CN113470982A - 一种高性能柔性超级电容器复合电极材料及其制备方法 - Google Patents

一种高性能柔性超级电容器复合电极材料及其制备方法 Download PDF

Info

Publication number
CN113470982A
CN113470982A CN202110942089.3A CN202110942089A CN113470982A CN 113470982 A CN113470982 A CN 113470982A CN 202110942089 A CN202110942089 A CN 202110942089A CN 113470982 A CN113470982 A CN 113470982A
Authority
CN
China
Prior art keywords
electrode material
composite electrode
electrodeposition
performance flexible
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110942089.3A
Other languages
English (en)
Other versions
CN113470982B (zh
Inventor
张永起
赵强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangtze River Delta Research Institute of UESTC Huzhou
Original Assignee
Yangtze River Delta Research Institute of UESTC Huzhou
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze River Delta Research Institute of UESTC Huzhou filed Critical Yangtze River Delta Research Institute of UESTC Huzhou
Priority to CN202110942089.3A priority Critical patent/CN113470982B/zh
Publication of CN113470982A publication Critical patent/CN113470982A/zh
Application granted granted Critical
Publication of CN113470982B publication Critical patent/CN113470982B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种高性能柔性超级电容器复合电极材料及其制备方法,制备方法包括以下步骤:将聚乙二醇、氯化锂和浓硫酸加入去离子水中并搅拌,再在超声条件下,加入碳纳米管并搅拌,然后再加入镍源、钴源和硒源搅拌均匀形成悬浊液,最后以碳布为工作电极,悬浊液为电沉积液,利用循环伏安电沉积法进行共电沉积,将所得物干燥后制得。该复合电极材料将镍钴双金属硒化物以纳米形态附着于碳纳米管管壁上,碳纳米管再以原子键合的方式悬挂于碳布纤维上,形成类似于树枝状的复合材料,表现出极好的电化学性能及柔性。

Description

一种高性能柔性超级电容器复合电极材料及其制备方法
技术领域
本发明涉及超级电容器复合电极材料技术领域,具体涉及一种高性能柔性超级电容器复合电极材料及其制备方法。
背景技术
超级电容器具有高能量密度、高功率密度、使用温度范围广、寿命长、对环境友好等特点备受关注,由于其在航空航天、国防工业、生活生产中具有极其重要和广阔的应用前景,已成为世界各国的研究重点。
超级电容器是一种电化学电容器,存储机理分为电化学双电层电容和赝电容。电极材料是超级电容器的核心,电化学双电层电容器主要是以各种碳材料为电极材料。赝电容器主要是以能发生可逆电化学反应的活性物质作为电极材料,目前研究较多的有氧化物、硫化物、硒化物等。而为了进一步提升电容器的性能,人们往往是把双电层电极材料和赝电容电极材料复合形成复合电极材料,但是提升有限。另外随着储能器件的飞速发展,各种异形储能器件及可穿戴储能器件日益受到关注,作为核心部件的柔性电极,将成为柔性电容器发展的关键。因此需要制备出柔性且具有高性能的超级电容器电极材料。
发明内容
为了解决上述技术问题,本发明的目的是提供一种高性能柔性超级电容器复合电极材料及其制备方法,以解决现有电极材料比容量低、能量密度低及难以制备柔性器件的问题。
本发明解决上述技术问题的技术方案如下:提供一种高性能柔性超级电容器复合电极材料,该复合电极材料是以镍钴双金属硒化物以纳米形态附着于碳纳米管管壁上,碳纳米管再以原子键合的方式悬挂于碳布纤维上形成类似于树枝状的复合电极材料。
