVq2分别为q轴的第一、第二前馈解耦项;
然后按照以下方式在PI控制器输出结果基础上添加前馈解耦项获得6次电压谐波特征量Vd6cosγd6*、Vd6sinγd6*、Vq6cosγq6*和Vq6sinγq6*:
Figure FDA0004057309510000013
Figure FDA0004057309510000014
式中,Id6、Iq6分别为6次电流谐波的幅值;μd6*和μq6*分别为6次电流谐波的初始相位角;Δδd和Δδq为d、q轴的6次电流谐波的相位角与6次电压扰动的相位角之间的差值,χd和χq为d、q轴的6次电流谐波幅值与6次电压扰动幅值之间的比值;Vd6cosγd6*表示前馈解耦后的d轴电流中6次电压谐波余弦分量,Vd6sinγd6*表示前馈解耦后的d轴电流中6次电压谐波正弦分量,Vq6cosγq6*表示前馈解耦后的q轴电流中6次电压谐波余弦分量,Vq6sinγq6*表示前馈解耦后的q轴电流中6次电压谐波正弦分量;
4)对步骤3)得到的6次电压谐波特征量进行电压修正;
所述的步骤4)中,按照以下方式对6次电压谐波特征量进行修正,获得修正后的6次电压谐波特征量Vd6cosγd6 IN、Vd6sinγd6 IN、Vq6cosγq6 IN、Vq6sinγq6 IN
Figure FDA0004057309510000021
其中,Vd6cosγd6 IN表示修正后的d轴电流中6次电压谐波余弦分量,Vd6sinγd6 IN表示修正后的d轴电流中6次电压谐波正弦分量,Vq6cosγq6 IN表示修正后的q轴电流中6次电压谐波余弦分量,Vq6sinγq6 IN表示修正后的q轴电流中6次电压谐波正弦分量;φTD为数字控制延时和一个控制周期内转子位置变化造成的电压扰动相位角的误差值;
所述的误差值φTD计算为:
φTD=2Tse
式中,Ts为控制周期;ωe为内置式永磁同步电机的电角速度;k表示d、q电流中谐波的阶次;
5)将修正后的6次电压谐波特征量转换为6次电压扰动的形式,注入到内置式永磁同步电机的控制当中;
所述的步骤5)中,6次电压谐波特征量转换到6次电压扰动,具体表示为:
Figure FDA0004057309510000022
式中,Δvd6_in和Δvq6_in分别为注入到内置式永磁同步电机的电压谐波扰动。
CN202110797655.6A 2021-07-14 2021-07-14 一种内置式永磁同步电机电流谐波抑制方法 Active CN113507250B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110797655.6A CN113507250B (zh) 2021-07-14 2021-07-14 一种内置式永磁同步电机电流谐波抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110797655.6A CN113507250B (zh) 2021-07-14 2021-07-14 一种内置式永磁同步电机电流谐波抑制方法

Publications (2)

Publication Number Publication Date
CN113507250A CN113507250A (zh) 2021-10-15
CN113507250B true CN113507250B (zh) 2023-03-28

Family

ID=78012721

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110797655.6A Active CN113507250B (zh) 2021-07-14 2021-07-14 一种内置式永磁同步电机电流谐波抑制方法

Country Status (1)

Country Link
CN (1) CN113507250B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107453363A (zh) * 2017-09-25 2017-12-08 湖南大学 电网电压不对称故障下直驱永磁风机谐波抑制优化方法
CN110518852A (zh) * 2019-07-26 2019-11-29 合肥巨一动力系统有限公司 基于谐波注入的永磁同步电机电流谐波抑制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201770A (zh) * 2011-05-30 2011-09-28 重庆大学 一种注入谐波电压抑制永磁同步电机谐波电流的控制方法
CN104579042A (zh) * 2013-10-22 2015-04-29 广东美的制冷设备有限公司 永磁同步电机的控制系统及其力矩波动抑制方法
CN104935235B (zh) * 2015-06-19 2018-05-08 上海新时达电气股份有限公司 电机的电流谐波抑制方法
EP3454469B1 (en) * 2017-09-12 2022-03-09 Siemens Gamesa Renewable Energy A/S Torque ripple reduction for a generator and wind turbine including the same
JP2019106815A (ja) * 2017-12-13 2019-06-27 株式会社ミツバ モータ制御装置
CN108988725B (zh) * 2018-07-31 2020-06-23 哈尔滨工业大学 一种采用改进复矢量pi控制器的永磁同步电机电流谐波抑制系统及方法
CN111725817B (zh) * 2020-07-13 2021-12-14 长沙学院 一种感应混合型统一电能质量控制器及其控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107453363A (zh) * 2017-09-25 2017-12-08 湖南大学 电网电压不对称故障下直驱永磁风机谐波抑制优化方法
CN110518852A (zh) * 2019-07-26 2019-11-29 合肥巨一动力系统有限公司 基于谐波注入的永磁同步电机电流谐波抑制方法

Also Published As

Publication number Publication date
CN113507250A (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
CN108988725B (zh) 一种采用改进复矢量pi控制器的永磁同步电机电流谐波抑制系统及方法
Wu et al. Square-wave voltage injection based PMSM sensorless control considering time delay at low switching frequency
Yang et al. Complex coefficient active disturbance rejection controller for current harmonics suppression of IPMSM drives
CN112436769A (zh) 一种永磁同步电机低载波比运行的控制系统及其方法
Wang et al. Current harmonic suppression for permanent-magnet synchronous motor based on Chebyshev filter and PI controller
Yan et al. Multiple synchronous reference frame current harmonic regulation of dual three phase PMSM with enhanced dynamic performance and system stability
Sun et al. Virtual current compensation-based quasi-sinusoidal-wave excitation scheme for switched reluctance motor drives
Hu et al. Improved current dynamics of proportional-integral-resonant controller for a dual three-phase FSPM machine
Yao et al. A sliding-mode position estimation method with chattering suppression for LCL-equipped high-speed surface-mounted PMSM drives
Echeikh et al. Non-linear backstepping control of five-phase IM drive at low speed conditions–experimental implementation
Gong et al. Improved deadbeat predictive current control of permanent magnet synchronous motor using a novel stator current and disturbance observer
CN112332716B (zh) 永磁同步电机转矩脉动抑制方法
CN111313773A (zh) 一种基于变步长lms算法的永磁同步电机参数辨识方法
Ye et al. An accurate dead time compensation method for spwm voltage source inverters
CN113507250B (zh) 一种内置式永磁同步电机电流谐波抑制方法
Xu et al. Active Disturbance Rejection Repetitive Control for Current Harmonic Suppression of PMSM
CN111769778B (zh) 基于简化三电平svpwm算法的pmsm直接转矩控制方法
Lei et al. Enhanced Deadbeat Predictive Current Control for PMSM Drives Using Iterative Sliding Mode Observer
CN111371363B (zh) 基于信号注入的电机最大转矩电流比控制方法及其装置
CN113890441A (zh) 基于改进谐波电压补偿的永磁同步电机电流谐波抑制方法
Wang et al. An improved deadbeat predictive current control based on parameter identification for PMSM
Daido et al. Novel Compensation Method for Current Distortion in IPMSM With PWM Carrier-Synchronized Voltage Injection
Ren et al. Grid current harmonic suppression for motor drive with reduced DC-link capacitance in weak grid
He et al. Optimization Design of PMSM Sensorless Control Using Generalized Integrator
Lyu et al. A Novel Harmonic Current Control Method for Torque Ripple Reduction of SPMSM Considering DC-Link Voltage Limit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant