CN113499481B - 一种多孔支架及其制备方法和应用 - Google Patents

一种多孔支架及其制备方法和应用 Download PDF

Info

Publication number
CN113499481B
CN113499481B CN202110677160.XA CN202110677160A CN113499481B CN 113499481 B CN113499481 B CN 113499481B CN 202110677160 A CN202110677160 A CN 202110677160A CN 113499481 B CN113499481 B CN 113499481B
Authority
CN
China
Prior art keywords
cms
porous scaffold
porous
preparation
scaffold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110677160.XA
Other languages
English (en)
Other versions
CN113499481A (zh
Inventor
吴婷婷
林泽枫
林承雄
许为康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Biological and Medical Engineering of Guangdong Academy of Sciences
Original Assignee
Institute Of Health Medicine Guangdong Academy Of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute Of Health Medicine Guangdong Academy Of Sciences filed Critical Institute Of Health Medicine Guangdong Academy Of Sciences
Priority to CN202110677160.XA priority Critical patent/CN113499481B/zh
Publication of CN113499481A publication Critical patent/CN113499481A/zh
Application granted granted Critical
Publication of CN113499481B publication Critical patent/CN113499481B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/025Other specific inorganic materials not covered by A61L27/04 - A61L27/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/08Carbon ; Graphite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/418Agents promoting blood coagulation, blood-clotting agents, embolising agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种多孔支架及其制备方法和应用。本发明的多孔支架具有良好力学性能、吸水率和保水率,且能缓慢的释放钙、镁、硅离子,并具有良好的矿化、促止血、成骨分化、成血管化和抑制破骨分化的功能。本发明多孔支架的制备方法简单,成本低。多孔支架应用在制备骨修复材料中能够避免药物释放不受控及活性因子作用时间短的缺点,实现有效持续促进骨修复的目的。

Description

一种多孔支架及其制备方法和应用
技术领域
本发明属于医用材料技术领域,具体涉及一种多孔支架及其制备方法和应用。
背景技术
在临床实践中,每年有成千上万的人因交通事故、骨骼疾病、肿瘤切除等各种原因而患上大量的骨骼缺损。然而,骨修复或再生的有效治疗仍然是一个巨大的挑战。以天然生物材料为基础的骨组织工程是近年来出现的一种很有前途的方法,为骨缺损修复或再生的材料设计提供了一种合适的策略。丝素蛋白(Silkfibroin,SF)是从家蚕蚕茧中分离出来的,因其良好的力学性能、可控的生物降解率和无毒等优点,被广泛用作组织工程支架,用于骨、软骨、韧带和皮肤的修复和再生。然而,由于缺乏成骨和血管生成潜力,SF支架的治疗效果受到影响,使得其在组织工程中的应用受到限制。
成骨和血管生成是骨再生的两个关键步骤。生物活性因子,如重组骨形态发生蛋白(rhBMP-2)、bFGF、VEGF等可激活或促进这两个过程。此外,在血管生成过程中,血管对修复部位的侵袭还能促进破骨细胞的降解,随后破骨细胞被生成的骨髓和骨组织所取代,有利于骨再生。这种促进成骨、血管生成及抑制破骨的综合策略可以应用于骨再生。因此,有必要制备具有这些生物学性能和适应骨再生生理环境的新型SF支架。
生物因子通常与植入骨支架结合,可显著改善材料的成骨诱导或血管生成特性。近几十年来,具有类似生物因子功能的无机材料一直是学术界关注的焦点。已有研究证实,无机材料中的Zn2+、Mg2+、Sr2+、Si4+、Mn2+、CO3 2-等微量元素或其组合可诱导细胞过表达成骨或血管生成相关因子(如BMP-2、VEGF),进而促进新骨或血管的形成。但由于寿命短,易失活,有时会发生异位成骨的风险。
此外,当材料植入体内,血凝块形成是骨损伤的初始和最重要的阶段,其形成质量对骨损伤区域炎症和细胞的精准调控以及随后的骨痂形成和骨重塑过程都至关重要。通过骨修复支架材料对血液的浓缩效应以及对血小板的聚集、粘附和激活,从而介导内源性凝血途径实现快速止血,有利于促骨愈合血凝块的形成。因此,有必要制备具有这些生物学性能和适应骨再生生理环境的新型SF骨修复支架。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明第一个方面提出一种多孔支架,该多孔支架具有较好的机械性能、较大的比表面积和优异的吸附能力,组分间互相配合,协同发挥止血、促成骨、成血管和抑制破骨的功能。
本发明第二个方面提出一种上述多孔支架的制备方法。
本发明第三个方面提出一种上述多孔支架在骨修复材料中的应用。
根据本发明的第一个方面,提出了一种多孔支架,所述多孔支架的制备原料包括钙镁硅酸盐、氧化石墨烯和丝素蛋白。
本发明中,钙镁硅酸盐中钙、镁、硅等微量元素在骨及血管等组织的正常生理代谢中都发挥着重要作用,而氧化石墨烯具有很好的分散性能,有利于多孔支架保持均匀的形貌,还能提高其与天然聚合物材料之间的结合能力,进而提升多孔支架的机械性能,更使之具备较大的比表面积和优异的吸附能力;此外,氧化石墨烯还能和钙镁硅酸盐协同发挥止血、促成骨、成血管和抑制破骨的功能,有利于骨再生,从而加速骨修复的进程。
在本发明的一些实施方式中,所述钙镁硅酸盐、所述氧化石墨烯和所述丝素蛋白的质量比为(0.001~50):(0.001~50):100。
在本发明的一些优选的实施方式中,所述多孔支架的孔隙率为80%~99%。
在本发明的一些更优选的实施方式中,所述多孔支架的孔径为0.001μm~300μm。
在本发明的一些更优选的实施方式中,所述钙镁硅酸盐的粒径为0.001μm~20μm。
在本发明的一些更优选的实施方式中,所述钙镁硅酸盐可来源于黄长石、透辉石、镁掺杂硅酸钙、镁硅钙石和钙镁橄榄石中的至少一种。
在本发明的一些更优选的实施方式中,所述钙镁硅酸盐还可为生物吸收性钙盐、生物吸收性镁盐和生物吸收性硅酸盐组成。
在本发明的一些更优选的实施方式中,所述生物吸收性钙盐包括磷酸钙、硫酸钙、碳酸钙中的至少一种;进一步优选的,所述生物吸收性镁盐包括磷酸镁、碳酸镁、氧化镁中的至少一种;更进一步优选的,所述生物吸收性硅酸盐包括硅酸钙、硅酸镁、硅酸锌中的至少一种。
在本发明的一些更优选的实施方式中,所述氧化石墨烯的粒径为0.01μm~20μm。
根据本发明的第二个方面,提出了上述多孔支架的制备方法,包括以下步骤:钙镁硅酸盐与氧化石墨烯在水中超声后搅拌加至丝素蛋白中,保温冷冻后,再溶解并活化、冻干即得所述多孔材料。
本发明的制备方法简单,制备所需时间短,原料价格低廉,生产成本低。
在本发明的一些实施方式中,所述保温冷冻的温度为-20℃,时间为12h~48h。
在本发明的一些优选的实施方式中,所述超声的频率为90W~120W;时间为10min~30min。
在本发明的一些更优选的实施方式中,所述溶解采用的溶剂为乙醇溶液。
在本发明的一些更优选的实施方式中,所述乙醇溶液的体积分数为70%~85%。
在本发明的一些更优选的实施方式中,所述活化采用的活化剂为含EDC(1-乙基-3-(3-(二甲胺基)丙基)-碳化二亚胺)和NHS(N-羟基丁二酰亚胺)的MES(2-(N-吗啉基)乙磺酸)缓冲液。
在本发明的一些更优选的实施方式中,所述活化剂中所述EDC、所述NHS和所述MES的摩尔浓度比为1:2:2。
在本发明的一些更优选的实施方式中,所述活化剂的溶剂为体积分数为70%~85%的乙醇溶液。
根据本发明的第三个方面,提出了上述多孔支架在制备骨修复材料中的应用。
本发明技术方案的有益效果为:
1.本发明制得的多孔支架具有良好力学性能、吸水率和保水率,且能缓慢的释放钙、镁、硅离子,并具有良好的矿化、促止血、成骨分化、成血管化和抑制破骨分化的功能,是一种新型的、生物相容性良好的有机-无机复合骨修复材料。
2.本发明制得的多孔支架具有良好的凝血性能和血液相容性。
3.本发明多孔支架的制备方法简单。
4.本发明制得的多孔支架应用在制备骨修复材料中时,能够避免药物释放不受控及活性因子作用时间短的缺点,实现有效持续促进骨修复的目的。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明SF、对比例1制得的CMS/SF、对比例2制得的GO/SF、实施例1制得的CMS/GO/SF的FTIR光谱图。
图2为本发明SF、对比例1制得的CMS/SF、对比例2制得的GO/SF、实施例1制得的CMS/GO/SF的XRD光谱图。
图3本发明SF、对比例1制得的CMS/SF、对比例2制得的GO/SF、实施例1制得的CMS/GO/SF的SEM图像。
图4为本发明SF、对比例1制得的CMS/SF、对比例2制得的GO/SF、实施例1制得的CMS/GO/SF的吸水率图(a)和保水率图(b)。
图5为本发明SF、对比例1制得的CMS/SF、对比例2制得的GO/SF、实施例1制得的CMS/GO/SF的应力-应变曲线图(a)和10%应变时的应力图(b)。
图6为本发明SF、对比例1制得的CMS/SF、对比例2制得的GO/SF、实施例1制得的CMS/GO/SF的增殖活性图。
图7为本发明SF、对比例1制得的CMS/SF、对比例2制得的GO/SF、实施例1制得的CMS/GO/SF的凝血指数(a)和溶血率图(b)。
图8为本发明SF、对比例1制得的CMS/SF、对比例2制得的GO/SF、实施例1制得的CMS/GO/SF的成骨分化基因表达图。
图9为本发明SF、对比例1制得的CMS/SF、对比例2制得的GO/SF、实施例1制得的CMS/GO/SF的成血管化相关基因表达图。
图10为本发明SF、对比例1制得的CMS/SF、对比例2制得的GO/SF、实施例1制得的CMS/GO/SF的破骨特征蛋白TRAP表达情况图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
以下实施例和对比例中丝素蛋白(SF)的制备方法为:将0.5wt%的碳酸氢盐和茧片按照质量比为40:1置于,在95℃下反复煮沸3次,对茧片进行脱胶,每次脱胶持续了0.5h,洗涤和干燥后得到丝素纤维。再将2g丝素纤维溶解在15mL溴化锂溶液(摩尔浓度为9.3M),加热到50℃,保温4h。溶液冷却到室温后,进一步溶解在蒸馏水中透析,去除残留的溴化锂,再渗析3天后,丝素蛋白溶液在-80℃下冻干,获得纯的丝素蛋白。
实施例1
本实施例制备了一种多孔支架,具体过程为:
将钙镁硅酸盐(CMS)与氧化石墨烯(GO)按质量比为1:1在去离子水中超声30min,得到CMS/GO悬浮液;再加入质量浓度为6%的丝素蛋白溶液,快速搅拌10min后,将制得的悬浮液储存在-20℃下保温12h,真空冷冻下冻干支架,再将支架浸入乙醇中4h后,用含25mM的EDC和50mM的NHS的MES缓冲液(摩尔浓度为50nM;溶剂为体积分数为70%的乙醇)浸泡12h,浸泡材料质量/体积比为0.1g/10mL。再用去离子水冲洗3次后,再次冻干,得到多孔支架(CMS/GO/SF)。
对比例1
本对比例制备了一种支架(CMS/SF),与实施例1的区别在于支架的制备原料不包括氧化石墨烯,具体过程为:
将钙镁硅酸盐(CMS)在去离子水中超声30min,得到CMS悬浮液;再加入质量浓度为6%的丝素蛋白溶液,快速搅拌10min后,将制得的悬浮液储存在-20℃下保温12h,真空冷冻下冻干支架,再将支架浸入乙醇中4h后,用含25mM的EDC和50mM的NHS的MES缓冲液(摩尔浓度为50mM;溶剂为体积分数为70%的乙醇)浸泡12h,浸泡材料质量/体积比为0.1g/10mL。再用去离子水冲洗3次后,再次冻干,得到多孔支架(CMS/SF)。
对比例2
本实施例制备了一种支架(GO/SF),与实施例1的区别在于支架的制备原料不包括钙镁硅酸盐,具体过程为:
将氧化石墨烯(GO)在去离子水中超声30min,得到GO悬浮液;再加入质量浓度为6%的丝素蛋白溶液,快速搅拌10min后,将制得的悬浮液储存在-20℃下保温12h,真空冷冻下冻干支架,再将支架浸入乙醇中4h后,用含25mM的EDC和50mM的NHS的MES缓冲液(摩尔浓度为50mM;溶剂为体积分数为70%的乙醇)浸泡12h,浸泡材料质量/体积比为0.1g/10mL。再用去离子水冲洗3次后,再次冻干,得到多孔支架(GO/SF)。
试验例
本试验例测试了丝素蛋白(SF)、实施例1和对比例1~2制备的支架的性能。其中:
1.成分表征的测试方法为:分别将丝素蛋白、实施例1和对比例1~2制备的支架采用傅里叶变换红外光谱采集4000~500cm-1的FITR数据,结果如图1所示。分别将丝素蛋白、实施例1和对比例1~2制备的支架用X射线衍射仪在CuKα辐射(λ=1.5418A)下,步长0.02°,采集10~60°的XRD数据,结果如图2所示。
从图1和图2可看出,所有样品中均存在Amide I、II和III的特征红外吸收峰(分别为1650cm-1、1515cm-1和1248cm-1),表明在SF支架中引入CMS和/或GO后,SF的分子结构变化不大。CMS/SF和CMS/GO/SF复合支架中检测到Si-O键的振动吸收峰,表明CMS成功复合到SF中。XRD结果证实了这一点,在CMS/SF和CMS/GO/SF中均出现了镁黄长石、透辉石和镁硅钙石的特征峰。
2.形态检测方法:利用扫描电镜对上述制得的溅射金样品进行了形貌和显微结构评价,结果如图3所示。
从图3可看出,所有支架均为连续多孔结构,孔尺寸和密度各不相同,多孔网络结构相互连通。GO/SF和CMS/SF支架具有均匀的多孔结构,直径为30~150μm,与SF支架相似。而CMS/GO/SF则表现出孔径约为50~200μm的均匀孔隙。本发明制得的CMS/GO/SF孔径更大,表明本发明制得的CMS/GO/SF有利于骨和血管长入。
3.吸水、保水及蛋白吸附性能评价方法:
分别将已知重量的支架(W1)浸入PBS(pH=7.4)中,在37℃的摇床下以10rad/s的速率孵育。7d后,用滤纸去除支架表面多余水分后,肿胀样品称重为W2。吸水率按公式1计算。将湿样品500rpm离心3分钟后再次称重为W3,测定其保水能力,按公式2计算:
Wa(%)=(W2-W1)/W1×100 公式1
Wr(%)=(W3-W1)/W1×100 公式2
分别将支架按一定的质量浸泡在模型蛋白牛血清白蛋白溶液中,检测浸泡前后牛血清白蛋白溶液的浓度(c1和c2),按公式3计算其蛋白吸附率(Ap)。
Ap(%)=(c2-c1)/c1×100 公式3
结果如图4所示,其中a为吸水率图;b为保水率。
从图4可看出,SF的吸水率为918.64±62.75%、保水率为225.79±46.64%;CMS/SF的吸水率为1006.82±88.10%、保水率为265.00±41.39%;GO/SF的吸水率为1189.06±68.30%、保水率为369.77±35.68%、;CMS/GO/SF的吸水率为1226.30±59.43%、保水率为402.42±22.36%。可见,本发明制得的CMS/GO/SF吸水率、保水率均更高,表明本发明制得的CMS/GO/SF吸水率高,有利于血液的浓缩和发挥快速止血功能。
4.力学性能评价方法:在机械试验机上进行压缩试验,分别对支架的力学性能进行测试。其中,支架直径5~6mm,高度5~8mm。车速设置为2mm/min。10%应变时的应力(σ)按公式4计算:
σ=F/S×100 公式4
F和S分别表示载荷面积和压缩面积。
结果如图5所示,其中a为应力-应变曲线图;b为10%应变时的应力。
从图5可看出,当应变为10%时,所有支架的应力均大于0.8MPa。单独或共同添加氧化石墨烯和CMS均可提高支架的压缩应力,表明本发明制得的CMS/GO/SF具有更好的力学性能,有利于为骨修复细胞提供支撑。
5.体外离子释放性能评价方法
将圆柱形支架(6*2mm)消毒在紫外线照射下,浸在75%的酒精30min,使用PBS清洗两次以去除多余的乙醇,再将支架是沉浸在培养基中,37℃培养箱放置24h。离心收集上层清液,采用ICP-AES对上清液中的钙、镁和硅离子浓度进行评估。结果如表1所示。
表1
Figure BDA0003121177360000071
从表1可以看出,SF组的钙和镁离子浓度与DMEM相似,说明SF支架中不含这些离子。GO/SF表现出明显的钙离子减少。减去DMEM中的离子浓度基线后,CMS/SF和CMS/GO/SF支架显示出释放钙、镁和硅离子的能力,含CMS的两组钙、镁和硅离子相近,表明本发明制得的CMS/GO/SF能释放钙、镁和硅离子,有利于促成骨和成血管化。
6.生物相容性评价方法:分别将骨髓间充质干细胞种植在支架上,检测其增殖情况和细胞活性。将人脐静脉血管内皮细胞种植在支架浸提液中,检测其增殖情况和细胞形态。结果如图6所示。
从图6可看出,与SF支架相比,接种于其他支架上的骨髓间充质干细胞在孵育3d后增殖数量更多(p<0.01)。GO/SF支架7d后OD值与SF支架相似(p>0.05),CMS/SF支架和CMS/GO/SF支架上的BMSCs增殖明显高于SF支架(p<0.05和p<0.01);从图6b可看出,与SF支架相比,接种于CMS/SF支架和CMS/GO/SF支架上的人脐静脉血管内皮细胞在孵育3d后增殖数量更多(p<0.05);说明本发明制得的CMS/GO/SF能促进成骨和成血管相关细胞的增殖,具有良好的生物相容性。
7.止血性能评价方法:采集新西兰大白兔的血液,检测与材料接触时的凝血指数,并评价凝胶材料的溶血率,结果如图7所示。
凝血指数越低提示止血速度越快,选用临床使用的明胶止血海绵作为阳性对照组。从图7a可看出,明胶海绵在2min内的凝血指数为91.7%,SF的凝血指数为34.0%,而GO/SF、CMS/SF和GO/CMS/SF的凝血指数低于30%,其中CMS/SF和GO/CMS/SF的凝血指数低于5%,表明GO/CMS/SF在2min内具有最好的凝血性能。
将各组SF支架和明胶海绵与兔血接触,从图7b可以看出,各组SF支架与明胶海绵一样,溶血率均低于0.5%,远低于生物材料对溶血率的要求(低于5%),表明其具有良好的血液相容性。
8.成骨性能评价方法:分别将骨髓间充质干细胞种植在支架上,检测其成骨相关基因和蛋白表达情况。结果如图8所示。
从图8可看出,在成骨诱导7d后,CMS/SF、GO/SF、CMS/GO/SF支架上种植的干细胞中COL1、OC、RUNX2、ALP等基因相对表达量均显著高于SF支架的(p<0.01),种植于CMS/GO/SF支架的这些基因表达水平明显高于CMS/SF支架的(p<0.01),表明本发明制得的CMS/GO/SF能促进干细胞成骨分化,有利于成骨。
9.成血管性能评价方法:分别将人脐静脉血管内皮细胞种植在支架浸提液中,检测其成血管相关基因、蛋白表达情况及体外成血管情况。结果如图9所示。
从图9可看出,CMS/SF和CMS/GO/SF浸提液培养的内皮细胞中VEGF基因表达水平高于SF和GO/SF浸提液培养的,CMS/SF和CMS/GO/SF浸提液培养的内皮细胞的eNOs和bFGF基因表达量也显著高于SF和GO/SF浸提液培养的,表明本发明制得的CMS/GO/SF有利于内皮细胞成血管化。
10.破骨性能评价方法:分别将单核巨噬细胞种植在支架浸提液中,检测其TRAP活性情况。结果如图10所示。
从图10可看出,CMS/SF和CMS/GO/SF浸提液培养单核巨噬细胞后,TRAP活性与SF相比显著下降,表明本发明制得的CMS/GO/SF有利于抑制破骨。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (8)

1.一种多孔支架,其特征在于:所述多孔支架的制备原料包括钙镁硅酸盐、氧化石墨烯和丝素蛋白;其制备包括以下步骤:钙镁硅酸盐与氧化石墨烯在水中超声后搅拌加至丝素蛋白中,保温冷冻后,再溶解并活化、冻干即得所述多孔支架 ;所述活化采用的活化剂为含1-乙基-3-(3-(二甲胺基)丙基)-碳化二亚胺和N-羟基丁二酰亚胺的MES缓冲液。
2.根据权利要求1所述的多孔支架,其特征在于:所述钙镁硅酸盐、所述氧化石墨烯和所述丝素蛋白的质量比为(0.001~50):(0.001~50):100。
3.根据权利要求1所述的多孔支架,其特征在于:所述多孔支架的孔隙率为80%~99%。
4.根据权利要求1所述的多孔支架,其特征在于:所述多孔支架的孔径为0.001μm~300μm。
5.根据权利要求1所述的多孔支架,其特征在于:所述钙镁硅酸盐的粒径为0.001μm~20μm。
6.根据权利要求1所述的多孔支架,其特征在于:所述氧化石墨烯的粒径为0.01μm~20μm。
7.根据权利要求1所述的多孔支架,其特征在于:所述保温冷冻的温度为-20℃,时间为12h~48h。
8.一种如权利要求1~7任一项所述的多孔支架在制备骨修复材料中的应用。
CN202110677160.XA 2021-06-18 2021-06-18 一种多孔支架及其制备方法和应用 Active CN113499481B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110677160.XA CN113499481B (zh) 2021-06-18 2021-06-18 一种多孔支架及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110677160.XA CN113499481B (zh) 2021-06-18 2021-06-18 一种多孔支架及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113499481A CN113499481A (zh) 2021-10-15
CN113499481B true CN113499481B (zh) 2022-07-19

Family

ID=78010435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110677160.XA Active CN113499481B (zh) 2021-06-18 2021-06-18 一种多孔支架及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113499481B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114272443B (zh) * 2021-12-10 2022-11-11 中国科学院上海硅酸盐研究所 硅酸锌纳米颗粒复合纤维支架的制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104857569A (zh) * 2015-05-06 2015-08-26 浙江大学 一种丝素与氧化石墨烯复合支架材料的制备方法
CN105664260A (zh) * 2016-02-23 2016-06-15 中国科学院电工研究所 基于石墨烯/丝素蛋白的骨组织工程三维多孔支架制备方法
CN106620839A (zh) * 2017-01-17 2017-05-10 上海交通大学医学院附属第九人民医院 具有促进干细胞分化的支架材料及其制备方法和用途
CN109276764A (zh) * 2018-10-23 2019-01-29 林泽枫 一种新型的钙镁硅酸盐与丝素蛋白复合多孔支架及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104857569A (zh) * 2015-05-06 2015-08-26 浙江大学 一种丝素与氧化石墨烯复合支架材料的制备方法
CN105664260A (zh) * 2016-02-23 2016-06-15 中国科学院电工研究所 基于石墨烯/丝素蛋白的骨组织工程三维多孔支架制备方法
CN106620839A (zh) * 2017-01-17 2017-05-10 上海交通大学医学院附属第九人民医院 具有促进干细胞分化的支架材料及其制备方法和用途
CN109276764A (zh) * 2018-10-23 2019-01-29 林泽枫 一种新型的钙镁硅酸盐与丝素蛋白复合多孔支架及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Strong and biocompatible three-dimensional porous silk fibroin/graphene oxide scaffold prepared by phase separation;Shu-Dong Wang et al;《International Journal of Biological Macromolecules》;20180107;第111卷;第237-246页 *
氧化石墨烯/丝素蛋白凝胶结构及其性能研究;夏一菁 等;《材料导报》;20180530;第32卷;第183-187页 *

Also Published As

Publication number Publication date
CN113499481A (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
CN106075598B (zh) 一种光交联丝胶蛋白水凝胶及其制备方法和应用
ES2672622T3 (es) Preparación de armazones tisulares regenerativos
CN105705172B (zh) 用于组织再生的亲水性静电纺生物复合支架材料及其制法与应用
CN113769156B (zh) 兼具止血和创面修复的杂化纤维海绵及其制备方法
WO2010081408A1 (zh) 一种生物活性组织再生膜及其制备方法
Wang et al. Enhanced physical and biological properties of chitosan scaffold by silk proteins cross-linking
CN107261195B (zh) 一种运动创伤康复敷料用抗菌生物质凝胶网的制备方法与用途
CN115845141B (zh) 一种干态羊膜的制备方法及应用
Yu et al. Fabrication of silk-hyaluronan composite as a potential scaffold for tissue repair
CN113499481B (zh) 一种多孔支架及其制备方法和应用
CN110812526B (zh) 一种prp-壳聚糖-丝素蛋白复合材料及其制备方法
Poddar et al. Influence of varying concentrations of chitosan coating on the pore wall of polycaprolactone based porous scaffolds for tissue engineering application
EP3801657B1 (en) Methods of production of fibrous fibrinogen scaffolds and products thereof
Gholipour et al. The effects of gelatin, fibrin-platelet glue and their combination on healing of the experimental critical bone defect in a rat model: radiological, histological, scanning ultrastructural and biomechanical evaluation
CN114316162A (zh) 光交联可注射纳米纤维-水凝胶复合物及其制备方法与应用
Kimura et al. In situ adipogenesis in fat tissue augmented by collagen scaffold with gelatin microspheres containing basic fibroblast growth factor
Wei et al. Biodegradable silk fibroin scaffold doped with mineralized collagen induces bone regeneration in rat cranial defects
CN107198794B (zh) 具有活性离子释放功能的天然高分子生物活性创伤修复材料及其制备方法
CN110279892B (zh) 一种骨修复材料及其制备方法和应用
Wang et al. A structured scaffold featuring biomimetic heterogeneous architecture for the regeneration of critical-size bone defects
US20120157673A1 (en) Minimal tissue attachment implantable materials
CN114533958A (zh) 具有塑形作用的骨组织缺损修复材料及其制备方法
Sun et al. Preparation of Bioactive Glass/Modified Gelatin/Collagen Composite Scaffold and Its Effect on Repair of Sciatic Nerve Defect
Wang et al. Utility of air bladder-derived nanostructured ECM for tissue regeneration
Dechwongya et al. Preparation and characterization of demineralized bone matrix/chitosan composite scaffolds for bone tissue engineering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231128

Address after: No.10, shiliugang Road, Haizhu District, Guangzhou City, Guangdong Province 510000

Patentee after: Institute of biological and medical engineering, Guangdong Academy of Sciences

Address before: No. 1307, Guangzhou Avenue middle, Tianhe District, Guangzhou, Guangdong 510500

Patentee before: Institute of health medicine, Guangdong Academy of Sciences