本发明的有益效果为:本发明的复合电极材料不仅有效结合了碳纳米管的高导电性、良好的机械性能及镍钴双金属硒化物的高电化学性能,并且还利用了碳布的柔性、导电特征,使得复合材料具有优异的协同作用,表现为极好的柔性和优良的电学特征,比如高导电性、高比容量及循环稳定性,可应用于高性能柔性超级电容器。
本发明还提供一种上述高性能柔性超级电容器复合电极材的制备方法,包括以下步骤:
(1)将聚乙二醇、氯化锂和浓硫酸加入去离子水中,搅拌均匀形成前驱溶液;
(2)在超声条件下,将碳纳米管加入步骤(1)所得的前驱溶液中,并搅拌形成分散溶液;
(3)将镍源、钴源和硒源加入到上述分散溶液中,搅拌均匀形成悬浊液;
(4)以碳布为工作电极,步骤(3)所得悬浊液为电沉积液,利用循环伏安电沉积法进行共电沉积;
(5)将步骤(4)所得物烘干,即可得到柔性复合电极材料。
本发明的有益效果为:本发明制备的柔性复合电极材料是镍钴双金属硒化物以纳米形态附着于碳纳米管(CNTs)管壁上,碳纳米管再以原子键合的方式悬挂于碳布纤维上形成类似于树枝状的复合材料。以碳布作为基底材料,保证了良好的导电性能和较低的电化学阻抗特性,同时复合电极材料表现出很好的力学性能,更重要的是碳布是一种柔性导电材料,它能保证所制备的复合电极具有极佳的柔性特征,适合于作为柔性电容器电极。CNTs/NiCoSe2的杂化结构有效利用了碳纳米管的高导电性、良好的机械性能,以及NiCoSe2的高电化学性能所产生的协同作用,使得复合材料表现出高导电性、高比容量及循环稳定性,利用共沉积法生长于碳布表面的CNTs/NiCoSe2复合材料为快速电子输运提供了途径,复合材料具有高孔隙率,使电化学活性物质与电解液间的接触面积最大化,进而缩短了离子的扩散距离。此外,复合材料具有较大的比表面积,这为赝电容反应的发生提供大量的氧化还原活性位点,更有利于反应的进行。
在上述技术方案的基础上,本发明还可以做如下改进:
进一步,步骤(1)前驱溶液中聚乙二醇、氯化锂和浓硫酸的浓度分别为1-2g/L、7-9g/L、8-10g/L。
采用上述进一步技术方案的有益效果为:聚乙二醇作为表面活性剂加入到沉积液中可诱导沉积物均匀沉积在碳布基底上。由于电沉积过程中有明显的析氢反应,浓硫酸的加入则可调节溶液的pH值,使溶液中存在过量的H+,可使所制备的复合电极材料具有多孔结构。
进一步,步骤(2)分散溶液中碳纳米管的浓度为0.1-0.15g/L。
进一步,步骤(3)镍源为NiCl2,钴源为CoCl2,硒源为SeO2,NiCl2、CoCl2和SeO2在悬浊液中的浓度分别为7-9mmol/L,7-9mmol/L,15-18mmol/L。
进一步,步骤(4)碳布在共电沉积之前经过亲水处理。
进一步,亲水处理方法为:将碳布在丙酮溶液中浸泡3-8min,然后在去离子水中超声洗涤30-40min。
采用上述进一步技术方案的有益效果为:碳布经过亲水处理,增加了其电沉积液的浸入性。
进一步,步骤(4)中循环伏安电沉积法是以Pt片为对电极,Ag/AgCl为参比电极,循环条件为:扫描速率为3-5mV/s,电压范围为-1.6~0V,扫描2-3圈。
进一步,步骤(4)烘干温度为50-70℃。
本发明还提供了高性能柔性超级电容器复合电极材料在高性能柔性超级电容器电极制备中的应用。
本发明的复合电极材料采用共电沉积法制备得到,工艺简单、易于操作、对设备要求低,适合于大规模生产,在超级电容器、电催化等领域具有广阔的应用前景。
附图说明
图1为实施例1所制备的高性能柔性超级电容器复合电极材料的扫描电镜图片;
图2为实施例1所制备的高性能柔性超级电容器复合电极材料的恒流充放电图;
图3为实施例1所制备的高性能柔性超级电容器复合电极材料的循环稳定性测试图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1:
一种高性能柔性超级电容器复合电极材料的制备方法,包括以下步骤:
(1)将碳布在丙酮溶液中浸泡5min,然后在去离子水中超声洗涤35min,再将碳布清洗干净,烘干;
(2)将25mg的聚乙二醇、200mg的氯化锂和220mg的浓硫酸加入25ml的去离子水中,搅拌均匀形成前驱溶液;
(3)在超声条件下,将3mg碳纳米管加入步骤(1)所得的前驱溶液中,并搅拌形成分散溶液;
(4)将0.2mmol的NiCl2、0.2mmol的CoCl2和0.4mmol的SeO2加入到上述分散溶液中,搅拌均匀形成悬浊液;
(5)以步骤(1)所得碳布为工作电极,Pt片为对电极,Ag/AgCl为参比电极,步骤(4)所得悬浊液为电沉积液,利用循环伏安电沉积法进行共电沉积,其中,电沉积扫描速率为4mV/s,电压范围为-1.6~0V,扫描3圈;
(6)将步骤(5)所得物于60℃烘干,即可得到柔性复合电极材料。
实施例2:
一种高性能柔性超级电容器复合电极材料的制备方法,包括以下步骤:
(1)将碳布在丙酮溶液中浸泡3min,然后在去离子水中超声洗涤30min,再将碳布清洗干净,烘干;
(2)将20mg的聚乙二醇、175mg的氯化锂和200mg的浓硫酸加入25ml的去离子水中,搅拌均匀形成前驱溶液;
(3)在超声条件下,将2.5mg碳纳米管加入步骤(1)所得的前驱溶液中,并搅拌形成分散溶液;
(4)将0.175mmol的NiCl2、0.175mmol的CoCl2和0.375mmol的SeO2加入到上述分散溶液中,搅拌均匀形成悬浊液;
(5)以步骤(1)所得碳布为工作电极,Pt片为对电极,Ag/AgCl为参比电极,步骤(4)所得悬浊液为电沉积液,利用循环伏安电沉积法进行共电沉积,其中,电沉积扫描速率为3mV/s,电压范围为-1.6~0V,扫描2圈;
(6)将步骤(5)所得物于50℃烘干,即可得到柔性复合电极材料。
实施例3:
一种高性能柔性超级电容器复合电极材料的制备方法,包括以下步骤:
(1)将碳布在丙酮溶液中浸泡8min,然后在去离子水中超声洗涤40min,再将碳布清洗干净,烘干;
(2)将50mg的聚乙二醇、225mg的氯化锂和250mg的浓硫酸加入25ml的去离子水中,搅拌均匀形成前驱溶液;
(3)在超声条件下,将3.75mg碳纳米管加入步骤(1)所得的前驱溶液中,并搅拌形成分散溶液;
(4)将0.225mmol的NiCl2、0.225mmol的CoCl2和0.45mmol的SeO2加入到上述分散溶液中,搅拌均匀形成悬浊液;
(5)以步骤(1)所得碳布为工作电极,Pt片为对电极,Ag/AgCl为参比电极,步骤(4)所得悬浊液为电沉积液,利用循环伏安电沉积法进行共电沉积,其中,电沉积扫描速率为5mV/s,电压范围为-1.6~0V,扫描3圈;
(6)将步骤(5)所得物于70℃烘干,即可得到柔性复合电极材料。
对比例1:
一种柔性超级电容器复合电极材料的制备方法,包括以下步骤:
(1)将碳布在丙酮溶液中浸泡5min,然后在去离子水中超声洗涤35min,再将碳布清洗干净,烘干;
(2)将25mg的聚乙二醇、200mg的氯化锂和220mg的浓硫酸加入25ml的去离子水中,搅拌均匀形成前驱溶液;
(3)将0.2mmol的NiCl2、0.2mmol的CoCl2和0.4mmol的SeO2加入到上述前驱溶液中,搅拌均匀;
(4)以步骤(1)所得碳布为工作电极,Pt片为对电极,Ag/AgCl为参比电极,步骤(3)所得溶液为电沉积液,利用循环伏安电沉积法进行共电沉积,其中,电沉积扫描速率为4mV/s,电压范围为-1.6~0V,扫描3圈;
(5)将步骤(4)所得物于60℃烘干,即可得到柔性复合电极材料。
对比例2:
一种柔性超级电容器复合电极材料的制备方法,包括以下步骤:
(1)将碳布在丙酮溶液中浸泡5min,然后在去离子水中超声洗涤35min,再将碳布清洗干净,烘干;
(2)将25mg的聚乙二醇、200mg的氯化锂和220mg的浓硫酸加入25ml的去离子水中,搅拌均匀形成前驱溶液;
(3)在超声条件下,将3mg碳纳米管加入步骤(1)所得的前驱溶液中,并搅拌形成分散溶液;
(4)以步骤(1)所得碳布为工作电极,Pt片为对电极,Ag/AgCl为参比电极,步骤(3)所得分散溶液为电沉积液,利用循环伏安电沉积法进行共电沉积,其中,电沉积扫描速率为4mV/s,电压范围为-1.6~0V,扫描3圈;
(5)将步骤(5)所得物于60℃烘干,即可得到柔性复合电极材料。
性能测试:
一、对实施例1所制备的柔性复合电极材料进行扫描电镜分析,结果如图1所示,由图1可见,镍钴双金属硒化物以纳米形态附着于碳纳米管管壁上,碳纳米管再以原子键合的方式悬挂于碳布纤维上形成类似于树枝状的复合材料。
二、实施例1-3和对比例1-2所制备的电极材料的电化学性能测试
分别以实施例1-3和对比例1-3所制备的电极材料为工作电极,铂片电极为对电极,汞/氧化汞电极为参比电极,组成三电极体系,通过电化学工作站对电极材料进行电化学性能测试,测试电解液为3mol/L的KOH溶液。
1、循环伏安测试(CV)
将实施例1所制备的复合电极材料在50mV/s的扫描速率下进行循环伏安测试,CV曲线出现了一对氧化还原峰,说明该复合电极材料具有明显的赝电容性能,此外随着扫描速率的增加,CV曲线轮廓不断增大,表明其具有良好的倍率特性,同时随着扫描速率的增加,氧化峰和还原峰分别向负电位、正电位移动,此外电流几乎与扫描速率的平方根呈线性比例关系,这说明该反应是准可逆反应,该复合物具有良好的电化学性能。
2、恒流充放电测试
图2为实施例1所制备的复合电极材料在5A/g的电流密度下的恒流充放电图,该充放电曲线呈非线性特征,说明该复合电极材料具有类电池特性,根据充放电曲线可以得到电极比容量,对实施例1-3和对比例1-2所制备的电极材料均在5A/g的电流密度下进行恒流充放电测试,可得到各电极材料的比容量,结果见表1,由表1可知,本发明方法制得的柔性复合电极材料具有较高的比容量。
表1各复合电极材料的比容量和工作电位窗口
Figure BDA0003215286310000081
3、交流阻抗测试
对实施例1进行交流阻抗测试,其测试频率范围是100kHz-0.01Hz,交流阻抗曲线图显示该柔性复合电极具有优异的电荷迁移速率和较短的离子扩散途径,且该复合电极在2Ag-1的电流密度下循环5000次后容量保持率仍达97.9%,体现出其优异的耐用性,结果见图3。
三、以实施例1制备的柔性复合电极材料组装的非对称超级电容器的电化学性能测试
以实施例1所制备复合物电极为正极,活性炭电极为负极,PVA/KOH为凝胶电解质组装成柔性全固态非对称超级电容器,通过电化学工作站对其进行电化学性能测试,结果表明:850W/kg条件下,该非对称超级电容器具有112.2Wh/kg的超高容量,循环10000圈后该非对称电容器仍然保留98.1%的初始容量,并且表现出极好的柔性特征。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种高性能柔性超级电容器复合电级材料,其特征在于,镍钴双金属硒化物以纳米形态附着于碳纳米管管壁上,碳纳米管再以原子键合的方式悬挂于碳布纤维上形成树枝状的复合电极材料。
2.权利要求1所述的高性能柔性超级电容器复合电级材料的制备方法,其特征在于,包括以下步骤:
(1)将聚乙二醇、氯化锂和浓硫酸加入去离子水中,搅拌均匀形成前驱溶液;
(2)在超声条件下,将碳纳米管加入步骤(1)所得的前驱溶液中,并搅拌形成分散溶液;
(3)将镍源、钴源和硒源加入到上述分散溶液中,搅拌均匀形成悬浊液;
(4)以碳布为工作电极,步骤(3)所得悬浊液为电沉积液,利用循环伏安电沉积法进行共电沉积;
(5)将步骤(4)所得物烘干,即可得到复合电极材料。
3.根据权利要求2所述的高性能柔性超级电容器复合电级材料的制备方法,其特征在于,步骤(1)所述前驱溶液中聚乙二醇、氯化锂和浓硫酸的浓度分别为0.8-2g/L、7-9g/L、8-10g/L。
4.根据权利要求2所述的高性能柔性超级电容器复合电级材料的制备方法,其特征在于,步骤(2)所述分散溶液中碳纳米管的浓度为0.1-0.15g/L。
5.根据权利要求2所述的高性能柔性超级电容器复合电级材料的制备方法,其特征在于,步骤(3)所述镍源为NiCl2,钴源为CoCl2,硒源为SeO2,NiCl2、CoCl2和SeO2在悬浊液中的浓度分别为7-9mmol/L,7-9mmol/L,15-18mmol/L。
6.根据权利要求2所述的高性能柔性超级电容器复合电级材料的制备方法,其特征在于,步骤(4)所述碳布在共电沉积之前经过亲水处理。
7.根据权利要求2所述的高性能柔性超级电容器复合电级材料的制备方法,其特征在于,步骤(4)所述循环伏安电沉积法是以Pt片为对电极,Ag/AgCl为参比电极,循环条件为:扫描速率为3-5mV/s,电压范围为-1.6~0V,扫描2-3圈。
8.根据权利要求2所述的高性能柔性超级电容器复合电级材料的制备方法,其特征在于,步骤(4)所述烘干温度为50-70℃。
9.权利要求1所述高性能柔性超级电容器复合电级材料在制备高性能柔性超级电容器电极中的应用。
CN202110942089.3A 2021-08-17 2021-08-17 一种高性能柔性超级电容器复合电极材料及其制备方法 Active CN113470982B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110942089.3A CN113470982B (zh) 2021-08-17 2021-08-17 一种高性能柔性超级电容器复合电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110942089.3A CN113470982B (zh) 2021-08-17 2021-08-17 一种高性能柔性超级电容器复合电极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113470982A true CN113470982A (zh) 2021-10-01
CN113470982B CN113470982B (zh) 2022-08-23

Family

ID=77866739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110942089.3A Active CN113470982B (zh) 2021-08-17 2021-08-17 一种高性能柔性超级电容器复合电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113470982B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115159628A (zh) * 2022-06-16 2022-10-11 华南农业大学 一种降解全氟化合物的改性电化学阴极及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130176660A1 (en) * 2012-01-06 2013-07-11 Hutchinson Carbonaceous Composition for Supercapacitor Cell Electrode, Electrode, Process for the Manufacture Thereof and Cell Incorporating Same
CN109036863A (zh) * 2018-07-23 2018-12-18 浙江大学 一种硒化物@碳基纤维超级电容器电极材料及其制备方法
CN111524718A (zh) * 2020-04-11 2020-08-11 中南民族大学 一种以亲水性碳纳米管薄膜和超支化聚合物为双模板制备非对称超级电容器的方法
CN113066675A (zh) * 2021-03-26 2021-07-02 电子科技大学 一种超级电容器电极材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130176660A1 (en) * 2012-01-06 2013-07-11 Hutchinson Carbonaceous Composition for Supercapacitor Cell Electrode, Electrode, Process for the Manufacture Thereof and Cell Incorporating Same
CN109036863A (zh) * 2018-07-23 2018-12-18 浙江大学 一种硒化物@碳基纤维超级电容器电极材料及其制备方法
CN111524718A (zh) * 2020-04-11 2020-08-11 中南民族大学 一种以亲水性碳纳米管薄膜和超支化聚合物为双模板制备非对称超级电容器的方法
CN113066675A (zh) * 2021-03-26 2021-07-02 电子科技大学 一种超级电容器电极材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TING-YU CHEN ET AL.: "Electrodeposited NiSe on a forest of carbon nanotubes as a free-standing electrode for hybrid supercapacitors and overall water splitting", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *
睦凯强 等: "碳纤维电泳沉积碳纳米管对界面性能的影响", 《材料科学与工艺》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115159628A (zh) * 2022-06-16 2022-10-11 华南农业大学 一种降解全氟化合物的改性电化学阴极及其制备方法

Also Published As

Publication number Publication date
CN113470982B (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
Wang et al. Assembly of flexible CoMoO4@ NiMoO4· xH2O and Fe2O3 electrodes for solid-state asymmetric supercapacitors
Liu et al. Self-assembled S, N co-doped reduced graphene oxide/MXene aerogel for both symmetric liquid-and all-solid-state supercapacitors
Gao et al. Preparation of NiMoO4-PANI core-shell nanocomposite for the high-performance all-solid-state asymmetric supercapacitor
Zhang et al. Immobilization of NiS nanoparticles on N-doped carbon fiber aerogels as advanced electrode materials for supercapacitors
Bo et al. Facile synthesis of flexible electrode based on cotton/polypyrrole/multi-walled carbon nanotube composite for supercapacitors
CN105047423B (zh) 一种柔性对称型赝电容超级电容器及其制备方法
Hong et al. Graphene quantum dots/Ni (OH) 2 nanocomposites on carbon cloth as a binder-free electrode for supercapacitors
Wu et al. High-performance asymmetric supercapacitors based on cobalt chloride carbonate hydroxide nanowire arrays and activated carbon
US20080010796A1 (en) High power density supercapacitors with carbon nanotube electrodes
Qiu et al. High rate integrated quasi-solid state supercapacitors based on nitrogen-enriched active carbon fiber/reduced graphene oxide nanocomposite
Xie et al. A coralliform-structured γ-MnO2/polyaniline nanocomposite for high-performance supercapacitors
JP6057293B2 (ja) Co(OH)2垂直配向グラフェン/CNT複合体、その製造方法、Co(OH)2垂直配向グラフェン/CNT複合体電極及びCo(OH)2垂直配向グラフェン/CNT複合体キャパシター
WO2015008615A1 (ja) 金属水酸化物配向電極材料、金属水酸化物含有電極とそれらの製造方法及び金属水酸化物含有キャパシター
Gao et al. Design and synthesis of MWNTs-TiO2 nanotube hybrid electrode and its supercapacitance performance
Hao et al. A flexible cotton-based supercapacitor electrode with high stability prepared by multiwalled CNTs/PANI
Shi et al. Preparation, characterization and the supercapacitive behaviors of electrochemically reduced graphene quantum dots/polypyrrole hybrids
Jiang et al. Weldable and flexible graphene ribbon@ Ni fibers with ultrahigh length capacitance for all-solid-state supercapacitors
Luo et al. Self-supported flexible supercapacitor based on carbon fibers covalently combined with monoaminophthalocyanine
Li et al. CuS/polyaniline nanoarray electrodes for application in high-performance flexible supercapacitors
Faraji et al. 2.0-V flexible all-solid-state symmetric supercapacitor device with high electrochemical performance composed of MWCNTs-WO 3-graphite sheet
Chen et al. Pushing the cycling stability limit of hierarchical metal oxide core/shell nanoarrays pseudocapacitor electrodes by nanoscale interface optimization
Tang et al. Achievement of high energy carbon based supercapacitors in acid solution enabled by the balance of SSA with abundant micropores and conductivity
CN113470982B (zh) 一种高性能柔性超级电容器复合电极材料及其制备方法
Ates et al. Binary nanocomposites of reduced graphene oxide and cobalt (II, III) oxide for supercapacitor devices
Koventhan et al. Development of a polyaniline/CMK-3/hydroquinone composite supercapacitor system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant