CN113484379A - 超薄带孔类水滑石纳米片膜修饰电极及其检测应用 - Google Patents

超薄带孔类水滑石纳米片膜修饰电极及其检测应用 Download PDF

Info

Publication number
CN113484379A
CN113484379A CN202110810923.3A CN202110810923A CN113484379A CN 113484379 A CN113484379 A CN 113484379A CN 202110810923 A CN202110810923 A CN 202110810923A CN 113484379 A CN113484379 A CN 113484379A
Authority
CN
China
Prior art keywords
coal
eldh
hydrotalcite
gce
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110810923.3A
Other languages
English (en)
Other versions
CN113484379B (zh
Inventor
詹天荣
钱星
王军
温永红
王磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Jinglong Environmental Protection Technology Co ltd
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202110810923.3A priority Critical patent/CN113484379B/zh
Publication of CN113484379A publication Critical patent/CN113484379A/zh
Application granted granted Critical
Publication of CN113484379B publication Critical patent/CN113484379B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种超薄带孔类水滑石纳米片@Au复合膜修饰电极及其制备方法和检测应用。先将带孔钴铝水滑石在甲酰胺进行剥离,得到超薄多孔类水滑石纳米片上,在其表面原位还原氯金酸制备得到超薄带孔类水滑石纳米片@Au复合物,采用滴涂法制备了相应的复合膜修饰电极。所得修饰电极充分发挥了超薄带孔类水滑石纳米片和Au纳米粒子的协同作用,增强了导电性,多孔结构提供了更多的电化学催化位点和吸附位点,大提高了修饰电极对被检测物的吸附捕获和催化能力。基于本发明所述修饰电极的杀螟松电化学传感器,具有检测限低、检测范围宽、灵敏度高和响应快速等优点。

Description

超薄带孔类水滑石纳米片膜修饰电极及其检测应用
技术领域:
本发明涉及一种在超薄带孔类水滑石纳米片上原位还原Au修饰电极;本发明还涉及所述修饰电极的制备方法及其在电化学传感检测方面的应用。
背景技术:
我国是农业大国,由于需要增加粮食产量,因此有机磷农药自发现以来就得到了广泛使用。但是有机磷农药在环境中的高积累能力、亲脂性和较长的半衰期,导致了它们在水、土壤和农作物等环境中的含量不断增加,甚至在施用数年后,依然有存在于污染空气、土地和水环境的可能性。因此,研究开发快速准确的农药分析检测技术引起了科学界的极大关注。尽管高效液相色谱、气相色谱等分析技术是有机磷农药检测的常规方法,但它们具有明显缺点,例如安装设备的成本高,分析时间长以及样品制备困难,使其广泛应用受到了限制。相对来说,电化学传感器的优点有很多。因此,电化学传感技术逐渐成为有机磷农药检测的主流手段之一。
近年来,金纳米粒子在催化、生物传感器等分析化学方面得到了充分的应用。金纳米粒子具有生物相容性、优异的导电性和导热性、化学稳定性和表面体积比等优点,在电化学传感领域,金纳米材料被广泛用于修饰电极以构建电化学传感器。例如,金纳米粒子良好的导电性,充分放大电化学信号。此外,金纳米粒子可以使许多电分析反应的过电位降低,氧化还原反应的可逆性得以维持。因此金纳米粒子与其他纳米材料的协同结合可以为各种分析物的电化学检测提供电敏感和选择性系统。
类水滑石(LDH)是一类二维层状纳米材料,因其片层带正电荷,近年来被广泛用于固定带负电荷的生物分子。相比于其它无机基体,LDH具有丰富的化学成分,可调的结构特性和可插层性能,是一种有效的固定客体分子的主体纳米结构来。但LDH本身存在易聚集、导电性差、催化活性位点暴露不充分等缺陷,将其剥离成LDH超薄纳米片可提高其比表面积、充分暴露其催化位点,从而提高其电化学催化性能。但剥离状态的LDH超薄纳米片在水介质中很容易聚集恢复成LDH大块状态,只能以胶体溶液的形式使用,大大限制了类水滑石的在电化学领域的纵深发展。
为了解决以上纳米材料单独使用时存在的缺陷,本发明拟通过在超薄带孔类水滑石纳米片上原位还原HAuCl4,制备CoAl-ELDH-P@Au纳米复合物,采用该复合物对GCE进行修饰,发挥CoAl-ELDH-P和Au作为修饰电极材料的协同作用,提高导电性,充分暴露电催化剂活性位点,实现对杀螟松的检测,拓宽杀螟松的线性检测范围,降低它的检测限,以提高检测方法的稳定性和灵敏度。
发明内容:
针对现有技术的不足以及本领域研究和应用的需求,本发明的目的之一是提供一种超薄带孔类水滑石纳米片@Au复合膜修饰电极,即在甲酰胺中剥离得到的超薄带孔类水滑石纳米片原位还原Au制CoAl-ELDH-P@Au,并以该复合物制备相应的修饰电极。
本发明的目的之二是提供一种超薄带孔类水滑石纳米片@Au复合膜修饰电极的制备方法,其特征在于包括以下具体步骤:
(a)CoAl-LDH-P的制备
将2.2g P123溶于一定体积去离子水中,将Co(NO3)2·6H2O和Al(NO3)3·9H2O按一定的摩尔比溶解于其中,使总金属离子浓度为25.8mmol/L,再加入0.1952g尿素,将上述溶液置入100ml高压反应釜中,在80-120℃下反应8-16h,将得到的反应液离心洗涤后得CoAl-LDH-P,备用;
(b)CoAl-ELDH-P的制备
取10-50mg的CoAl-LDH-P分散至20mL含有1M NaCl和3.3mM HCl的水和乙醇(v水/v乙醇=1:1)溶液中,通N2 10min排出溶液中的空气后密封容器,然后在室温下振荡12h,在8000rpm下离心5min回集固体样品,再用乙醇洗涤五次,得到CoAl-LDH-P-Cl-胶状物;
取10-50mg的CoAl-LDH-P-Cl-胶状物分散至20mL含有0.1M NaNO3的水和乙醇(v水/v乙醇=1:1)溶液中,通N2 10min排出溶液中的空气后密封容器,室温下振荡12h,在8000rpm下离心5min所集固体样品,再用乙醇洗涤五次,收集湿样,得到CoAl-LDH-P-NO3 -
取10-50mg的CoAl-LDH-P-NO3 -分散至20mL甲酰胺中,通N2 10min排出溶液中的空气后密封容器,室温下振荡24h,10000rpm下离心10min,除去未剥离的纳米片,得到CoAl-ELDH-P胶体溶液,备用;
(c)CoAl-ELDH-P@Au的制备
将一定体积的10mmol/L的HAuCl4加入至10mL步骤(b)所述的CoAl-ELDH-P胶体溶液中,在4℃老化24小时,然后向混合液中滴加0.025mL溶液为10mM的NaBH4溶液,得到CoAl-ELDH-P@Au复合材料;
(d)CoAl-ELDH-P@Au复合膜修饰GCE的制备
将基底电极打磨抛光成镜面,再用超纯水超声清洗,室温自然干燥后得处理好的GCE;将步骤(c)制备得到的CoAl-ELDH-P@Au复合材料超声分散于去离子水中,制备浓度为1mg/mL的分散液,取2~20μL该分散液滴涂在处理好的GCE表面,室温自然干燥后即得复合膜修饰电极CoAl-ELDH-P@Au/GCE。
其中制备方法步骤(a)中所述去离子水的体积的为50mL;Co(NO3)2·6H2O和Al(NO3)3·9H2O的摩尔比为2:1;步骤(c)中HAuCl4的体积为0.5mL;所得的CoAl-ELDH-P@Au中金纳米粒子均匀分布在CoAl-ELDH上,其粒径范围为5-8nm;步骤(d)中,所述基底电极的打磨抛光是在麂皮上用氧化铝粉末依次打磨,超声清洗时间为30s。
本发明目的之三是提供一种超薄带孔类水滑石纳米片@Au复合膜修饰电极用于检测农药杀螟松,其特征在于,以0.1M pH 8.0的磷酸盐缓冲液为支持电解质,将不同浓度的杀螟松电解质溶液加入电解池中,以修饰电极为工作电极,用差分脉冲伏安法检测,得到杀螟松的还原峰电流与其浓度的线性回归方程,采用同样方法测定待测样品中杀螟松的还原峰电流,代入线性回归方程,即得待测样品中杀螟松的含量。
本发明与现有技术相比,具有如下有益效果:
(a)本发明所述的超薄带孔类水滑石纳米片@Au复合材料是直接在超薄带孔类水滑石纳米片上原位吸附AuCl4 -再经过化学还原成Au制备得到,制备方法简单;
(b)所述超薄带孔类水滑石纳米片@Au复合膜修饰电极在电催化杀螟松方面发挥了CoAl-ELDH-P和Au的协同效应:Au增强了CoAl-ELDH的导电性,同时多孔结构具有更大的比表面积和更多的电化学催化位点,提高了修饰电极对被检测物的吸附捕获和催化能力;
(c)所述超薄带孔类水滑石纳米片@Au复合材料修饰电极在对杀螟松检测方面获得了较宽的线性范围(1×10-8~1×10-4mol/L)和较低的检测限(杀螟松3.2nmol/L),因此可以很好的实现对杀螟松的检测,检测方法抗干扰性好,灵敏度高。
附图说明:
图1为本发明实施例1制得的CoAl-ELDH-P@Au复合物的TEM图。
图2为对比例1~4和实施例4对应的裸GCE(a)、CoAl-ELDH/GCE(b)、CoAl-ELDH-P/GCE(c)、CoAl-ELDH@Au/GCE(d)和CoAl-ELDH-P@Au/GCE(e)在含有0.1mmol/L杀螟松的0.1mol/L pH=7.0的磷酸盐缓冲液中的循环伏安结果。
图3为对比例1~4和实施例4对应的裸GCE(a)、CoAl-ELDH/GCE(b)、CoAl-ELDH-P/GCE(c)、CoAl-ELDH@Au/GCE(d)和CoAl-ELDH-P@Au/GCE(e)在含有10.0mmol/L[Fe(CN)6]-3/-4和0.1mol/L KCl溶液中的电化学阻抗图。
图4为不同浓度杀螟松在实施例4对应CoAl-ELDH-P@Au/GCE上的差分脉冲伏安图,杀螟松的浓度依次是1×10-8、3×10-8、5×10-8、1×10-7、5×10-7、1×10-6、5×10-6、1×10-5、2×10-5、4×10-5、6×10-5、8×10-5、1×10-4mol/L。
图5为杀螟松浓度与峰电流的线性关系图,插图为低浓度区间的放大图。
具体实施方式:
为进一步理解本发明,下面结合附图和实施例对本发明作进一步说明,但并不以任何方式限制本发明。
实施例1:
(a)CoAl-LDH-P的制备
将2.2g P123溶于50mL去离子水中,加入Co(NO3)2·6H2O(250mg,0.86mmol)和Al(NO3)3·9H2O(161mg,0.43mmol),待其全部溶解后,再加入0.1952g尿素,将上述溶液置入100ml高压反应釜中,在100℃下反应12h,将得到的CoAl-LDH-P胶体溶液离心洗涤后得CoAl-LDH-P,备用;
(b)CoAl-ELDH-P的制备
取40mg的CoAl-LDH-P分散至20ml含有1M NaCl和3.3mM HCl的水和乙醇(v/v乙醇=1:1)溶液中,通N2 10min排出溶液中的空气后密封容器,室温下振荡12h,在8000rpm下离心5min收集固体样品,用乙醇洗涤五次,得到CoAl-LDH-P-Cl-胶状物。
取30mg的CoAl-LDH-P-Cl-分散至20ml含有0.1M NaNO3的水和乙醇(v/v乙醇=1:1)溶液中,通N2 10min排出溶液中的空气后密封容器,室温下振荡12h,在8000rpm下离心5min回收所得样品,再用乙醇洗涤五次,收集湿样,得到CoAl-LDH-P-NO3 -
取30mg的CoAl-LDH-P-NO3 -分散至20ml甲酰胺中,通N2 10min排出溶液中的空气后密封容器,室温下振荡24h,10000rpm下离心10min,除去未剥离的纳米片,得到CoAl-ELDH-P胶体溶液,备用;
(c)CoAl-ELDH-P@Au的制备
将0.5mL浓度为10mmol/L的HAuCl4溶液加入至10mL步骤(b)所述的CoAl-ELDH-P胶体溶液中,在4℃老化24小时,向混合液中滴加0.025mL溶液为10mM的NaBH4溶液,反应1h后离心洗涤,得到CoAl-ELDH-P@Au复合材料;
实施例2:
(a)CoAl-LDH-P的制备
按照实施例1中步骤(a)的方法和条件制备;
(b)CoAl-ELDH-P的制备
按照实施例1中步骤(b)的方法和条件制备;
(c)CoAl-ELDH-P@Au的制备
按照实施例1中步骤(c)的方法和条件制备;
(d)CoAl-ELDH-P@Au复合材料修饰GCE的制备
将基底电极打磨抛光成镜面,再用超纯水超声清洗,室温自然干燥后得处理好的GCE;将步骤(c)制备得到的CoAl-ELDH-P@Au复合材料超声分散于去离子水中,制备浓度为1mg/mL的分散液,取3μL该分散液滴涂在步骤(d)中处理好的GCE表面,室温自然干燥后即得CoAl-ELDH-P@Au复合膜修饰GCE记为CoAl-ELDH-P@Au;
实施例3:
(a)CoAl-LDH-P的制备
按照实施例1中步骤(a)的方法和条件制备;
(b)CoAl-ELDH-P的制备
按照实施例1中步骤(b)的方法和条件制备;
(c)CoAl-ELDH-P@Au的制备
按照实施例1中步骤(c)的方法和条件制备;
(d)CoAl-ELDH-P@Au复合材料修饰GCE的制备
将基底电极打磨抛光成镜面,再用超纯水超声清洗,室温自然干燥后得处理好的GCE;将步骤(c)制备得到的CoAl-ELDH-P@Au复合材料超声分散于去离子水中,制备浓度为1mg/mL的分散液,取4μL该分散液滴涂在步骤(d)中处理好的GCE表面,室温自然干燥后即得CoAl-ELDH-P@Au复合膜修饰GCE记为CoAl-ELDH-P@Au;
实施例4:
(a)CoAl-LDH-P的制备
按照实施例1中步骤(a)的方法和条件制备;
(b)CoAl-ELDH-P的制备
按照实施例1中步骤(b)的方法和条件制备;
(c)CoAl-ELDH-P@Au的制备
按照实施例1中步骤(c)的方法和条件制备;
(d)CoAl-ELDH-P@Au复合材料修饰GCE的制备
将基底电极打磨抛光成镜面,再用超纯水超声清洗,室温自然干燥后得处理好的GCE;将步骤(c)制备得到的CoAl-ELDH-P@Au复合材料超声分散于去离子水中,制备浓度为1mg/mL的分散液,取5μL该分散液滴涂在步骤(d)中处理好的GCE表面,室温自然干燥后即得CoAl-ELDH-P@Au复合膜修饰GCE记为CoAl-ELDH-P@Au;
实施例5:
(a)CoAl-LDH-P的制备
按照实施例1中步骤(a)的方法和条件制备;
(b)CoAl-ELDH-P的制备
按照实施例1中步骤(b)的方法和条件制备;
(c)CoAl-ELDH-P@Au的制备
按照实施例1中步骤(c)的方法和条件制备;
(d)CoAl-ELDH-P@Au复合材料修饰GCE的制备
将基底电极打磨抛光成镜面,再用超纯水超声清洗,室温自然干燥后得处理好的GCE;将步骤(c)制备得到的CoAl-ELDH-P@Au复合材料超声分散于去离子水中,制备浓度为1mg/mL的分散液,取7μL该分散液滴涂在步骤(d)中处理好的GCE表面,室温自然干燥后即得CoAl-ELDH-P@Au复合膜修饰GCE记为CoAl-ELDH-P@Au;
实施例6:
(a)CoAl-LDH-P的制备
按照实施例1中步骤(a)的方法和条件制备;
(b)CoAl-ELDH-P的制备
按照实施例1中步骤(b)的方法和条件制备;
(c)CoAl-ELDH-P@Au的制备
按照实施例1中步骤(c)的方法和条件制备;
(d)CoAl-ELDH-P@Au复合材料修饰GCE的制备
将基底电极打磨抛光成镜面,再用超纯水超声清洗,室温自然干燥后得处理好的GCE;将步骤(c)制备得到的CoAl-ELDH-P@Au复合材料超声分散于去离子水中,制备浓度为1mg/mL的分散液,取8μL该分散液滴涂在步骤(d)中处理好的GCE表面,室温自然干燥后即得CoAl-ELDH-P@Au复合膜修饰GCE记为CoAl-ELDH-P@Au;
对比例1:
直接用裸GCE。
对比例2:
(a)CoAl-LDH的制备
将Co(NO3)2·6H2O(250mg,0.86mmol)和Al(NO3)3·9H2O(161mg,0.43mmol)溶于一定体积的去离子水中,再加入0.1952g尿素,将上述溶液置入100ml高压反应釜中,在100℃下反应12h,将得到的CoAl-LDH胶体溶液离心洗涤后得CoAl-LDH,备用;
(b)CoAl-ELDH的制备
取一定量的CoAl-LDH分散至20ml含有1M NaCl和3.3mM HCl的水和乙醇(v/v乙醇=1:1)溶液中,通N2 10min排出溶液中的空气后密封容器,然后在室温下振荡12h,在8000rpm下离心5min回收所得样品,之后再用乙醇洗涤五次,收集湿样,得到CoAl-LDH-Cl-
取一定量的CoAl-LDH-Cl-分散至20ml含有0.1M NaNO3的水和乙醇(v/v乙醇=1:1)溶液中,通N2 10min排出溶液中的空气后密封容器,然后在室温下振荡12h,在8000rpm下离心5min回收所得样品,之后再用乙醇洗涤五次,收集湿样,得到CoAl-LDH-NO3 -
取一定量的CoAl-LDH-NO3 -分散至20ml甲酰胺中,通N2 10min排出溶液中的空气后密封容器,然后在室温下振荡24h,之后在10000rpm下离心10min,除去未剥离的纳米片,得到CoAl-ELDH,备用;
(b)CoAl-ELDH/GCE的制备
将基底电极打磨抛光成镜面,再用超纯水超声清洗,室温自然干燥后得处理好的GCE;将步骤(a)制备得到的CoAl-LDH超声分散于去离子水中,制备浓度为1mg/mL的分散液,取5μL该分散液滴涂在步骤(c)中处理好的GCE表面,室温自然干燥后即得CoAl-ELDH/GCE;
对比例3:
(a)CoAl-ELDH-P的制备
按照实施例1中步骤(b)的方法和条件制备;
(b)CoAl-ELDH-P/GCE的制备
将基底电极打磨抛光成镜面,再用超纯水超声清洗,室温自然干燥后得处理好的GCE;将步骤(a)制备得到的CoAl-ELDH-P超声分散于去离子水中,制备浓度为1mg/mL的分散液,取5μL该分散液滴涂在步骤(c)中处理好的GCE表面,室温自然干燥后即得CoAl-ELDH-P/GCE;
对比例4:
(a)CoAl-ELDH的制备
按照对比例2中步骤(b)的方法和条件制备;
(b)CoAl-ELDH@Au的制备
将一定体积的10mM的HAuCl4加入10mL CoAl-ELDH纳米片溶液中,在4℃老化24小时,然后向混合物中添加0.025ml的10mM NaBH4,得到CoAl-ELDH@Au复合材料;
(c)CoAl-ELDH@Au/GCE的制备
将基底电极打磨抛光成镜面,再用超纯水超声清洗,室温自然干燥后得处理好的GCE;将步骤(b)制备得到的CoAl-ELDH@Au超声分散于去离子水中,制备浓度为1mg/mL的分散液,取5μL该分散液滴涂在步骤(c)中处理好的GCE表面,室温自然干燥后即得CoAl-ELDH@Au/GCE;
图1为本发明实施例1制得的CoAl-ELDH-P@Au复合物的SEM图。可以观察到金纳米粒子均匀的分布在CoAl-ELDH-P的表面,超薄LDH表呈现出多孔形貌。通过粒径分析,金纳米粒子的尺寸约在6nm左右。
实施例7:
将实施例4所制得的CoAl-ELDH-P@Au/GCE作为工作电极,铂丝为对电极,饱和甘汞电极为参比电极,作为对比,按照对比例1、对比例2、对比例3和对比例4的对应的GCE、CoAl-ELDH/GCE、CoAl-ELDH-P/GCE和CoAl-ELDH@Au/GCE作为工作电极,然后在含有0.1mmol/L杀螟松的0.1mol/L pH 7.0的磷酸盐缓冲液中进行循环伏安法测定,扫速为0.1V/s,结果如图2所示。从图中可以明显观察到,杀螟松的电化学响应会产生一对可逆的氧化还原峰O1和R1(2e-,2H+)和一个不可逆的还原峰R2(4e-,4H+)。因为不可逆的还原峰(4e-,4H+)比可逆的氧化还原峰(2e-,2H+)呈现出更高的峰值电流信号,因此不可逆的还原峰R2对于检测杀螟松的浓度来说更重要。CoAl-ELDH-P@Au/GCE对杀螟松(100μM)的不可逆峰值电流响应高达25.33μA。与CoAl-ELDH@Au/GCE(15.2μA)、CoAl-ELDH-P/GCE(12.56μA)、CoAl-ELDH/GCE(10.43μA)和裸GCE(8.064μA)获得的不可逆峰值电流响应相对比有了明显的增强。结果说明CoAl-ELDH-P@Au/GCE具有较高的导电性、活性中心和较大的比表面积。CoAl-ELDH-P纳米片增强了CoAl-ELDH-P@Au/GCE的表面积,Au纳米粒子加强了CoAl-ELDH-P@Au/GCE的电导率,通过CoAl-ELDH-P纳米片和Au纳米粒子的协同作用,加速了反应体系中电子的转移速率。因此,CoAl-ELDH-P@Au/GCE对杀螟松还原的电催化活性显著提高。
图3为对比例1~4和实施例4对应的裸GCE(a)、CoAl-ELDH/GCE(b)、CoAl-ELDH-P/GCE(c)、CoAl-ELDH@Au/GCE(d)和CoAl-ELDH-P@Au/GCE(e)在含有10.0mmol/L[Fe(CN)6]-3/-4和0.1mol/L KCl溶液中的电化学阻抗图。从图中可以看出,谱图分为两部分,其中高频条件下的半圆对应有效电子转移控制过程,其半圆直径代表电子转移电阻(Rct);而低频段的线性部分对应的是溶质扩散控制过程。电化学阻抗结果显示,与CoAl-ELDH@Au/GCE(164.3Ω)、CoAl-ELDH-P/GCE(351.3Ω)、CoAl-ELDH/GCE(463.5Ω)和裸GCE相比,CoAl-ELDH-P@Au/GCE(28.72Ω)的Rct值显著降低。结果表明,CoAl-ELDH-P与Au的协同作用使CoAl-ELDH-P@Au的电荷转移速率显著提高,在电极与电解液界面上表现出快速的电子转移。
图4为不同浓度下杀螟松在实施例4对应CoAl-ELDH-P@Au/GCE上的差分脉冲伏安图。可以看出,随着杀螟松浓度的增加,其还原峰的电流也随之增大,可得到杀螟松的浓度与还原峰电流的线性关系曲线,按照相关灵敏度的测定规则,测定杀螟松的检测限。测定杀螟松的最佳条件为pH=7.0的磷酸盐缓冲液,差分脉冲伏安法测得杀螟松的浓度在一定范围内与还原峰电流呈较好的线性关系。杀螟松的响应值电流在实验的浓度范围内随着浓度的增大而逐渐增大,说明本发明制备的修饰电极可实现对杀螟松的定量检测。
如图5所示,杀螟松分别在0.01~0.1μM和0.1~100μM两段范围存在线性关系,线性方程分别为I(μA)=9.3380C(μM)+1.9613(R2=0.9690)和I(μA)=0.0531C(μM)+2.9525(R2=0.9920),检测限为3.2nM。
表1 为本发明所得CoAl-ELDH-P@Au/GCE检测杀螟松性能与其它电分析方法的比较
Figure BDA0003168166970000091
从表1可看出,采用本发明所述的CoAl-ELDH-P@Au纳米复合物修饰基底电极后,其对杀螟松检测时的线性范围接近或优于现有的修饰电极,但检测限明显低于它们,说明CoAl-ELDH-P@Au复合膜修饰电极对杀螟松具有灵敏的电催化性能,因而表现出了更好的稳定性和灵敏度。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的转换方式,都包含在本发明的保护范围之内。

Claims (3)

1.一种超薄带孔类水滑石纳米片@Au复合膜修饰电极,其特征在于所述超薄带孔类水滑石纳米片@Au复合膜修饰电极由玻碳电极为基底电极和超薄带孔类水滑石纳米片@Au复合膜组成;所述超薄带孔类水滑石纳米片@Au复合膜材料是在甲酰胺中剥离得到的超薄多孔类水滑石纳米片上原位还原氯金酸制备所得;所述玻碳电极记为GCE;所述多孔类水滑石纳米片记为CoAl-LDH-P;所述超薄带孔类水滑石纳米片为超薄带孔钴铝类水滑石纳米片记为CoAl-ELDH-P;
所述超薄多孔类水滑石纳米片@Au复合膜修饰电极的制备方法包括以下具体步骤:
(a)CoAl-LDH-P的制备
将2.2g P123溶于一定体积去离子水中,将Co(NO3)2·6H2O和Al(NO3)3·9H2O按一定的摩尔比溶解于其中,使总金属离子浓度为25.8mmol/L,再加入0.1952g尿素,将上述溶液置入100ml高压反应釜中,在80-120℃下反应8-16h,将得到的反应液离心洗涤后得CoAl-LDH-P,备用;
(b)CoAl-ELDH-P的制备
取10-50mg的CoAl-LDH-P分散至20mL含有1M NaCl和3.3mM HCl的水和乙醇(v水/v乙醇=1:1)溶液中,通N2 10min排出溶液中的空气后密封容器,然后在室温下振荡12h,在8000rpm下离心5min回集固体样品,再用乙醇洗涤五次,得到CoAl-LDH-P-Cl-胶状物;
取10-50mg的CoAl-LDH-P-Cl-胶状物分散至20mL含有0.1M NaNO3的水和乙醇(v水/v乙醇=1:1)溶液中,通N2 10min排出溶液中的空气后密封容器,室温下振荡12h,在8000rpm下离心5min所集固体样品,再用乙醇洗涤五次,收集湿样,得到CoAl-LDH-P-NO3 -
取10-50mg的CoAl-LDH-P-NO3 -分散至20mL甲酰胺中,通N2 10min排出溶液中的空气后密封容器,室温下振荡24h,10000rpm下离心10min,除去未剥离的纳米片,得到CoAl-ELDH-P胶体溶液,备用;
(c)CoAl-ELDH-P@Au的制备
将一定体积的10mmol/L的HAuCl4加入至10mL步骤(b)所述的CoAl-ELDH-P胶体溶液中,在4℃老化24小时,然后向混合液中滴加0.025mL溶液为10mM的NaBH4溶液,反应1h后离心洗涤,得到CoAl-ELDH-P@Au复合材料;
(d)CoAl-ELDH-P@Au复合膜修饰GCE的制备
将基底电极打磨抛光成镜面,再用超纯水超声清洗,室温自然干燥后得处理好的GCE;将步骤(c)制备得到的CoAl-ELDH-P@Au复合材料超声分散于去离子水中,制备浓度为1mg/mL的分散液,取2~20μL该分散液滴涂在处理好的GCE表面,室温自然干燥后即得复合膜修饰电极CoAl-ELDH-P@Au/GCE。
2.根据权利要求1所述的一种超薄带孔类水滑石纳米片@Au复合膜修饰电极,其特征在于,制备方法步骤(a)中所述去离子水的体积的为50mL;Co(NO3)2·6H2O和Al(NO3)3·9H2O的摩尔比为2:1;步骤(c)中HAuCl4的体积为0.5mL;所得的CoAl-ELDH-P@Au中金纳米粒子均匀分布在CoAl-ELDH上,其粒径范围为5-8nm;步骤(d)中,所述基底电极的打磨抛光是在麂皮上用氧化铝粉末依次打磨,超声清洗时间为30s。
3.权利要求1或2所述一种超薄带孔类水滑石纳米片@Au复合膜修饰电极用于检测农药杀螟松,其特征在于,以0.1M pH 8.0的磷酸盐缓冲液为支持电解质,将不同浓度的杀螟松电解质溶液加入电解池中,以修饰电极为工作电极,用差分脉冲伏安法检测,得到杀螟松的还原峰电流与其浓度的线性回归方程,采用同样方法测定待测样品中杀螟松的还原峰电流,代入线性回归方程,即得待测样品中杀螟松的含量。
CN202110810923.3A 2021-07-19 2021-07-19 超薄带孔类水滑石纳米片膜修饰电极及其检测应用 Active CN113484379B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110810923.3A CN113484379B (zh) 2021-07-19 2021-07-19 超薄带孔类水滑石纳米片膜修饰电极及其检测应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110810923.3A CN113484379B (zh) 2021-07-19 2021-07-19 超薄带孔类水滑石纳米片膜修饰电极及其检测应用

Publications (2)

Publication Number Publication Date
CN113484379A true CN113484379A (zh) 2021-10-08
CN113484379B CN113484379B (zh) 2024-01-26

Family

ID=77942155

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110810923.3A Active CN113484379B (zh) 2021-07-19 2021-07-19 超薄带孔类水滑石纳米片膜修饰电极及其检测应用

Country Status (1)

Country Link
CN (1) CN113484379B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2704992A1 (en) * 2011-05-04 2014-03-12 Isis Innovation Limited Preparation of layered double hydroxides
CN106693945A (zh) * 2016-11-29 2017-05-24 北京化工大学 剥层水滑石纳米片基复合催化剂及其制备方法
CN107362801A (zh) * 2017-07-26 2017-11-21 北京化工大学 一种基于水滑石的单原子层钴/氧化钴复合结构电催化剂及其制备方法和应用
CN109100404A (zh) * 2018-08-14 2018-12-28 青岛科技大学 类水滑石纳米片@zif-67复合材料修饰电极及其制备方法和检测应用
CN110711553A (zh) * 2019-11-20 2020-01-21 广州大学 一种水滑石拟薄水铝石复合薄膜及其制备方法和应用
CN111796011A (zh) * 2020-08-01 2020-10-20 青岛科技大学 钴铝类水滑石纳米片@zif-67修饰电极及其制备方法和检测萘酚应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2704992A1 (en) * 2011-05-04 2014-03-12 Isis Innovation Limited Preparation of layered double hydroxides
CN106693945A (zh) * 2016-11-29 2017-05-24 北京化工大学 剥层水滑石纳米片基复合催化剂及其制备方法
CN107362801A (zh) * 2017-07-26 2017-11-21 北京化工大学 一种基于水滑石的单原子层钴/氧化钴复合结构电催化剂及其制备方法和应用
CN109100404A (zh) * 2018-08-14 2018-12-28 青岛科技大学 类水滑石纳米片@zif-67复合材料修饰电极及其制备方法和检测应用
CN110711553A (zh) * 2019-11-20 2020-01-21 广州大学 一种水滑石拟薄水铝石复合薄膜及其制备方法和应用
CN111796011A (zh) * 2020-08-01 2020-10-20 青岛科技大学 钴铝类水滑石纳米片@zif-67修饰电极及其制备方法和检测萘酚应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAIJUN WANG ET AL: "Synthesis of core–shell Ce-modified mixed metal oxides derived from P123-templated layered double hydroxides", RSC ADV., vol. 11, pages 8375 *

Also Published As

Publication number Publication date
CN113484379B (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
Gao et al. Electrochemical co-deposition synthesis of Au-ZrO2-graphene nanocomposite for a nonenzymatic methyl parathion sensor
Lin et al. Layer-by-layer construction of multi-walled carbon nanotubes, zinc oxide, and gold nanoparticles integrated composite electrode for nitrite detection
Gupta et al. A novel sensitive Cu (II) and Cd (II) nanosensor platform: graphene oxide terminated p-aminophenyl modified glassy carbon surface
Wei et al. Stripping voltammetry study of ultra-trace toxic metal ions on highly selectively adsorptive porous magnesium oxide nanoflowers
Jiang et al. A non-enzymatic hydrogen peroxide sensor based on a glassy carbon electrode modified with cuprous oxide and nitrogen-doped graphene in a nafion matrix
Li et al. High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film
Wen et al. N-doped reduced graphene oxide/MnO2 nanocomposite for electrochemical detection of Hg2+ by square wave stripping voltammetry
Zhu et al. Anodic stripping voltammetric determination of lead in tap water at an ordered mesoporous carbon/Nafion composite film electrode
Xu et al. A disposable molecularly imprinted electrochemical sensor for the ultra-trace detection of the organophosphorus insecticide phosalone employing monodisperse Pt-doped UiO-66 for signal amplification
Wang et al. Sensing of glycoprotein via a biomimetic sensor based on molecularly imprinted polymers and graphene–Au nanoparticles
Yang et al. Electrocatalytic reduction and sensitive determination of nitrite at nano-copper coated multi-walled carbon nanotubes modified glassy carbon electrode
Han et al. Mesoporous MnFe2O4 nanocrystal clusters for electrochemistry detection of lead by stripping voltammetry
Ramki et al. Hierarchical multi-layered molybdenum carbide encapsulated oxidized carbon nanofiber for selective electrochemical detection of antimicrobial agents: inter-connected path in multi-layered structure for efficient electron transfer
CN113588751B (zh) MXene@CoAl-LDH纳米复合膜修饰电极及其制备方法和检测农药的应用
Sun et al. In-situ reducing platinum nanoparticles on covalent organic framework as a sensitive electrochemical sensor for simultaneous detection of catechol, hydroquinone and resorcinol
Gowthaman et al. Ultrasonic synthesis of CeO2@ organic dye nanohybrid: environmentally benign rabid electrochemical sensing platform for carcinogenic pollutant in water samples
Yuan et al. Layered titanate nanosheets as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury (II)
Wang et al. Direct electrochemistry and electrocatalysis of myoglobin using an ionic liquid-modified carbon paste electrode coated with Co 3 O 4 nanorods and gold nanoparticles
Li et al. An electrochemical sensor based on platinum nanoparticles and mesoporous carbon composites for selective analysis of dopamine
Liu et al. Novel cysteic acid/reduced graphene oxide composite film modified electrode for the selective detection of trace silver ions in natural waters
Xu et al. Ultrasensitive detection of nitrite based on gold-nanoparticles/polyrhodamine B/carbon nanotubes modified glassy carbon electrode with enhanced electrochemical performance
Li et al. Electrocatalytic reduction of nitrite at polypyrrole nanowire–platinum nanocluster modified glassy carbon electrode
Rajkumar et al. Electrochemical synthesis of palladium nano urchins decorated multi walled carbon nanotubes for electrocatalytic oxidation of hydrazine and reduction of hydrogen peroxide
Mardani et al. Preparation of molecularly imprinted magnetic graphene oxide-gold nanocomposite and its application to the design of electrochemical sensor for determination of epinephrine
Pan et al. Fabrication and Characterization of Carbon Nanotube‐Hydroxyapatite Nanocomposite: Application to Anodic Stripping Voltammetric Determination of Cadmium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240807

Address after: 230000 Woye Garden Commercial Building B-1017, 81 Ganquan Road, Shushan District, Hefei City, Anhui Province

Patentee after: HEFEI JINGLONG ENVIRONMENTAL PROTECTION TECHNOLOGY Co.,Ltd.

Country or region after: China

Address before: 266000 Songling Road, Laoshan District, Qingdao, Shandong Province, No. 99

Patentee before: QINGDAO University OF SCIENCE AND TECHNOLOGY

Country or region before: China