CN113503150A - 一种铝土矿原位溶浸开采方法 - Google Patents

一种铝土矿原位溶浸开采方法 Download PDF

Info

Publication number
CN113503150A
CN113503150A CN202110942322.8A CN202110942322A CN113503150A CN 113503150 A CN113503150 A CN 113503150A CN 202110942322 A CN202110942322 A CN 202110942322A CN 113503150 A CN113503150 A CN 113503150A
Authority
CN
China
Prior art keywords
bauxite
well
leaching solution
leaching
mining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110942322.8A
Other languages
English (en)
Other versions
CN113503150B (zh
Inventor
李志忠
罗腾跃
张毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202110942322.8A priority Critical patent/CN113503150B/zh
Publication of CN113503150A publication Critical patent/CN113503150A/zh
Application granted granted Critical
Publication of CN113503150B publication Critical patent/CN113503150B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/28Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/263Methods for stimulating production by forming crevices or fractures using explosives
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/28Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent
    • E21B43/283Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent in association with a fracturing process
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimizing the spacing of wells
    • E21B43/305Specific pattern of wells, e.g. optimizing the spacing of wells comprising at least one inclined or horizontal well
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • E21B43/35Arrangements for separating materials produced by the well specially adapted for separating solids
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • E21B43/40Separation associated with re-injection of separated materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本发明涉及铝土矿产开采技术领域,尤其涉及一种铝土矿原位溶浸开采方法。一种铝土矿原位溶浸开采方法,包括如下步骤:(1)钻井工程;(2)矿层改造;(3)溶浸作业;(4)地面作业。本发明利用原位溶浸采矿技术优势,通过建立注采井网,压裂改造,配合地面处理,形成一套用于铝土矿原位溶浸开采模式,区别于传统的铝土矿露天开挖和巷洞掘进开采方式,既能实现铝土矿经济高效开采,又能节土、节水,保护矿山环境,有效解决了铝土矿开采对环境破坏的难题。

Description

一种铝土矿原位溶浸开采方法
技术领域
本发明涉及铝土矿产开采技术领域,尤其涉及一种铝土矿原位溶浸开采方法。
背景技术
目前,世界范围内铝土矿开采主要以露天开挖和巷洞掘进开采两种类型,且都针对的是出露地表或者埋藏很浅的矿床。矿体储量探明后即进入开采阶段,这一时期需要投入大量的资金,用于地表覆盖层的剥离或者巷洞的建设,除工程量巨大,施工周期较长外,开采过程中投入的人力物力成本较多,安全风险高。另外,露天矿和洞采均会对矿体以上及周边造成巨大的环境破坏,包括地表剥离形成矿坑,植被的破坏、水土流失、尾矿污染等,造成矿山地区经常是黑水横流、地表满目疮痍、漫天黄土。
原位采矿技术在二十世纪初就有实验记录,目前在国内外广泛用于铀矿、稀土矿的开采,即利用注液井向目标矿体注入特定的溶浸液,经过一系列物理化学反应将有用金属浸出,通过抽液井将溶浸液提出地表,在地表工厂实现有用金属萃取的过程。铝土矿实质上是一种在近地表强风化作用下形成的残积岩,属于沉积岩,研究发现:铝土矿具有一定的渗透性,具有采用原位溶浸开采的地质条件,因此,提出了适用于深浅层的铝土矿原位溶浸开采技术发明。
发明内容
本发明旨在针对上述问题,提出一种绿色、环保、节土、高效、安全的铝土矿开采方法,能够实现深浅层铝土矿的开采和溶浸液有效回收。
本发明的技术方案在于:
一种铝土矿原位溶浸开采方法,包括如下步骤:
(1)钻井工程:
采用从式井;地面井场采用“一字形”布井,井口间距大于5m;以反九点法、反七点法或反五点法布注采井网;井距50-100m;包括注液井和排采井,注液井位于中间位置,排采井位于周边位置;其中,注液井为直井,排采井为定向井,定向井轨迹的最大井斜角不超过35°,进入铝土矿层后降斜,井斜角小于10°;钻井钻穿铝土矿的上伏地层、铝土矿层至铝土矿底层基岩后20m完钻,采用套管完井;
(2)矿层改造:
注液井在铝土矿层顶部设置有射孔段,排采井在铝土矿层底部设置有射孔段;
以注液井为起始端、排采井为终止端在铝土矿层顶部距离铝土矿的矿层顶板0.5m处钻取第一水平钻孔,第一水平钻孔自注液井到排采井平行于铝土矿的矿层顶板水平延伸,第一水平钻孔与排采井不连通;
再以排采井为起始端、注液井为终止端在铝土矿层底部距离铝土矿的矿层底板0.5m处钻取第二水平钻孔;第二水平钻孔自排采井到注液井以不超过5°的倾角向上倾斜,该第二水平钻孔与注液井不连通;
对注液井通过水力压裂或者爆破增渗,在铝土矿层中形成压裂裂缝,建立渗流通道;
(3)溶浸作业:
由注液井注入溶浸液,通过上述注液井的射孔段及第一水平钻孔进入铝土矿层,通过压裂裂缝向下渗流溶蚀铝土矿;再通过第二水平钻孔及排采井的射孔段的渗流到排采井底,再将含铝土矿的溶浸液抽取至地面;
(4)地面作业:
将含铝土矿的溶浸液经沉降后,对含铝土矿的溶浸液依次进行分离、萃取及净化处理后实现重复利用。
优选地,所述矿层改造过程中:若铝土矿中黏土矿物含量超过40%时,采用爆破增渗;若铝土矿中黏土矿物含量低过40%时,采用水力压裂。
或者优选地,所述溶浸液包括酸性溶浸液和碱性溶浸液;若铝土矿的二氧化硅含量高于20%时,选用酸性溶浸液,否则选用碱性溶浸液。
更优选地,所述溶浸液为酸性溶浸液时,套管选用抗酸材质套管,否则溶浸液选用碱性溶浸液,套管选用抗碱材质套管。
优选地,注入溶浸液时,通过集中增压实现,将含铝土矿的溶浸液抽取至地面时,通过集中式负压抽取或者井下排液实现。
或者优选地,所述地面作业包括注采区及溶浸液处理区,注采区包括采出区及注入区;含铝土矿的溶浸液首先在采出区沉降后再输送到溶浸液处理区依次进行分离、萃取、净化及再调配形成新的溶浸液,将新的溶浸液再通过注入区注入到注液井中实现循环利用。
更优选地,所述采出区包括沉降罐,溶浸液处理区包括依次连接的分离装置、萃取装置、净化处理装置及溶浸液制备装置,注入区包括溶浸液罐;其中,沉降罐一端连接至排采井的井口装置,另一端与分离装置连接;溶浸液罐一端连接溶浸液制备装置,另一端连接至注液井的井口装置。
更优选地,所述沉降罐与排采井的井口装置之间、溶浸液罐与注液井的井口装置均设有加压装置。
更优选地,所述加压装置为泵房。
或者优选地,所述钻取第一水平钻孔及第二第一水平钻孔时均通过高压喷射钻头实现。
本发明的技术效果在于:
本发明利用原位溶浸采矿技术优势,通过建立注采井网,压裂改造,配合地面处理,形成一套用于铝土矿原位溶浸开采模式,区别于传统的铝土矿露天开挖和巷洞掘进开采方式,既能实现铝土矿经济高效开采,又能节土、节水,保护矿山环境,有效解决了铝土矿开采对环境破坏的难题。
附图说明
图1本发明实施提供的铝土矿的原位溶浸开采技术思路图。
图2本发明实施提供的铝土矿的原位溶浸开采时的开采过程的平面布井图。
图3本发明实施提供的铝土矿的原位溶浸开采时的开采过程的剖面原理图。
附图标记:1、地面井场;2、地面井口;3、排采井;4、定向井轨迹;5、注液井;6、上伏地层;7、铝土矿层;8、铝土矿底层基岩;9、注液井的井口装置;10、套管;11、射孔段;12、第二水平钻孔;13、压裂裂缝;14、沉降罐;15、泵房;16、分离装置;17、净化处理装置;18、溶浸液制备装置;19、溶浸液罐;20、注采区;21、溶浸液处理区;22、萃取装置;23、第一水平钻孔;24、排采井的井口装置。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
一种铝土矿原位溶浸开采方法,包括如下步骤:
(1)钻井工程:
采用从式井;地面井场1采用“一字形”布井,井口间距大于5m;以反九点法、反七点法或反五点法布注采井网;井距50-100m;包括注液井5和排采井3,注液井5位于中间位置,排采井3位于周边位置;其中,注液井5为直井,排采井3为定向井,定向井轨迹4要注意防碰绕障,最大井斜角不超过35°,进入铝土矿层7后降斜,井斜角小于10°;钻井钻穿铝土矿的上伏地层6、铝土矿层7至铝土矿底层基岩8后20m,采用套管10完井;
(2)矿层改造:
注液井5在铝土矿层7顶部设置有射孔段11,排采井3在铝土矿层7底部设置有射孔段11;
以注液井5为起始端、排采井3为终止端在铝土矿层7顶部距离铝土矿的矿层顶板0.5m处钻取第一水平钻孔23,第一水平钻孔23自注液井5到排采井3平行于铝土矿的矿层顶板水平延伸,第一水平钻孔23与排采井3不连通;
再以排采井3为起始端、注液井5为终止端在铝土矿层7底部距离铝土矿的矿层底板0.5m处钻取第二水平钻孔12;第二水平钻孔12自排采井3到注液井5以不超过5°的倾角向上倾斜,该第二水平钻孔12与注液井5不连通;
对注液井5通过水力压裂或者爆破增渗,在铝土矿层7中形成压裂裂缝13,建立渗流通道;
(3)溶浸作业:
由注液井5注入溶浸液,通过上述注液井5的射孔段11及第一水平钻孔23进入铝土矿层7,通过压裂裂缝13向下渗流溶蚀铝土矿;再通过第二水平钻孔12及排采井3的射孔段11的渗流到排采井3底,再将含铝土矿的溶浸液抽取至地面;
(4)地面作业:
将含铝土矿的溶浸液经沉降后,对含铝土矿的溶浸液依次进行分离、萃取及净化处理后实现重复利用。
实施例2
一种铝土矿原位溶浸开采方法,包括如下步骤:
(1)钻井工程:
采用从式井;地面井场1采用“一字形”布井,钻机从第一个槽口逐个滑移到最后一个槽口,为满足防碰要求,最小井口间距设置为5m;以反九点法、反七点法或反五点法布注采井网,井距50-100m;包括1口注液井5和8口排采井3,注液井5位于中间位置,排采井3位于周边位置;其中,注液井5为直井,排采井3为定向井,定向井轨迹4要注意防碰绕障,最大井斜角不超过35°,进入铝土矿层7后降斜,井斜角小于10°,降低后期水平钻孔和压裂施工风险,便于后期排采井3排液施工作业;注液井5及排采井3均钻穿铝土矿的上伏地层6、铝土矿层7至铝土矿底层基岩8后20m完钻,采用套管10完井;其中,若铝土矿的二氧化硅含量高于20%时,溶浸液选用酸性溶浸液,对应套管10选用抗酸材质套管10,否则溶浸液选用碱性溶浸液,套管10选用抗碱材质套管10;
(2)矿层改造:
注液井5在铝土矿层7顶部设置有射孔段11,排采井3在铝土矿层7底部设置有射孔段11;
以注液井5为起始端、排采井3为终止端在铝土矿层7顶部距离铝土矿的矿层顶板0.5m处钻取第一水平钻孔23,第一水平钻孔23自注液井5到排采井3平行于铝土矿的矿层顶板水平延伸,第一水平钻孔23与排采井3不连通;
再以排采井3为起始端、注液井5为终止端在铝土矿层7底部距离铝土矿的矿层底板0.5m处钻取第二水平钻孔12;第二水平钻孔12自排采井3到注液井5以不超过5°的倾角向上倾斜,该第二水平钻孔12与注液井5不连通;
注液井5和排采井3之间的第二水平钻孔12可以为一个也可以是多个;
对注液井5通过水力压裂或者爆破增渗,在铝土矿层7中形成压裂裂缝13,建立渗流通道;
其中,若铝土矿中黏土矿物含量超过40%时,采用爆破增渗;若铝土矿中黏土矿物含量低过40%时,采用水力压裂;
在注液井5和排采井3之间设置双向平行的水平钻孔(第一水平钻孔23及第二水平钻孔12),溶浸液通过注液井5的第一水平钻孔23进入铝土矿层7,沿着压裂裂缝13渗流,溶浸铝土矿,流入排采井3的第二水平钻孔12,由于排采井3的第二水平钻孔12具有5°的倾角,便于含铝土矿的溶浸液回收;
设置双向平行的水平钻孔,有益于铝土矿层7改造,使得近井段和远井段都能形成有效裂缝,建立更大范围的渗流通道,有益于溶浸液与铝土矿充分接触,提高浸出率;第二水平钻孔12位于铝土矿层7底部,主要便于含铝土矿溶浸液回收,防治溶浸液漏失,提高溶浸液回收率,实现更好经济效益,因此,注液井5和排采井3之间的第二水平钻孔12不局限于一个,可以设计多个;
(3)溶浸作业:
通过集中增压由注液井5注入溶浸液,通过注液井5的射孔段11及第一水平钻孔23进入铝土矿层7,通过压裂裂缝13向下渗流溶蚀铝土矿;再通过第二水平钻孔12及排采井3的射孔段11的渗流到排采井3底,并借助集中式负压抽取或者井下排液工艺再将含铝土矿的溶浸液抽取至地面;
(4)地面作业:
所述地面作业包括注采区20及溶浸液处理区21,注采区20包括采出区及注入区;采出区包括沉降罐14,溶浸液处理区21包括依次连接的分离装置16、萃取装置22、净化处理装置17及溶浸液制备装置18,注入区包括溶浸液罐19;其中,沉降罐14一端连接至排采井的井口装置24,另一端与分离装置16连接;溶浸液罐19一端连接溶浸液制备装置18,另一端连接至注液井的井口装置9。所述沉降罐14与排采井的井口装置24之间、溶浸液罐19与注液井的井口装置9均设有加压装置。所述加压装置为泵房15。含铝土矿的溶浸液首先在采出区沉降后再输送到溶浸液处理区21依次进行分离、萃取、净化及再调配形成新的溶浸液,将新的溶浸液再通过注入区注入到注液井5中实现循环利用。

Claims (10)

1.一种铝土矿原位溶浸开采方法,其特征在于:包括如下步骤:
(1)钻井工程:
采用从式井;地面井场(1)采用“一字形”布井,井口间距大于5m;以反九点法、反七点法或反五点法布注采井网;井距50-100m;包括注液井(5)和排采井(3),注液井(5)位于中间位置,排采井(3)位于周边位置;其中,注液井(5)为直井,排采井(3)为定向井,定向井轨迹(4)的最大井斜角不超过35°,进入铝土矿层(7)后降斜,井斜角小于10°;钻井钻穿铝土矿的上伏地层(6)、铝土矿层(7)至铝土矿底层基岩(8)后20m完钻,采用套管(10)完井;
(2)矿层改造:
注液井(5)在铝土矿层(7)顶部设置有射孔段(11),排采井(3)在铝土矿层(7)底部设置有射孔段(11);
以注液井(5)为起始端、排采井(3)为终止端在铝土矿层(7)顶部距离铝土矿的矿层顶板0.5m处钻取第一水平钻孔(23),第一水平钻孔(23)自注液井(5)到排采井(3)平行于铝土矿的矿层顶板水平延伸,第一水平钻孔(23)与排采井(3)不连通;
再以排采井(3)为起始端、注液井(5)为终止端在铝土矿层(7)底部距离铝土矿的矿层底板0.5m处钻取第二水平钻孔(12);第二水平钻孔(12)自排采井(3)到注液井(5)以不超过5°的倾角向上倾斜,该第二水平钻孔(12)与注液井(5)不连通;
对注液井(5)通过水力压裂或者爆破增渗,在铝土矿层(7)中形成压裂裂缝(13),建立渗流通道;
(3)溶浸作业:
由注液井(5)注入溶浸液,通过上述注液井(5)的射孔段(11)及第一水平钻孔(23)进入铝土矿层(7),通过压裂裂缝(13)向下渗流溶蚀铝土矿;再通过第二水平钻孔(12)及排采井(3)的射孔段(11)的渗流到排采井(3)底,再将含铝土矿的溶浸液抽取至地面;
(4)地面作业:
将含铝土矿的溶浸液经沉降后,对含铝土矿的溶浸液依次进行分离、萃取及净化处理后实现重复利用。
2.根据权利要求1所述铝土矿原位溶浸开采方法,其特征在于:所述矿层改造过程中:若铝土矿中黏土矿物含量超过40%时,采用爆破增渗;若铝土矿中黏土矿物含量低过40%时,采用水力压裂。
3.根据权利要求2所述铝土矿原位溶浸开采方法,其特征在于:所述溶浸液包括酸性溶浸液和碱性溶浸液;若铝土矿的二氧化硅含量高于20%时,选用酸性溶浸液,否则选用碱性溶浸液。
4.根据权利要求3所述铝土矿原位溶浸开采方法,其特征在于:所述溶浸液为酸性溶浸液时,套管(10)选用抗酸材质套管(10),否则溶浸液选用碱性溶浸液,套管(10)选用抗碱材质套管(10)。
5.根据权利要求4所述铝土矿原位溶浸开采方法,其特征在于:注入溶浸液时,通过集中增压实现,将含铝土矿的溶浸液抽取至地面时,通过集中式负压抽取或者井下排液实现。
6.根据权利要求5所述铝土矿原位溶浸开采方法,其特征在于:所述地面作业包括注采区及溶浸液处理区(21),注采区包括采出区及注入区;含铝土矿的溶浸液首先在采出区沉降后再输送到溶浸液处理区(21)依次进行分离、萃取、净化及再调配形成新的溶浸液,将新的溶浸液再通过注入区注入到注液井(5)中实现循环利用。
7.根据权利要求6所述铝土矿原位溶浸开采方法,其特征在于:所述采出区包括沉降罐(14),溶浸液处理区(21)包括依次连接的分离装置(16)、萃取装置(22)、净化处理装置(17)及溶浸液制备装置(18),注入区包括溶浸液罐(19);其中,沉降罐(14)一端连接至排采井的井口装置(24),另一端与分离装置(16)连接;溶浸液罐(19)一端连接溶浸液制备装置(18),另一端连接至注液井的井口装置(9)。
8.根据权利要求7所述铝土矿原位溶浸开采方法,其特征在于:所述沉降罐(14)与排采井的井口装置(24)之间、溶浸液罐(19)与注液井的井口装置(9)均设有加压装置。
9.根据权利要求8所述铝土矿原位溶浸开采方法,其特征在于:所述加压装置为泵房(15)。
10.根据权利要求9所述铝土矿原位溶浸开采方法,其特征在于:所述钻取第一水平钻孔(23)及第二第一水平钻孔(23)时均通过高压喷射钻头实现。
CN202110942322.8A 2021-08-17 2021-08-17 一种铝土矿原位溶浸开采方法 Active CN113503150B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110942322.8A CN113503150B (zh) 2021-08-17 2021-08-17 一种铝土矿原位溶浸开采方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110942322.8A CN113503150B (zh) 2021-08-17 2021-08-17 一种铝土矿原位溶浸开采方法

Publications (2)

Publication Number Publication Date
CN113503150A true CN113503150A (zh) 2021-10-15
CN113503150B CN113503150B (zh) 2023-06-09

Family

ID=78016344

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110942322.8A Active CN113503150B (zh) 2021-08-17 2021-08-17 一种铝土矿原位溶浸开采方法

Country Status (1)

Country Link
CN (1) CN113503150B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116335622A (zh) * 2023-03-17 2023-06-27 核工业北京化工冶金研究院 一种地浸采铀井网布置、生产调控方法及系统
WO2023220785A1 (en) * 2022-05-20 2023-11-23 Newcrest Mining Limited In situ recovery in hard rock ore bodies
CN117287175A (zh) * 2023-11-22 2023-12-26 太原理工大学 一种煤下铝土矿原位高效溶浸置换开采的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060039842A1 (en) * 2004-08-17 2006-02-23 Sesqui Mining, Llc Methods for constructing underground borehole configurations and related solution mining methods
CN101126310A (zh) * 2007-09-30 2008-02-20 中国科学院武汉岩土力学研究所 水平井溶浸采矿法
US20090315388A1 (en) * 2008-06-20 2009-12-24 Solvay Chemicals, Inc. Mining method for co-extraction of non-combustible ore and mine methane
US20110127825A1 (en) * 2008-08-01 2011-06-02 Solvay Chemicals, Inc. Traveling undercut solution mining systems and methods
CN112443307A (zh) * 2020-12-21 2021-03-05 石家庄铁道大学 低渗多层砂岩铀矿的地浸开采方法
CN112539051A (zh) * 2020-12-21 2021-03-23 石家庄铁道大学 地浸采铀井网及地浸采铀施工方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060039842A1 (en) * 2004-08-17 2006-02-23 Sesqui Mining, Llc Methods for constructing underground borehole configurations and related solution mining methods
CN101126310A (zh) * 2007-09-30 2008-02-20 中国科学院武汉岩土力学研究所 水平井溶浸采矿法
US20090315388A1 (en) * 2008-06-20 2009-12-24 Solvay Chemicals, Inc. Mining method for co-extraction of non-combustible ore and mine methane
US20110127825A1 (en) * 2008-08-01 2011-06-02 Solvay Chemicals, Inc. Traveling undercut solution mining systems and methods
CN112443307A (zh) * 2020-12-21 2021-03-05 石家庄铁道大学 低渗多层砂岩铀矿的地浸开采方法
CN112539051A (zh) * 2020-12-21 2021-03-23 石家庄铁道大学 地浸采铀井网及地浸采铀施工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴洪年: "推广和发展我国溶浸采矿的思考", 《世界采矿快报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023220785A1 (en) * 2022-05-20 2023-11-23 Newcrest Mining Limited In situ recovery in hard rock ore bodies
CN116335622A (zh) * 2023-03-17 2023-06-27 核工业北京化工冶金研究院 一种地浸采铀井网布置、生产调控方法及系统
CN116335622B (zh) * 2023-03-17 2024-01-23 核工业北京化工冶金研究院 一种地浸采铀井网布置、生产调控方法及系统
CN117287175A (zh) * 2023-11-22 2023-12-26 太原理工大学 一种煤下铝土矿原位高效溶浸置换开采的方法
CN117287175B (zh) * 2023-11-22 2024-02-23 太原理工大学 一种煤下铝土矿原位高效溶浸置换开采的方法

Also Published As

Publication number Publication date
CN113503150B (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
CN113503150B (zh) 一种铝土矿原位溶浸开采方法
CN104711420B (zh) 一种风化壳淋积型稀土矿原地浸出收液方法
CN110397428B (zh) 一种直井与u型对接井联合开采煤层气的驱替煤层气增产方法
CA1102681A (en) Retrogressively in-situ ore body chemical mining system and method
CN103967493B (zh) 一种缓倾斜薄矿体矿柱采矿法
CN111535791B (zh) 碎软低渗煤层井上下联合压裂区域瓦斯高效抽采方法
RU2612061C1 (ru) Способ разработки сланцевых карбонатных нефтяных залежей
CN105804754B (zh) 一种煤层为主含水层矿井井筒揭煤方法
CN104975868A (zh) 基于定向钻进的顶板高位走向大直径长钻孔瓦斯抽采方法
CN104895531A (zh) 单一厚煤层地面采动井抽采工艺
CN110552671A (zh) 一种利用二甲基醚辅助co2驱实现稠油油藏高效开发的方法
CN112302578B (zh) 一种水平井应力释放开采构造煤煤层气的方法
CN105971563B (zh) 一种下部刀柱法开采形成的复合老空区煤层气的抽采方法
CN106014345B (zh) 一种下部垮落法开采形成的复合老空区煤层气的抽采方法
CN111472739A (zh) 一种侧钻水平井3寸半固完井井筒分段压裂增产改造方法
RU2612060C9 (ru) Способ разработки карбонатных сланцевых нефтяных отложений
CN107152309A (zh) 一种煤层为主含水层的高水高排水害防治方法
AU2016431138B2 (en) Rotary jet-grouting modular rare-earth mining process
CN103032059B (zh) 一种定向水力压裂连通开采方法
RU2627338C1 (ru) Способ разработки плотных карбонатных залежей нефти
CN113605874B (zh) 一种碎软煤层顶底板双层水平井煤层气抽采的方法
CN103291307B (zh) 一种富水岩层钻孔超前疏干方法
CN112796730B (zh) 一种多水平跨采区地面钻井井网布设方法
CN104763423B (zh) 利用反井方式凿岩采出粉矿的开采工艺
CN208220720U (zh) 一种煤炭开采水与瓦斯共治系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant