CN113504575A - 基于权相交及多次交叉梯度约束的联合反演方法 - Google Patents

基于权相交及多次交叉梯度约束的联合反演方法 Download PDF

Info

Publication number
CN113504575A
CN113504575A CN202110780990.5A CN202110780990A CN113504575A CN 113504575 A CN113504575 A CN 113504575A CN 202110780990 A CN202110780990 A CN 202110780990A CN 113504575 A CN113504575 A CN 113504575A
Authority
CN
China
Prior art keywords
gravity
gradient
intersection
function
joint inversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110780990.5A
Other languages
English (en)
Other versions
CN113504575B (zh
Inventor
蔡锦
马国庆
李丽丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202110780990.5A priority Critical patent/CN113504575B/zh
Publication of CN113504575A publication Critical patent/CN113504575A/zh
Application granted granted Critical
Publication of CN113504575B publication Critical patent/CN113504575B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V7/00Measuring gravitational fields or waves; Gravimetric prospecting or detecting

Abstract

本发明公开了一种基于权相交及多次交叉梯度约束的联合反演方法,包括以下步骤,依据实际地质情况,剖分地下三维空间,建立相应的核函数矩阵,确定重力及重力梯度异常与物性参数的关系,计算地面观测到的重力及重力梯度异常,设定观测点坐标及立方体单元位置,确定核函数矩阵的具体计算公式,计算得到联合反演目标函数,将联合反演目标函数在加权参数域利用共轭梯度法并在交叉梯度函数约束下求取最优解。本发明通过重力与多个重力梯度分量权相交并进行多次交叉梯度约束,最大程度挖掘重力与重力梯度数据所包含的地下信息,解决了反演的多解性问题,提高了反演的分辨率与精度。

Description

基于权相交及多次交叉梯度约束的联合反演方法
技术领域
本发明属于地球物理学技术领域,尤其涉及一种基于权相交及多次交叉梯度约束的联合反演方法。
背景技术
随着地球物理勘探逐渐转向地质条件更为复杂的地区,单一数据类型的反演已无法获得可靠的地球物理模型。单个数据反演势必会产生多解性,并且通常难以获得一致的地质-地球物理模型来全面解释反演的单参数模型结果。传统的联合反演在提升反演结果的分辨率和精度上,效果有限,因此也无法获得更加准确的地下信息。
重力异常可以突出深部地质体的地质响应,并且随着深度的增加衰减会变慢。重力梯度异常可以突出浅层地质体的地质响应,并且比重力异常具有更高的水平分辨率。重力和重力梯度联合反演可用于更好指导深部矿产勘探和石油勘探,且可以促进对地球内部物理特性的进一步解释和对矿产分布的理解。
在新的经济和社会发展形势下,我国已探明的石油和金属矿产资源已经无法满足经济社会发展的需要,加快地质找矿工作的步伐,缓解矿产资源紧缺的矛盾,已经迫在眉睫。然而,浅表矿产越来越少,找矿难度越来越大,找矿向深部进军是必然趋势。通过国内外找矿实践经验表明,现有矿区深部找矿潜力巨大。同时,隐伏矿床的找矿问题也一直备受关注和重视。
因此,由过去的500m以浅勘探深度到现在的从深500-1000m可采深度甚至大于1000m采矿深度,高精度、高分辨率的联合反演方法,对于更好指导深部矿产勘探和石油勘探,促进对地球内部物理特性的进一步解释,至关重要。
但是现有的反演结果多解性严重,反演精度和分辨率不够高,对于地下地质体位置的圈定不准确,影响其应用。
发明内容
本发明通过重力与多个重力梯度分量权相交并进行多次交叉梯度约束,最大程度挖掘重力与重力梯度数据所包含的地下信息,解决了反演的多解性问题,提高了反演的分辨率与精度,更好指导深部找矿和促进对地球内部物理特性的进一步解释。
具体的,本发明是通过以下技术方案实现的:
提供一种基于权相交及多次交叉梯度约束的联合反演方法,包括以下步骤:
步骤1:依据实际地质情况,剖分地下三维空间,设定两个规则立方体的大小和埋深;
步骤2:建立相应的核函数矩阵;
步骤3:确定重力及重力梯度异常与物性参数的关系,计算地面观测到的重力及重力梯度异常;
步骤4:设定观测点坐标及立方体单元位置,确定核函数矩阵的具体计算公式;
步骤5:将步骤4中的计算公式中表示的反演问题写成目标函数的形式;
步骤6:确定三维交叉梯度函数,并计算其二范数;
步骤7:将步骤6中的三维交叉梯度函数分别添加到步骤5中重力目标函数和重力梯度目标函数,得到联合反演目标函数;
步骤8:对步骤7中联合反演目标函数在加权参数域利用共轭梯度法并在交叉梯度函数约束下求取最优解。
优选的,步骤1中依据实际地质情况,剖分地下三维空间,设定两个规则立方体的大小和埋深,具体为将地下三维空间剖分为M个大小100m×100m×100m规则立方体单元,背景密度为0,两个密度差均为1g/cm3的规则立方体大小分别为300m×300m×200m,地面有N(30×30)个观测点。
优选的,步骤2中建立相应的核函数矩阵A,维数为N×M,N=30×30,M=30×30×10。
优选的,步骤3中地面观测到的重力及重力梯度异常与物性参数的关系为:
Am=d,
其中列向量d为地面观测数据,包括重力异常Δg,重力梯度异常gxx、gxy、gxz、gyy、gyz和gzz;gxx表示重力异常在x-方向的二阶偏导数、gxy表示重力异常在x-方向和y-方向的偏导数、gxz表示重力异常在x-方向和z-方向的偏导数、gyy表示重力异常在y-方向的二阶偏导数、gyz表示重力异常在y-方向z-方向的偏导数、gzz表示重力异常在z-方向的二阶偏导数,其维数为N;列向量m为物性参数,这里代表密度参数ρ,其维数为M;矩阵A表示连接观测数据d和物性参数m的核函数矩阵,维数为N×M,计算重力及重力梯度异常。
优选的,步骤4中,观测点坐标P坐标为(x1,y1,z1),立方体单元Q的位置为(α,β,γ),其中α∈(α12),β∈(β12),γ∈(γ12);
步骤2中,核函数矩阵包括重力异常Δg,重力梯度异常gxx、gxy、gxz、gyy、gyz和gzz)的具体计算公式如下:
Figure BDA0003156966450000031
Figure BDA0003156966450000032
Figure BDA0003156966450000033
Figure BDA0003156966450000034
Figure BDA0003156966450000035
Figure BDA0003156966450000036
Figure BDA0003156966450000037
其中,万有引力常数G=6.67×10-11m3·kg-1·s-2,ρ为立方体单元的平均剩余密度,也就上式中中的密度差;xi=x-αi,yj=y-βj,zk=z-γk
Figure BDA0003156966450000038
μijk=(-1)i(-1)j(-1)k
优选的,步骤5中将式中Am=d表示的反演问题写成目标函数的形式:
Φ=||Am-d||2=(Am-d)T(Am-d),
引入正则化约束项后,重力和重力梯度目标函数可分别写成:
Figure BDA0003156966450000039
Figure BDA00031569664500000310
其中gg1代表重力Δg,gg2代表重力梯度gxx、gxy、gxz、gyy、gyz和gzz;Wd为数据加权矩阵,Wm为模型加权矩阵,也就是所说的深度权;δ为正则化因子。
优选的,步骤6:三维交叉梯度函数可写为:
Figure BDA0003156966450000041
其中:
Figure BDA0003156966450000042
Figure BDA0003156966450000043
Figure BDA0003156966450000044
将交叉梯度函数的二范数Φcg作为约束条件而不是模添加到反演中:
Figure BDA0003156966450000045
优选的,步骤7:将步骤6中的三维交叉梯度函数分别添加到步骤5中重力目标函数和重力梯度目标函数,得到联合反演目标函数,Φ'gg1和Φ'gg2,如下所示:
Figure BDA0003156966450000046
Figure BDA0003156966450000047
其中,λgg1和λgg2分别表示重力和重力梯度交叉梯度函数的系数。
优选的,对步骤7中联合反演目标函数Φ'gg1和Φ'gg2在加权参数域利用共轭梯度法并在交叉梯度函数约束下求取最优解mgg1和mgg2,,将第1次交叉梯度约束得到的两个最优解m1 gg1和m1 gg2作为下一次交叉梯度的权分别相交传递到第2次交叉梯度,以此类推,完成方法的整个过程,得到反演结果m'gg1和m'gg2
与现有技术相比,本发明具有以下有益的技术效果:
本发明本发明通过重力与多个重力梯度分量权相交并进行多次交叉梯度约束,最大程度挖掘重力与重力梯度数据所包含的地下信息,一定程度上解决了反演的多解性问题,提高了反演的分辨率与精度,从而更加准确圈定出地下地质体位置,更好指导深部找矿和促进对地球内部物理特性的进一步解释。
附图说明
图1是本发明提供的基于权相交及多次交叉梯度约束的联合反演方法的流程图;
图2是本发明中地质体三维位置及观测点、立方体单元位置示例;
图3是本发明中重力及重力梯度异常图,其中a是重力Δg异常;b是重力梯度gxx异常;
图4是本发明单独反演结果图,其中黑色虚线框为地质体的真实位置,a是重力Δg单独反演结果;b是重力梯度gxx单独反演结果;
图5是本发明中最终反演结果图,a是重力Δg最终反演结果;b是重力梯度gxx最终反演结果。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施例对本发明进行详细描述。需要说明的是,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
具体如图1所示,提供一种基于权相交及多次交叉梯度约束的联合反演方法,包括以下步骤:
步骤1:依据实际地质情况,剖分地下三维空间,设定两个规则立方体的大小和埋深;
设定两个规则立方体的大小和埋深,具体为将地下三维空间剖分为M(30×30×10)个大小100m×100m×100m规则立方体单元,背景密度为0,两个密度差均为1g/cm3的规则立方体大小分别为300m×300m×200m,地面有N(30×30)个观测点,左侧立方体顶面埋深300m,右侧立方体顶面埋深400m,相距700m,具体如图2所示;
步骤2:建立相应的核函数矩阵A,维数为N×M,N=30×30,M=30×30×10;
步骤3:确定重力及重力梯度异常与物性参数的关系,计算地面观测到的重力及重力梯度异常,地面观测到的重力及重力梯度异常与物性参数的关系为:
Am=d,
其中列向量d为地面观测数据,包括重力异常Δg,重力梯度异常gxx、gxy、gxz、gyy、gyz和gzz;gxx表示重力异常在x-方向的二阶偏导数、gxy表示重力异常在x-方向和y-方向的偏导数、gxz表示重力异常在x-方向和z-方向的偏导数、gyy表示重力异常在y-方向的二阶偏导数、gyz表示重力异常在y-方向z-方向的偏导数、gzz表示重力异常在z-方向的二阶偏导数,其维数为N;列向量m为物性参数,这里代表密度参数ρ,其维数为M;矩阵A表示连接观测数据d和物性参数m的核函数矩阵,维数为N×M,计算重力及重力梯度异常,具体如图3所示;
步骤4:设定观测点坐标及立方体单元位置,确定核函数矩阵的具体计算公式;
观测点坐标P坐标为(x1,y1,z1),立方体单元Q的位置为(α,β,γ),其中α∈(α12),β∈(β12),γ∈(γ12);
步骤2中,核函数矩阵包括重力异常Δg,重力梯度异常gxx、gxy、gxz、gyy、gyz和gzz)的具体计算公式如下:
Figure BDA0003156966450000061
Figure BDA0003156966450000062
Figure BDA0003156966450000063
Figure BDA0003156966450000064
Figure BDA0003156966450000065
Figure BDA0003156966450000071
Figure BDA0003156966450000072
其中,万有引力常数G=6.67×10-11m3·kg-1·s-2,ρ为立方体单元的平均剩余密度,也就上式中中的密度差;xi=x-αi,yj=y-βj,zk=z-γk
Figure BDA0003156966450000073
μijk=(-1)i(-1)j(-1)k
步骤5:将步骤4中的计算公式中表示的反演问题写成目标函数的形式;
将式中Am=d表示的反演问题写成目标函数的形式:
Φ=||Am-d||2=(Am-d)T(Am-d),
引入正则化约束项后,重力和重力梯度目标函数可分别写成:
Figure BDA0003156966450000074
Figure BDA0003156966450000075
其中gg1代表重力Δg,gg2代表重力梯度gxx、gxy、gxz、gyy、gyz和gzz;Wd为数据加权矩阵,Wm为模型加权矩阵,也就是所说的深度权;δ为正则化因子。
步骤6:确定三维交叉梯度函数,并计算其二范数;
三维交叉梯度函数可写为:
Figure BDA0003156966450000076
其中:
Figure BDA0003156966450000077
Figure BDA0003156966450000078
Figure BDA0003156966450000079
将交叉梯度函数的二范数Φcg作为约束条件而不是模添加到反演中:
Figure BDA00031569664500000710
步骤7:将步骤6中的三维交叉梯度函数分别添加到步骤5中重力目标函数和重力梯度目标函数,得到联合反演目标函数,Φ'gg1和Φ'gg2,如下所示:
Figure BDA0003156966450000081
Figure BDA0003156966450000082
其中,λgg1和λgg2分别表示重力和重力梯度交叉梯度函数的系数。
步骤8:对步骤7中联合反演目标函数在加权参数域利用共轭梯度法并在交叉梯度函数约束下求取最优解,具体如下:
Figure BDA0003156966450000083
将第1次交叉梯度约束得到的两个最优解m1 gg1和m1 gg2作为下一次交叉梯度的权分别相交传递到第2次交叉梯度,以此类推,完成方法的整个过程,得到反演结果m'gg1和m'gg2
结果如图4中单独反演结果图,其中黑色虚线框为地质体的真实位置,a是重力Δg单独反演结果,b是重力梯度gxx单独反演结果;图5中a是重力Δg最终反演结果,b是重力梯度gxx最终反演结果。
对比例:单独反演及最终反演结果与原始重力、重力梯度异常的均方根误差对比,
RMSE(重力) RMSE(重力梯度)
单独反演 1.4252 0.0131
最终反演 0.0522 0.0079
均方根值越大,反演结果越差,精度和分辨率越低,如下为均方根误差(重力:RMSE';重力梯度:RMSE”)计算公式:
Figure BDA0003156966450000091
Figure BDA0003156966450000092
A'代表原始重力异常(Δg)的核函数矩阵,A”代表原始重力梯度异常(gxx)的核函数矩阵;m'代表单独反演及最终反演得到的密度(重力),m”代表单独反演及最终反演得到的密度(重力梯度);d'代表原始重力异常(Δg),d”代表原始重力梯度异常(gxx)。
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。

Claims (9)

1.一种基于权相交及多次交叉梯度约束的联合反演方法,其特征在于,包括以下步骤:
步骤1:依据实际地质情况,剖分地下三维空间,设定两个规则立方体的大小和埋深;
步骤2:建立相应的核函数矩阵;
步骤3:确定重力及重力梯度异常与物性参数的关系,计算地面观测到的重力及重力梯度异常;
步骤4:设定观测点坐标及立方体单元位置,确定核函数矩阵的具体计算公式;
步骤5:将步骤4中的计算公式中表示的反演问题写成目标函数的形式;
步骤6:确定三维交叉梯度函数,并计算其二范数;
步骤7:将步骤6中的三维交叉梯度函数分别添加到步骤5中重力目标函数和重力梯度目标函数,得到联合反演目标函数;
步骤8:对步骤7中联合反演目标函数在加权参数域利用共轭梯度法并在交叉梯度函数约束下求取最优解。
2.根据权利要求1所述的基于权相交及多次交叉梯度约束的联合反演方法,其特征在于,步骤1中依据实际地质情况,,剖分地下三维空间,设定两个规则立方体的大小和埋深,具体为将地下三维空间剖分为M个大小100m×100m×100m规则立方体单元,背景密度为0,两个密度差均为1g/cm3的规则立方体大小分别为300m×300m×200m,地面有N(30×30)个观测点。
3.根据权利要求2所述的基于权相交及多次交叉梯度约束的联合反演方法,其特征在于,步骤2中建立相应的核函数矩阵A,维数为N×M,N=30×30,M=30×30×10。
4.根据权利要求3所述的基于权相交及多次交叉梯度约束的联合反演方法,其特征在于,步骤3中地面观测到的重力及重力梯度异常与物性参数的关系为:
Am=d,
其中列向量d为地面观测数据,包括重力异常Δg,重力梯度异常gxx、gxy、gxz、gyy、gyz和gzz;gxx表示重力异常在x-方向的二阶偏导数、gxy表示重力异常在x-方向和y-方向的偏导数、gxz表示重力异常在x-方向和z-方向的偏导数、gyy表示重力异常在y-方向的二阶偏导数、gyz表示重力异常在y-方向z-方向的偏导数、gzz表示重力异常在z-方向的二阶偏导数,其维数为N;列向量m为物性参数,这里代表密度参数ρ,其维数为M;矩阵A表示连接观测数据d和物性参数m的核函数矩阵,维数为N×M,计算重力及重力梯度异常。
5.根据权利要求4所述的基于权相交及多次交叉梯度约束的联合反演方法,其特征在于,步骤4中,观测点坐标P坐标为(x1,y1,z1),立方体单元Q的位置为(α,β,γ),其中α∈(α12),β∈(β12),γ∈(γ12);
步骤2中,核函数矩阵包括重力异常Δg,重力梯度异常gxx、gxy、gxz、gyy、gyz和gzz)的具体计算公式如下:
Figure FDA0003156966440000021
Figure FDA0003156966440000022
Figure FDA0003156966440000023
Figure FDA0003156966440000024
Figure FDA0003156966440000025
Figure FDA0003156966440000026
Figure FDA0003156966440000027
其中,万有引力常数G=6.67×10-11m3·kg-1·s-2,ρ为立方体单元的平均剩余密度,也就上式中中的密度差;xi=x-αi,yj=y-βj,zk=z-γk
Figure FDA0003156966440000028
μijk=(-1)i(-1)j(-1)k
6.根据权利要求5所述的基于权相交及多次交叉梯度约束的联合反演方法,其特征在于,步骤5中将式中Am=d表示的反演问题写成目标函数的形式:
Φ=||Am-d||2=(Am-d)T(Am-d),
引入正则化约束项后,重力和重力梯度目标函数可分别写成:
Figure FDA0003156966440000031
Figure FDA0003156966440000032
其中gg1代表重力Δg,gg2代表重力梯度gxx、gxy、gxz、gyy、gyz和gzz;Wd为数据加权矩阵,Wm为模型加权矩阵,也就是所说的深度权;δ为正则化因子。
7.根据权利要求6所述的基于权相交及多次交叉梯度约束的联合反演方法,其特征在于,步骤6:三维交叉梯度函数可写为:
Figure FDA0003156966440000033
其中:
Figure FDA0003156966440000034
Figure FDA0003156966440000035
Figure FDA0003156966440000036
将交叉梯度函数的二范数Φcg作为约束条件而不是模添加到反演中:
Figure FDA0003156966440000037
8.根据权利要求7所述的基于权相交及多次交叉梯度约束的联合反演方法,其特征在于,步骤7:将步骤6中的三维交叉梯度函数分别添加到步骤5中重力目标函数和重力梯度目标函数,得到联合反演目标函数,Φ'gg1和Φ'gg2,如下所示:
Figure FDA0003156966440000038
Figure FDA0003156966440000039
其中,λgg1和λgg2分别表示重力和重力梯度交叉梯度函数的系数。
9.根据权利要求8所述的基于权相交及多次交叉梯度约束的联合反演方法,其特征在于,对步骤7中联合反演目标函数Φ'gg1和Φ'gg2在加权参数域利用共轭梯度法并在交叉梯度函数约束下求取最优解mgg1和mgg2
CN202110780990.5A 2021-07-09 2021-07-09 基于权相交及多次交叉梯度约束的联合反演方法 Active CN113504575B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110780990.5A CN113504575B (zh) 2021-07-09 2021-07-09 基于权相交及多次交叉梯度约束的联合反演方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110780990.5A CN113504575B (zh) 2021-07-09 2021-07-09 基于权相交及多次交叉梯度约束的联合反演方法

Publications (2)

Publication Number Publication Date
CN113504575A true CN113504575A (zh) 2021-10-15
CN113504575B CN113504575B (zh) 2022-05-03

Family

ID=78012648

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110780990.5A Active CN113504575B (zh) 2021-07-09 2021-07-09 基于权相交及多次交叉梯度约束的联合反演方法

Country Status (1)

Country Link
CN (1) CN113504575B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114779365A (zh) * 2022-04-13 2022-07-22 吉林大学 一种离散函数拟合的重磁交叉梯度联合物性反演方法
CN115220119A (zh) * 2022-06-21 2022-10-21 广州海洋地质调查局 一种适用于大规模数据的重力反演方法
CN116819647A (zh) * 2023-08-28 2023-09-29 北京建工环境修复股份有限公司 基于交叉梯度结构约束的水文地球物理数据融合方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012122503A2 (en) * 2011-03-10 2012-09-13 Schlumberger Canada Limited Method for 3-d gravity forward modeling and inversion in the wavenumber domain
AU2015300764A1 (en) * 2014-08-07 2017-02-16 Lockheed Martin Corporation System and method for gravimetry without use of an inertial reference
WO2017099727A1 (en) * 2015-12-08 2017-06-15 Halliburton Energy Services, Inc. Measuring gravity curvature for mapping subterranean formations
CN107577641A (zh) * 2017-08-21 2018-01-12 吉林大学 一种基于gpu并行的重力梯度张量数据快速密度反演方法
CN108873103A (zh) * 2018-09-14 2018-11-23 吉林大学 一种结构约束的二维重力梯度和大地电磁联合反演方法
CN110007365A (zh) * 2019-03-04 2019-07-12 吉林大学 一种基于信号数据稀疏空间快速计算的联合反演方法
CN110398782A (zh) * 2019-07-17 2019-11-01 广州海洋地质调查局 一种重力数据和重力梯度数据联合正则化反演方法
CN111158059A (zh) * 2020-01-08 2020-05-15 中国海洋大学 基于三次b样条函数的重力反演方法
CN111221035A (zh) * 2020-01-08 2020-06-02 中国海洋大学 一种地震反射波斜率和重力异常数据联合反演方法
CN112147709A (zh) * 2020-08-03 2020-12-29 中国海洋石油集团有限公司 一种基于部分光滑约束的重力梯度数据三维反演方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012122503A2 (en) * 2011-03-10 2012-09-13 Schlumberger Canada Limited Method for 3-d gravity forward modeling and inversion in the wavenumber domain
AU2015300764A1 (en) * 2014-08-07 2017-02-16 Lockheed Martin Corporation System and method for gravimetry without use of an inertial reference
WO2017099727A1 (en) * 2015-12-08 2017-06-15 Halliburton Energy Services, Inc. Measuring gravity curvature for mapping subterranean formations
CN107577641A (zh) * 2017-08-21 2018-01-12 吉林大学 一种基于gpu并行的重力梯度张量数据快速密度反演方法
CN108873103A (zh) * 2018-09-14 2018-11-23 吉林大学 一种结构约束的二维重力梯度和大地电磁联合反演方法
CN110007365A (zh) * 2019-03-04 2019-07-12 吉林大学 一种基于信号数据稀疏空间快速计算的联合反演方法
CN110398782A (zh) * 2019-07-17 2019-11-01 广州海洋地质调查局 一种重力数据和重力梯度数据联合正则化反演方法
CN111158059A (zh) * 2020-01-08 2020-05-15 中国海洋大学 基于三次b样条函数的重力反演方法
CN111221035A (zh) * 2020-01-08 2020-06-02 中国海洋大学 一种地震反射波斜率和重力异常数据联合反演方法
CN112147709A (zh) * 2020-08-03 2020-12-29 中国海洋石油集团有限公司 一种基于部分光滑约束的重力梯度数据三维反演方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GAO XIU-HE ET AL.: "3D inversion modeling of joint gravity and magnetic data based on a sinusoidal correlation constraint", 《APPLIED GEOPHYSICS》 *
吴萍萍等: "基于交叉梯度约束的电阻率法和背景噪声法三维联合反演研究", 《地球物理学报》 *
王俊等: "交叉梯度理论及其在地球物理联合反演中的应用", 《地球物理学进展》 *
闫政文等: "基于交叉梯度约束的重力、磁法和大地电磁三维联合反演", 《地球物理学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114779365A (zh) * 2022-04-13 2022-07-22 吉林大学 一种离散函数拟合的重磁交叉梯度联合物性反演方法
CN115220119A (zh) * 2022-06-21 2022-10-21 广州海洋地质调查局 一种适用于大规模数据的重力反演方法
CN115220119B (zh) * 2022-06-21 2023-02-24 广州海洋地质调查局 一种适用于大规模数据的重力反演方法
CN116819647A (zh) * 2023-08-28 2023-09-29 北京建工环境修复股份有限公司 基于交叉梯度结构约束的水文地球物理数据融合方法
CN116819647B (zh) * 2023-08-28 2023-11-17 北京建工环境修复股份有限公司 一种基于交叉梯度结构约束的水文地球物理数据融合方法

Also Published As

Publication number Publication date
CN113504575B (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
CN113504575B (zh) 基于权相交及多次交叉梯度约束的联合反演方法
CN103824133B (zh) 一种花岗岩型铀矿田远景区综合预测方法
Jessell et al. Structural geophysics: Integrated structural and geophysical modelling
Cao et al. Application of seismic curvature attributes in the delineation of coal texture and deformation in Zhengzhuang field, southern Qinshui Basin
CN103824329B (zh) 一种地质勘探三维可视化储量估算方法
Li et al. Part II: A demonstration of integrating multiple-scale 3D modelling into GIS-based prospectivity analysis: A case study of the Huayuan-Malichang district, China
CN107748399A (zh) 利用重力界面反演识别山前带深部构造层方法
Backé et al. Basin geometry and salt diapirs in the Flinders Ranges, South Australia: Insights gained from geologically-constrained modelling of potential field data
CN110286416A (zh) 一种基于物性函数的快速二维密度反演方法
Trocmé et al. 3D structural modelling of the southern Zagros fold-and-thrust belt diapiric province
Feng et al. Gravity inversion of blocky basement relief using L0 norm constraint with exponential density contrast variation
Dubey et al. A 3D model of the Wathlingen salt dome in the Northwest German Basin from joint modeling of gravity, gravity gradient, and curvature
CN112596113A (zh) 一种基于重力不同阶梯度特征值交点的场源位置识别方法
CN108508479B (zh) 一种空地井立体重磁数据协同目标位置反演方法
Zhang et al. Method and application of urban 3D rapid modeling of geology based on CAD borehole logs
Hou et al. Regional evaluation method of ground stress in shale oil reservoirs-taking the Triassic Yanchang formation in northern Shaanxi area as an example
Song et al. Effects of subsidiary faults on the geometric construction of listric normal fault systems
CN114398696A (zh) 一种碱性花岗型铀矿床三维精细建模方法
He et al. Deep crustal structure across the Challenger Deep: Tectonic deformation and strongly serpentinized layer
Du et al. Microgravity Monitoring in Fractured-Vuggy Carbonate Reservoirs
Turner Definition of the modelling technologies
Shao et al. 3D Geological Modeling under Extremely Complex Geological Conditions.
Parveen et al. Source characterization of isolated gravity anomalies using gradient descent approach
CN113536693B (zh) 一种基于井中岩石物性约束的航空-地面-井中磁异常数据联合反演方法
Ma et al. Target-based sedimentary diagenesis simulation and three-dimensional diagenesis evolution modeling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant