CN113495061A - 小分子化学趋向行为的微流控光学观察系统及观察方法 - Google Patents
小分子化学趋向行为的微流控光学观察系统及观察方法 Download PDFInfo
- Publication number
- CN113495061A CN113495061A CN202010195824.4A CN202010195824A CN113495061A CN 113495061 A CN113495061 A CN 113495061A CN 202010195824 A CN202010195824 A CN 202010195824A CN 113495061 A CN113495061 A CN 113495061A
- Authority
- CN
- China
- Prior art keywords
- solution
- microfluidic
- receptor
- channel
- ligand
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6402—Atomic fluorescence; Laser induced fluorescence
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6456—Spatial resolved fluorescence measurements; Imaging
- G01N21/6458—Fluorescence microscopy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/10—Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/12—Specific details about materials
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hematology (AREA)
- Dispersion Chemistry (AREA)
- Optics & Photonics (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
本发明公开了一种小分子化学趋向行为的微流控光学观察系统及观察方法。所述的微流控光学观察系统包括光学平台和微流控芯片,以光致化学发光物质为研究对象,通过在低雷诺数流体中构建受体‑配体对的仿真化学梯度场,利用光致化学发光物质的发光特性进行图像采集,观测不同尺度分子和其有序集合的自发定向迁移性能,将受体的运动相态参数与配体的可逆缔合反应信息相关联,结合数理统计,观察分子结合诱导趋化现象。
Description
技术领域
本发明属于仿真化学分析技术领域,涉及一种小分子化学趋向行为的微流控光学观察系统及观察方法。
背景技术
一直以来,教科书中惯用经典热力学经验性的“碰撞理论”唯象地解释分子反应历程和其对宏观热力学条件的近似依赖,而动力学中引入的反应速率常数等物理量只适用于概况性地描述表观进程。但事实是,一般反应过程,即使已达平衡态或非平衡稳态,也必然伴随着大量分子(离子)速度、位置、取向等一系列相关状态的演化,典型的如1977年诺贝尔化学奖主题“Belousov-Zhabotinsky振荡反应”、自然构造“钠/钾泵”的机械性循环(1997年诺奖主题),乃至2016年的“分子机器”和“分子马达”系统等。这些奇特现象的发现表明,传统理论难以全面反映反应中能量交换时的分子运动学和动力学的效果,从而导致反应进行时各类型系综在时空中的真实分布及其涨落规律在一段时期内被遮掩了,这其中或许就隐藏着分子的化学趋向性。该特性原本指单细胞生物或组织主动靠近或远离更高强度特殊化学刺激的“趋利避害”式生理行为,当化学梯度消失,细菌、微生物等转而如布朗运动般“随机行走”。鉴于均相分子相互作用时也经历类似的“扩散-反应”模式,而且触发细胞趋化的引诱/排斥剂的浓度与位置信息由跨膜蛋白受体所感知,该生物识别的本质就是化学结合,它启动了胞内复杂的信号传导。可预计的是,分散相中分子自发趋化行为的确立与其本性的揭示,将有助于促进那些目前依然受限于被动、无方向性且倾熵的扩散传质过程,比如在健康产业、生物化工、环境工程和地质化学等领域涉及的药物输运、纳米孔基第三代基因测序、催化床底物预富集、膜过滤/吸附、水渗透等重要环节。
2013年JACS发表的文章利用微通道观察被染料标记尿酶、漆酶、碱性磷酸酶,发现这些生物活性大分子自动沿着底物浓度梯度递增的方向迁徙;2015年Nature报道了利用单分子荧光相关光谱,发现尿酶、漆酶、碱性磷酸酶在其本征的放热型催化过程中,自身扩散系数逐渐增加,且扩散速率与底物浓度、累积时间都构成线性关系,拟合所得斜率也特异性地与各酶底物的转化频率有关。其后,当人们用染料标记这些蛋白酶,并尝试将它们的溶液置于荧光显微镜中观察,发现这些生物活性大分子自动沿着底物浓度梯度递增的方向迁徙,而DNA聚合酶亦表现如此,整体集群移动的轨迹堪比生物体的正向趋化运动。由此,酶催化趋化的概念得以率先提出,并成功用于跨血脑屏障的药物释放。考虑到细胞质和细胞器内实际发生的是多酶反应的连锁与级联,在这些高蛋白密度、高粘度的代谢区室内,各酶依然独立遵循着各自的趋化模式。Science在2017年更是报道了驱动蛋白Kinesin、ATP酶等协作的大尺度混沌湍流系统可自组织成循环流动的连续统一体,表明生物分子趋化与生命活动息息相关。然而,酶催化趋化的机制迄今悬而未决,按照Michaelis-Menten模型和其准稳态近似,一般的酶催化顺序地经历两个基本阶段:可逆的底物结合、不可逆的产物转化。因此,有必要将这两个阶段彼此隔离、孤立考察,以澄清酶分子趋化的动力来源。其实,较小离子/分子通过非键且非特异性作用向较大物体接近的现象已有少量报导。比如,伊利诺伊大学香槟分校的Paul Braun团队通过在平面静电场内以牺牲离子的运动自由度为代价,观察到阴离子向局域化季铵盐构成的人造“焓黑洞”自发汇聚,并将该现象开发应用于加速目标物的表面捕获。此外,巧用疏水半透膜附近的低渗透压,可驱动染料向其不可逆且牢固的吸附。反之,当包围蛋白或外泌体囊泡表面Debye层内一、二价离子梯度足够大时,这些高分子量的聚合物或微纳颗粒的迁移率会提高成百上千倍,产生所谓的扩散泳输运;该机动性与胶体尺寸、离子种类紧密相关,已经开发应用于蛋白质的液-液相分离、乃至原油开采等。然而目前尚未有关于观察小分子化学趋向行为现象的文献报道。
发明内容
本发明的目的在于提供一种小分子化学趋向行为的微流控光学观察系统及观察方法。该系统以光致化学发光分子为研究对象,通过在低雷诺数流体中构建受体-配体对的仿真化学梯度场,观测不同尺度分子和其有序集合的自发定向迁移性能,将受体的运动相态参数与配体的可逆缔合反应信息相关联,结合数理统计,观察分子结合诱导趋化现象。
实现本发明目的的技术方案如下:
小分子化学趋向行为的微流控光学观察系统,包括光学平台和微流控芯片;
所述的微流控芯片包括聚二甲基硅氧烷(polydimethylsiloxane,PDMS)芯片和显微成像用盖玻片,二者无缝粘合;所述的PDMS芯片设有2个以上的微通道入口,反应室和1个以上的微通道出口;各微通道入口分别注入受体溶液或配体溶液或缓冲溶液,受体溶液、配体溶液和缓冲溶液的入口顺序随机组合排列,各溶液在入口合流点汇合,进入反应室,最后从微通道出口流出;
所述的光学平台包括倒置显微镜、连接相机取景的外置三通道快门驱动器和发光二极管光源;入射光通过荧光激发块经物镜聚焦于PDMS芯片底部,CCD照相机捕捉通道的荧光成像。
作为优选,所述的CCD照相机通过图像采集卡连接计算机,将采集的荧光图像传输至计算机进行处理。
本发明中,所述的受体为光致化学发光物质,例如卟啉类物质间-四(4-磺酸苯基)卟吩锌(zinc(II)meso-tetra(4-sulphonato phenyl)porphine,ZnTSPP)等。
本发明中,所述的配体为能够与受体特异性结合的物质,例如能与ZnTSPP特异性结合的配体为含N有机杂环物质,如咪唑(imidazole)、吡啶(pyridine)等。
本发明中,所述的缓冲溶液为PBS缓冲液或HEPES缓冲液等。
在本发明的具体实施方式中,所述的微流控芯片设有3个微通道入口,1个入口合流点,1个反应室和1个微通道出口。
小分子化学趋向行为的微流控光学观察方法,包括以下步骤:
步骤1,配制受体溶液、配体溶液和缓冲溶液,所述的受体溶液和配体溶液采用缓冲溶液配制;
步骤2,先用缓冲溶液充分润洗微流控通道,再按实验设计将受体溶液、配体溶液和缓冲溶液通入微流控芯片的微通道入口;
步骤3,打开发光二极管光源,激发受体产生光致发光,荧光经过成像物镜传递至CCD照相机进行捕捉通道的荧光成像,记录微流控通道的入口合流点以及不同位点处的荧光图像,将记录的图像通过图像采集卡传输到计算机上处理分析。
与现有技术相比,本发明具有以下优点:
(1)物质的扩散速率一般与其尺寸成反比(Einstein-Stokes方程),本发明的微流控光学观察系统观察低分子量的受体向更小配体的主动迁徙,可行性高;
(2)本发明采用可以产生光致发光的物质作为研究对象,允许其在微流体通道内亲和分析时的浓度分布可被荧光显微直接成像;
(3)微通道内流体的雷诺数足够小,流动状态为层流,传质以分子扩散为主,无湍流、涡流、对流等复杂流形,贴近真实的生物粘度环境;
(4)通过在不同通道内分别引入配体和受体,可以更加直观地通过荧光数据观察到小分子受体的化学趋向行为。
附图说明
图1为小分子化学趋向行为的微流控光学观察系统的原理示意图。
图2为结合诱导受体响应配体梯度的化学趋向的系列方案图示:(A)空白对照;(B)受体内聚焦;(C)受体外延;和(D)定向迁移。
图3为10μM ZnTSPP对100μM咪唑浓度梯度响应的内聚焦的化学趋向现象;(A)用于ZnTSPP和咪唑集合体系的化学趋向研究的Ψ型3入口微流通道示意图,以沿通道宽的横向位置为函数的平均归一化强度分布图分别在(B)上方(Upper Channel)ROI:合流点,和(C)下方(Lower Channel)ROI:沿通道向下4.7mm处((a)线:PBS/ZnTSPP/PBS,(b)线:PBS/ZnTSPP+咪唑/PBS);图中垂直于x轴的短划线指向通道轴线和峰位置。
图4为不同配置的稳定流态在典型区域的成像快照:(A)(B)PBS/ZnTSPP/PBS和(C)(D)PBS/ZnTSPP+咪唑/PBS,分别在预先指定的(A)(C)上部(Upper Channel)和(B)(D)下部(Lower Channel)ROI(499.4×499.4μm2,10x物镜放大)中采集。图中的垂直细点线表示通道轴线,其垂直于粗折线。
图5为(A)椭圆偏光可视化上部(Upper Channel)微流ROI(1331.2×499.2μm2,10x物镜放大,伪彩渲染)依次在代表性的体积流速1(a)、5(b)、10(c)、50(d)和100(e)μL/h,(B)染料信号((A)中在汇流点的白色短划线)的稳定性和强度与从1到100μL/h的流速之间的依赖关系。
图6为在接近出口处(Lower Channel),10μM ZnTSPP沿通道宽度向着100μM咪唑((b)线)集体迁徙的平均归一化PL强度与横移距离的函数关系,以交换配置的方式予以比较呈现:(A)咪唑/ZnTSPP/PBS和(B)PBS/ZnTSPP/咪唑,两者都以PBS/ZnTSPP/PBS((a)线)为对照。内插的垂直于x轴的折线指向峰位置。
图7为10μM ZnTSPP在缺少和存在100μM咪唑的情况下,跨通道宽度的平均归一化强度分布:(A)咪唑/ZnTSPP/PBS和(B)PBS/ZnTSPP/咪唑,二者都以PBS/ZnTSPP/PBS为空白对照。右边版面显示的是不同条件下的通道快照,通道上部(Upper Channel)对应(A)和(B)中所现轮廓。
具体实施方式
下面结合具体实施例和附图对本发明做进一步详述。
ZnTSPP与有机胺类的共存会使dsp2杂化的锌与配基N上的孤对电子之间的轴向配位以严格的1:1化学计量比发生,生成一个五配位络合物。然而,由于大环的Jahn-Teller畸变及其在水相的竞争性水合,该缔合较弱且相当可逆。如此不稳定的结合对化学趋向而言是关键的,因为强而不可逆的成键将抵消其对反应物的持续追踪(即底物贫乏效应)。另外,锌卟啉的荧光活力,加之其在上述相互作用中的光学稳定性与抗自聚特点,赋予其本身成为一个质量输运成像的理想探针。
图1为小分子化学趋向行为的微流控光学观察系统的原理示意图。下述实施例中,采用的小分子化学趋向行为的微流控光学观察系统,以ZnTSPP为受体,用于观察在多种有机胺类配体存在时,与配体结合所诱导的受体化学趋向性现象。结合诱导受体响应配体梯度的化学趋向包括受体内聚焦、受体外延和定向迁移现象。在下述实施例中,通过以下步骤进行观察:
步骤1:配制10mM pH 9.0的PBS溶液,并用该溶液分别配制受体溶液A:10μMZnTSPP溶液,与配体溶液B:100μM咪唑溶液。
步骤2:利用缓冲溶液充分润洗微流控通道。
步骤3:如图2A所示,按通道的三个入口从左至右的顺序分别通入如下溶液,该配置记作PBS/ZnTSPP/PBS,记录微流控通道的入口合流点及入口向下4.7mm处采样点的荧光数据,作为空白对照。
步骤4:如图2B所示,将三条通道分别通入PBS/ZnTSPP+咪唑/PBS,记录微流控通道的入口合流点及入口向下4.7mm处采样点的荧光数据,作为受体内聚焦现象观察体系。
步骤5:如图2C所示,将三条通道分别通入imidazole/ZnTSPP/咪唑,记录微流控通道的入口合流点及入口向下4.7mm处采样点的荧光数据,作为受体外延现象观察体系。
步骤6:如图2D所示,将三条通道分别通入咪唑/ZnTSPP/PBS,记录微流控通道的入口合流点及入口向下4.7mm处采样点的荧光数据,作为受体定向迁移现象观察体系。
图2为结合诱导受体响应配体梯度的化学趋向的系列方案图示:(A)空白对照;(B)受体内聚焦;(C)受体外延;和(D)定向迁移。
下述实施例中,所述的微流控芯片采用本领域常规方法制备。PDMS芯片的制作流程为:将所需体积的单体(Sylgard 184Silicone elastomer kit,Dow Corning)与高弹性交联剂以10:1质量比搅拌混合,再在真空干燥器内脱气消泡2h。随后,将溶液倒在硅晶原片的微通道模板上,并在70℃烤箱内老化12h。从模板上揭下固化了的PDMS块体,用不锈钢针头作打孔器给各通道的出入口穿孔。然后,PDMS和一片洁净的盖玻片被放置于PDC-32G等离子清洗仪/消毒器内,加高压45s。手指稍微用力将PDMS轻压在预处理好的盖玻片上,使二者无缝粘合,并在100℃退火5min。采用的显微成像用盖玻片经过以下预处理:将盖玻片置于陶瓷支架上(宽22×长40×厚0.15mm,Fisherbrand,Fisher Scientific)在接近沸腾的7X清洁剂(MP Biomedicals LLC.)与超纯水(≥18MΩ)的混合溶液中浸泡清洗2h。然后,玻璃片用超纯水充分冲洗并用N2吹干表面,随后置于530℃马弗炉中退火6h。
下述实施例中,采用的光学平台包括倒置显微镜(Nikon Eclipse Ti2-U)、连接相机取景的外置UNIBLITZ VMM-D3三通道快门驱动器和一个发光二极管(Light-EmittingDiode,即LED)光源(Lumen Dynamics X-Cite Series 120Q,100W)。入射光通过绿色荧光激发块(λex=538~580nm)、经10x物镜(数值孔径:0.25,Ph1 DL∞/-,起焦距离:10.5)聚焦于PDMS芯片底部。用MicroMax 1024CCD照相机(Princeton Instruments)捕捉通道的荧光成像,并用Universal Imaging MetaMorph软件的(Timelapse)模块实时拍摄。具体参数:曝光间隔30s、周期20min、曝光时长:250ms。记录的图像通过图像采集卡传输到计算机上处理分析,具体分析方法如下:选择感兴趣区域(Region of Interest,简称ROI)的荧光强度,扣除背景并取平均值;再以通道宽度为函数自变量,用Origin 8.0软件做归一化处理。为了绘制微通道内流形,所有图像以16位RGB的“伪彩”(pseudo-color)渲染,标定对比度的下限2000、上限13000,取代灰度(grayscale)图。
实施例1
本实施例提供一种观察ZnTSPP受咪唑配体影响而发生内聚性化学趋向行为的微流控芯片系统,具体步骤如下:
(1)配制10mM pH 9.0的PBS缓冲溶液,并用该溶液分别配制受体溶液A:10μMZnTSPP溶液,与配体溶液B:100μM咪唑溶液;
(2)利用缓冲溶液充分润洗微流控通道;
(3)将微通道按三个入口从左至右的配置顺序,分别通入PBS/ZnTSPP/PBS,记录微流控通道的入口合流点及入口向下4.7mm处采样点的荧光数据(如图3B和3C中的(a)线);
(4)将微通道按三个入口从左至右的配置顺序,分别通入PBS/ZnTSPP+咪唑/PBS,记录微流控通道的入口合流点及入口向下4.7mm处采样点的荧光数据(如图3B和3C中的(b)线)。
可以在图3C中观察到(b)线相对(a)线的内聚,即为ZnTSPP受到咪唑影响所产生的向内聚焦的化学趋向行为。如图4的显微成像所示,通过在ZnTSPP所在流道内建立imidazole的浓度梯度,观察到了ZnTSPP对抗自身的外向传播。这一表现符合化学趋向的传统定义,因此证实了分子趋化运动的存在。
实施例2
本实施例提供一种观察小分子受体化学趋向行为的微流控芯片系统的流速优化实验,具体步骤如下:
(1)配制10mM pH 9.0的PBS溶液,并用该溶液分别配制受体溶液A:10μM ZnTSPP溶液,与配体溶液B:100μM咪唑溶液;
(2)利用缓冲溶液充分润洗微流控通道;
(3)将微通道按三个入口从左至右的配置顺序,分别通入PBS/ZnTSPP/PBS;
(4)将流速分别控制为1、5、10、50和100μL/h,分别记录在合流点的ZnTSPP在通道横向的荧光强度分布(如图5A),及其与流速的关系(如图5B)。从图5可知,在流速为50μL/h的数据点为最优速度。
实施例3
本实施例提供一种ZnTSPP受咪唑配体影响定向迁移的化学趋向行为的微流控光学观察系统,具体步骤如下:
(1)配制10mM pH 9.0的PBS溶液,并用该溶液分别配制受体溶液A:10μM ZnTSPP溶、与配体溶液B:100μM咪唑溶液;
(2)利用缓冲溶液充分润洗微流控通道;
(3)将微通道按三个入口从左至右的配置顺序,分别通入PBS/ZnTSPP/PBS,记录微流控通道入口向下4.7mm处采样点的荧光数据(如图6A和6B中的(a)线),作为空白对照;
(4)将微通道按三个入口从左至右的配置顺序,分别通入咪唑/ZnTSPP/PBS,记录微流控通道入口向下4.7mm处采样点的荧光数据(如图6A中的(b)线);
(5)将微通道按三个入口从左至右的配置顺序,分别通入PBS/ZnTSPP/咪唑,记录微流控通道入口向下4.7mm处采样点的荧光数据(如图6B中的(b)线)。
由图7可见,咪唑的侧流打破了ZnTSPP横向正态分布的镜面对称性。其偏向咪唑梯度那一侧,峰整体向左漂移达16μm(峰间距),这揭示ZnTSPP流作为一个整体积极地迁入原咪唑的领域,同时从PBS中迁出,这证明ZnTSPP能够有效地执行化学趋向且趋化甚远-横跨微米距离追逐咪唑。
Claims (9)
1.小分子化学趋向行为的微流控光学观察系统,其特征在于,包括光学平台和微流控芯片;
所述的微流控芯片包括PDMS芯片和显微成像用盖玻片,二者无缝粘合;所述的PDMS芯片设有2个以上的微通道入口,反应室和1个以上的微通道出口;各微通道入口分别注入受体溶液或配体溶液或缓冲溶液,受体溶液、配体溶液和缓冲溶液的入口顺序随机组合排列,各溶液在入口合流点汇合,进入反应室,最后从微通道出口流出;
所述的光学平台包括倒置显微镜、连接相机取景的外置三通道快门驱动器和发光二极管光源;入射光通过荧光激发块经物镜聚焦于PDMS芯片底部,CCD照相机捕捉通道的荧光成像。
2.根据权利要求1所述的微流控光学观察系统,其特征在于,所述的CCD照相机通过图像采集卡连接计算机,将采集的荧光图像传输至计算机进行处理。
3.根据权利要求1所述的微流控光学观察系统,其特征在于,所述的受体为光致化学发光物质。
4.根据权利要求3所述的微流控光学观察系统,其特征在于,所述的受体为ZnTSPP。
5.根据权利要求1所述的微流控光学观察系统,其特征在于,所述的配体为含N有机杂环物质。
6.根据权利要求5所述的微流控光学观察系统,其特征在于,所述的配体为咪唑或吡啶。
7.根据权利要求1所述的微流控光学观察系统,其特征在于,所述的缓冲溶液为PBS缓冲液或HEPES缓冲液。
8.根据权利要求1所述的微流控光学观察系统,其特征在于,所述的微流控芯片设有3个微通道入口,1个入口合流点,1个反应室和1个微通道出口。
9.利用权利要求1至8任一所述的微流控光学观察系统的小分子化学趋向行为的观察方法,其特征在于,包括以下步骤:
步骤1,配制受体溶液、配体溶液和缓冲溶液,所述的受体溶液和配体溶液采用缓冲溶液配制;
步骤2,先用缓冲溶液充分润洗微流控通道,再按实验设计将受体溶液、配体溶液和缓冲溶液通入微流控芯片的微通道入口;
步骤3,打开发光二极管光源,激发受体产生光致发光,荧光经过成像物镜传递至CCD照相机进行捕捉通道的荧光成像,记录微流控通道的入口合流点以及不同位点处的荧光图像,将记录的图像通过图像采集卡传输到计算机上处理分析。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010195824.4A CN113495061B (zh) | 2020-03-19 | 2020-03-19 | 小分子化学趋向行为的微流控光学观察系统及观察方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010195824.4A CN113495061B (zh) | 2020-03-19 | 2020-03-19 | 小分子化学趋向行为的微流控光学观察系统及观察方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113495061A true CN113495061A (zh) | 2021-10-12 |
CN113495061B CN113495061B (zh) | 2025-01-14 |
Family
ID=77993000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010195824.4A Active CN113495061B (zh) | 2020-03-19 | 2020-03-19 | 小分子化学趋向行为的微流控光学观察系统及观察方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113495061B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114705660A (zh) * | 2022-02-17 | 2022-07-05 | 南京理工大学 | 用于观测有机超分子解聚的微流控平台及亲和分析方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998056956A1 (en) * | 1997-06-09 | 1998-12-17 | Caliper Technologies Corporation | Apparatus and methods for correcting for variable velocity in microfluidic systems |
CN103667057A (zh) * | 2013-12-30 | 2014-03-26 | 中国科学院苏州纳米技术与纳米仿生研究所 | 基于微流控芯片的细胞受创后细胞迁移生物学行为的监控方法 |
US20150346104A1 (en) * | 2014-05-27 | 2015-12-03 | Academia Sinica | Sensing device, and sensing system and sensing method using the same |
-
2020
- 2020-03-19 CN CN202010195824.4A patent/CN113495061B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998056956A1 (en) * | 1997-06-09 | 1998-12-17 | Caliper Technologies Corporation | Apparatus and methods for correcting for variable velocity in microfluidic systems |
CN103667057A (zh) * | 2013-12-30 | 2014-03-26 | 中国科学院苏州纳米技术与纳米仿生研究所 | 基于微流控芯片的细胞受创后细胞迁移生物学行为的监控方法 |
US20150346104A1 (en) * | 2014-05-27 | 2015-12-03 | Academia Sinica | Sensing device, and sensing system and sensing method using the same |
Non-Patent Citations (1)
Title |
---|
JIANDONG WU等: "Recent developments in microfluidics-based chemotaxis studies", 《LAB ON A CHIP》, pages 2484 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114705660A (zh) * | 2022-02-17 | 2022-07-05 | 南京理工大学 | 用于观测有机超分子解聚的微流控平台及亲和分析方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113495061B (zh) | 2025-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12103004B2 (en) | Method and apparatus for processing tissue and other samples encoding cellular spatial position information | |
US11542554B2 (en) | Method and apparatus for volumetric imaging | |
Yang et al. | Engineered tools to study intercellular communication | |
Yang et al. | An integrated, stacked microlaboratory for biological agent detection with DNA and immunoassays | |
EP3721209B1 (en) | Methods for in-pen assays | |
US8906669B2 (en) | Microfluidic multiplexed cellular and molecular analysis device and method | |
KR101214780B1 (ko) | 미세유동 장치 | |
EP2032722B1 (en) | Pcr-free sample preparation and detection systems for high speed biologic analysis and identification | |
US20170030859A1 (en) | Portable nucleic acid analysis system and high-performance microfluidic electroactive polymer actuators | |
US20170022558A1 (en) | Integrated system for nucleic acid sequence and analysis | |
KR20080096567A (ko) | 마이크로유체 장치 | |
EP2969212A1 (en) | System and method for generating or analyzing a biological sample | |
CN105378460A (zh) | 基于无线通信设备的检测系统 | |
US20100216657A1 (en) | Pcr-free sample preparation and detection systems for high speed biologic analysis and identification | |
WO2021084814A1 (ja) | 微小粒子回収方法、微小粒子分取用マイクロチップ、微小粒子回収装置、エマルションの製造方法、及びエマルション | |
JP2024036647A (ja) | 粒子確認方法、粒子捕捉用チップ、及び粒子分析システム | |
CN113495061B (zh) | 小分子化学趋向行为的微流控光学观察系统及观察方法 | |
CN112113942A (zh) | 一种基于分子化学趋向位移的亲合力分析技术 | |
TWI345058B (en) | Micro flow device and method for generating a fluid with ph gradient | |
JP2008256701A (ja) | 抗原の分離装置並びにこれを利用した抗原の計測方法及び装置 | |
Dong et al. | A Micropore Array‐Based Single‐Cell Operating System | |
Grünberger | Single cell analysis of microbial production strains in microfluidic bioreactors | |
CN114705660B (zh) | 用于观测有机超分子解聚的微流控平台及亲和分析方法 | |
US20250187012A1 (en) | Method and apparatus for processing tissue and other samples encoding cellular spatial position information with combinatorial encoding | |
Pang et al. | Digital microfluidics for single cell manipulation and analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |