CN113462626B - Expression optimization of multi-subunit enzymes for monolignol synthesis of high value-added compounds - Google Patents

Expression optimization of multi-subunit enzymes for monolignol synthesis of high value-added compounds Download PDF

Info

Publication number
CN113462626B
CN113462626B CN202110702934.XA CN202110702934A CN113462626B CN 113462626 B CN113462626 B CN 113462626B CN 202110702934 A CN202110702934 A CN 202110702934A CN 113462626 B CN113462626 B CN 113462626B
Authority
CN
China
Prior art keywords
coli
gcoab
rbs
catechol
biocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110702934.XA
Other languages
Chinese (zh)
Other versions
CN113462626A (en
Inventor
肖毅
张顺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202110702934.XA priority Critical patent/CN113462626B/en
Publication of CN113462626A publication Critical patent/CN113462626A/en
Application granted granted Critical
Publication of CN113462626B publication Critical patent/CN113462626B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0055Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10)
    • C12N9/0057Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3)
    • C12N9/0061Laccase (1.10.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/13Transferases (2.) transferring sulfur containing groups (2.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P11/00Preparation of sulfur-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • C12P7/26Ketones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y110/00Oxidoreductases acting on diphenols and related substances as donors (1.10)
    • C12Y110/03Oxidoreductases acting on diphenols and related substances as donors (1.10) with an oxygen as acceptor (1.10.3)
    • C12Y110/03002Laccase (1.10.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/14Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen (1.14.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y208/00Transferases transferring sulfur-containing groups (2.8)
    • C12Y208/02Sulfotransferases (2.8.2)
    • C12Y208/02001Aryl sulfotransferase (2.8.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to a method for optimizing expression of multi-subunit enzyme and synthesizing high added value compound by using lignin monomer, which constructs RBS library of pE1K-GcoAB-M3 by Golden gate cloning method, screens RBS library of library G/C by researching growth rate, conversion rate and enzyme expression proportion of library, enzyme activity of crude enzyme liquid and the like, and has high strain growth rate and enzyme activity. The RBS library is then used in the construction of an enzymatic reaction pathway to catalyze the production of the monolignol compounds guaiacol (guaiacol) and pyrogallol (pyrogallol) to high value added compounds such as catechol, catechol-O-sulfate, and erythrosepolyl. The invention utilizes the constructed biocatalyst, realizes the high-efficiency utilization of aromatic compounds (guaiacol and 3-methoxy catechol) from lignin through biological conversion, and constructs the biosynthesis way of catechol-O-sulfate and erythrosepolyol for the first time.

Description

Expression optimization of multi-subunit enzymes for monolignol synthesis of high value-added compounds
Technical Field
The invention belongs to the technical field of microorganisms, and relates to expression optimization of multi-subunit enzyme for synthesizing high added value compounds from lignin monomers.
Background
In view of the gradual decrease of non-renewable resources such as petroleum, natural gas, etc., development and comprehensive utilization of renewable resources such as lignin are receiving attention. Lignin is a natural polymer compound, is widely present in higher plant cells, and is a biomass having a second natural content. Lignin is a natural aromatic polymer formed by connecting phenylpropane units through C-O-C and C-C bonds and performing enzymatic catalytic dehydrogenation polymerization and free radical polymerization. The prior belief is that lignin structural units mainly include: p-hydroxyphenyl propane (p-Hydroxyphenyl propane/H), guaiacyl propane (Guaiacyl/G) and syringyl propane (Syringyl/S). Lignin forms various aromatic compounds after thermochemical conversion and biological conversion, most of the compounds also have methyl groups, and intermediate metabolites such as catechol, protocatechuic acid, 3,4, 5-trihydroxybenzoic acid and the like are formed after microbial demethylation, so that the lignin can further enter central carbon metabolism and downstream high-added-value product generation, and therefore, the demethylation of lignin-derived monomer compounds is an important link for lignin utilization.
There have been many studies on the establishment of cell factories for the efficient use of lignin and the biorefinery of high added value compounds, such as in the fields of medicine, biofuel, food and chemical industry, etc., by modifying microorganisms. Genetic modification of microorganisms has been common, but in the genetic modification process, metabolic flow imbalance, growth retardation and low yield of target compounds are caused by modification of endogenous genes and insertion of exogenous genes. To address the imbalance of metabolic fluxes, speed strain optimization and improve the production of various high-value bio-based chemicals, multi-module metabolic engineering (multivariate modular metabolic engineering), module co-culture engineering (modular coculture engineering), and space-time and integrated genome technologies have been widely used. The above techniques focus on one or more metabolic pathways, focusing on the regulation of expression of multiple enzymes, while there is little focus on single-function multi-subunit enzymes.
The P450 protein is a multifunctional enzyme capable of catalyzing monomeric compounds derived from various lignin sources. O-demethylation consists of cytochrome P450 proteins (GcoA) of the CYP255A family and a three-domain constituent reductase (GcoB). The expression proportion and the enzyme activity in cells, the growth rate and the like of the multi-component O-demethylated enzyme double subunits GcoA and GcoB are researched, and a basis is provided for the utilization of aromatic compounds.
Catechol (Catchol, 1,2-benzenediol, hereinafter referred to as CAT) is also known as catechol, which is a white crystalline compound soluble in water, ethanol, diethyl ether, benzene, toluene, chloroform, and easily soluble in pyridine and alkaline aqueous solutions. Is an important chemical intermediate, and is mainly used for producing antioxidants, tanning agents, fragrances and the like. For example, in the production of pesticides, for the synthesis of diethofencarb, propoxur, furadan, etc.; in the aspect of medicine synthesis, the preparation method is used for preparing the cumeneepinephrine, berberine and the like. At present, the industrialized production of catechol mainly adopts a chemical synthesis method, phenol is used as a raw material, strong acid or hydrogen peroxide and the like are used as catalysts, but the method has the factors of harsh reaction conditions, low conversion rate, multiple byproducts, complex components, complex product separation process, serious environmental pollution and the like.
As reported in literature (Production of Catechol from Benzoate by the Wild Strain Ralstonia Species Ba-0323and Characterization of Its Catechol 1,2-Dioxygenase,Bioscience,Biotechnology,and Biochemistry,2014,65:9,1957-1964), ralstonia sp.Ba-0323 can convert sodium benzoate to 1.9mg/ml catechol.
Catechol-O-sulfate is an aryl sulfate, which is catechol with one of the two hydroxyl groups replaced by a sulfo group. It is a member of the group of aryl sulphates and phenols. catechol-O-sulfate may improve cardiac protection by improving the beating of cardiomyocytes and the response of ca2+ signals to sustained stimulation of the β -adrenergic receptor in the following manner.
The biosynthesis of Guan Ercha phenol-O-sulfate has been recently reported, and only ASTB-OM2 (arylsulfonyltransferase B) has been reported to enzymatically catalyze catechol to catechol-O-sulfate (Loop engineering of aryl sulfotransferase B for improving catalytic performance in regioselective sulfation,Catal.Sci.Technol.,2020,10,2369).
Red bisphenol (Purpurogallin) is a natural phenol extracted from nuts and oak bark, has strong xanthine oxidase (Xanthine Oxidase, XO) inhibitory activity, and has an IC of 0.2 μm. The red bisphenol has antioxidant, anticancer and antiinflammatory properties. Xanthine oxidase is a terminal enzyme of human purine catabolism, catalyzing the oxidation reaction of hypoxanthine and xanthine. These reactions produce uric acid and reactive oxygen species such as superoxide anions and hydrogen peroxide. It is well known that gout is caused by excessive accumulation of uric acid: this excessive accumulation is thought to be related to eating habits and thus, although gout is a classical disease, it is currently recognized as a lifestyle-related disease, and more patients with such diseases have recently grown. Cardiovascular disease is another lifestyle-related disease, well known to be associated with oxidative stress caused by superoxide anions, hydrogen peroxide, nitric oxide and its metabolites (hydroxyl radicals, peroxynitrite, etc.). Thus, inhibition of the excessive work of xanthine oxidase is important for the prevention of such lifestyle-related diseases. Erythropolis inhibit the production of proinflammatory cytokines by inhibiting the mRNA and protein expression of IL-1 beta and TNF-alpha in LPS stimulated BV2 microglia. Erythropolins exert anti-inflammatory effects by inhibiting LPS-stimulated BV2 microglial phosphatidylinositol 3-kinase/Akt and mitogen activated protein kinase signaling pathways. Erythropolins inhibit esophageal squamous cell carcinoma by directly targeting mitogen-activated protein kinase 1/2 (MEK 1/2) signaling pathways. Therefore, the synthesis of erythrosepolyol is of great importance. The synthesis of the reported red-fold phenols is focused on chemical methods.
Francesco Ferlin et al report that (Heterogeneous Manganese-Catalyzed Oxidase C-H/C-OCyclization to Access Pharmaceutically Active Compounds,ChemCatChem 2020,12,449–454), produced 0.94mmol of rhodol with H 2O2 and O 2 and 1mmol of pyrogallol as reactants and Mn 8KO16 as catalyst.
Disclosure of Invention
Aiming at the defects of the prior art, the invention provides a method for synthesizing high added value compounds by using lignin monomers through expression optimization of multi-subunit enzyme in order to research the expression optimization of the multi-subunit enzyme.
The invention constructs RBS library of pE1K-GcoAB-M3 by Golden gate cloning, screens RBS library of library G/C by researching growth rate, conversion rate and enzyme expression proportion of library, enzyme activity of crude enzyme liquid and the like, and has high strain growth rate and high enzyme activity. The RBS library is then used in the construction of an enzymatic reaction pathway to catalyze the production of the monolignol compounds guaiacol (guaiacol) and pyrogallol (pyrogallol) to high value added compounds such as catechol, catechol-O-sulfate, and erythrosepolyl.
The invention aims at realizing the following technical scheme:
the invention provides a method for synthesizing a high-added-value compound by using a monolignol through expression optimization of a multi-subunit enzyme, which takes the monolignol compound as a starting material and synthesizes the high-added-value compound through a biocatalyst;
the catalyst is prepared by one of the following methods:
The method comprises the following steps: constructing RBS library containing GcoA and GcoB multi-subunit enzyme GcoAB by a Golden gate method, and converting the RBS library into E.coli;
The second method is to obtain the biocatalyst by screening the gene GcoAB (RBS: G/C) and the aryl sulfotransferase mutant ASTB-OM2 (Q191Y/Y218W/L225V) corresponding to the biocatalyst obtained in the first E.coli over-expression method;
And thirdly, obtaining the biocatalyst by over-expressing laccase GoL in E.coli.
Preferably, the catalyst prepared by the first method is E.coli (GcoAB; RBS: G/C).
Preferably, the catalyst prepared by the second method is E.coli (GcoAB-ASTB-OM 2).
Preferably, the catalyst prepared by the third method is E.coli (GoL).
Preferably, the E.coli (GcoAB; RBS: G/C) is obtained by: RBS library containing GcoA and GcoB of the multi-subunit enzyme GcoAB was constructed by Golden gate method, gcoA and GcoB were first transformed into BL21 to form pE1k-GcoAB-M3 (RBS: N/N), and then the RBS library of GcoAB was obtained by sequencing. Wherein, the biocatalyst E.coli (GcoAB; RBS: G/C) is obtained by screening. Screening the obtained GcoAB; the gene sequence of RBS G/C is SEQ ID NO.1.
Genes GcoA and GcoB were derived from Amycolatopsis sp ATCC 39116 and genes GcoA and GcoB were codon optimized. The best biocatalyst E.coli (GcoAB; RBS: G/C) is selected by comparing the protein expression condition of GcoAB RBS library, the exponential phase growth rate, the guaiacol conversion rate and the crude enzyme liquid enzyme activity (figures 1 and 2), the catalyst grows fast, the protein GcoA and GcoB expression amounts are proper, the conversion rate is fast, and the crude enzyme liquid enzyme activity is high.
Preferably, the ASTB-OM2 (Q191Y/Y218W/L225V) is a mutant of an arylsulfonyl transferase derived from Desulfitobacterium hafniens. ASTB-OM2 (Q191Y/Y218W/L225V) refers to the mutation of amino acid at position 191 of ASTB-OM2 from Glutamine (Q) to Tyrosine (Y), the mutation of amino acid Tyrosine (Y) at position 218 to trytophan (W), and the mutation of Leucine (L) at position 225 to Valine (V) as compared with wild-type ASTB. The gene sequence of pB1c-ASTB-OM2 is SEQ ID NO.2.
Preferably, the laccase GoL is derived from Gramella forsetii KT0803. The gene sequence of pB1c-GoL3 SEQ ID NO.3.
Preferably, gcoA has an RBS core sequence of AGGGGG and a RBS core sequence of AGGCGG.
Preferably, the method for obtaining e.coli (GoL) comprises: the plasmid pB1c-GoL3 was synthesized and subsequently realized in E.coli BL21 by chemical transformation.
The biocatalyst is prepared by adopting an electrotransformation method, 2 mu L of plasmids are taken and mixed with 100 mu L of electrotransformation competent BL21, the mixture is transferred to an electric shock cup, 1700V is pulsed, 900 mu L of LB culture medium is immediately added and transferred to an EP tube, after 1h of culture at 37 ℃ at 180rpm/min, 200 mu L of bacterial liquid is taken and coated on an LB solid plate with corresponding resistance, the culture is carried out overnight at 37 ℃, and monoclonal is selected and carried out in an LB test tube with corresponding antibiotics, and the culture is carried out at 37 ℃ at 220rpm/min, thus obtaining the corresponding biocatalyst.
Preferably, the monolignol compound comprises guaiacol or 3-methoxy catechol.
Preferably, the high value-added compound includes at least one of catechol, catechol-O-sulfate, and erythrosepolyol.
Preferably, when the biocatalyst is E.coli (GcoAB; RBS: G/C), catechol is synthesized starting material from guaiacol.
Preferably, when the biocatalyst is E.coli (GcoAB-ASTB-OM 2), catechol-O-sulfate is synthesized from guaiacol as a starting material.
Preferably, when the biocatalyst is E.coli (GoL 3), 3-methoxy catechol is used as a starting material to synthesize the erythropolin.
Preferably, the biocatalyst is E.coli (GoL) and E.coli (GcoAB; RBS: G/C) in combination, and 3-methoxy catechol is used as a starting material to synthesize the erythropolin.
Compared with the prior art, the invention has the following beneficial effects:
(1) According to the invention, a GcoAB library is constructed by a molecular cloning means, and the expression of the bi-components GcoA and GcoB is optimized, so that the RBS combination with high conversion rate, high growth rate and good enzyme activity is obtained, the optimal biocatalyst is obtained, and the demethylation reaction of guaiacol and 3-methoxy catechol can be rapidly catalyzed.
(2) The invention utilizes the constructed biocatalyst, realizes the high-efficiency utilization of aromatic compounds (guaiacol and 3-methoxy catechol) from lignin through biological conversion, and constructs the biosynthesis way of catechol-O-sulfate and erythrosepolyol for the first time.
Drawings
Other features, objects and advantages of the present invention will become more apparent upon reading of the detailed description of non-limiting embodiments, given with reference to the accompanying drawings in which:
FIG. 1 is a schematic representation of GcoAB ribosomal library (RBS library), growth rate, and protein fraction; a is a ribosome library (RBS library) pE1k-GcoAB-M3 schematic representation of GcoAB; b is GcoA and GcoB, which catalyze guaiacol to form catechol schematic; c is a SDS-PAGE map of the ribosomal library (RBS library) of GcoAB, protein expression of GcoA and GcoB; d is the molar ratio of GcoA to GcoB protein expression in the GcoAB ribosomal library (RBS library); e is GcoAB, the left side refers to the case where no guaiacol is added, and the right side refers to the case where guaiacol is added;
FIG. 2 shows the conversion rate and catechol synthesis of GcoAB ribosomal library (RBS library);
Guaiacol conversion rate for a ribosomal library (RBS library) where a is GcoAB; b is GcoAB enzyme activity of ribosome library (RBS library) crude enzyme solution; c is a catalyst E.coli (GcoAB; RBS: G/C) for converting guaiacol to catechol;
FIG. 3 shows the production of catechol by multiple additions of catalyst E.coli (GcoAB; RBS: G/C) and guaiacol;
fig. 4 is a graph of catechol-O-sulfate synthesis results and mass spectrum: a is a schematic diagram of E.coli (GcoAB-ASTB-OM 2) catalyzing guaiacol to generate catechol-O-sulfate; b is E.coli (GcoAB-ASTB-OM 2) catalyzing guaiacol to generate catechol-O-sulfate; c product and catechol-O-sulfate standard mass spectra;
FIG. 5 is a graph with biocatalyst screening and optimal pH optimization for conversion of pyrogallol to rhodol; wherein a is whether 3 biocatalysts have activity of producing the red bisphenol or not; b is the conversion rate of the biocatalyst E.coli (GoL) to the formation of the red-sesquiphenol by the catalysis of the pyrogallol;
FIG. 6 is a diagram of the synthesis of erythrosepolyol, a result chart and a mass spectrum; wherein a is a schematic diagram of the generation of the erythrosephenol, and the biocatalysts E.coli (GcoAB; RBS: G/C) and E.coli (GoL 3) catalyze 3-methoxy catechol to generate the erythrosephenol; b is a biological catalyst E.coli (GcoAB; RBS: G/C) for catalyzing 3-methoxy catechol to generate pyrogallol; c is production of red bisphenol; d, sample and red bisphenol standard quality spectrograms;
FIG. 7 is a general diagram showing the use of a biocatalyst for the production of catechol, catechol-O-sulfate and erythrosepolyol. a is GcoA and GcoB, which catalyze guaiacol to form catechol schematic; b is E.coli (GcoAB-ASTB-OM 2) catalyzing guaiacol to generate catechol-O-sulfate; and C is a schematic diagram of the formation of the erythrosephenol, and the biocatalysts E.coli (GcoAB; RBS: G/C) and E.coli (GoL) catalyze 3-methoxy catechol to form the erythrosephenol.
Detailed Description
The invention will now be described in detail with reference to the drawings and specific examples. The following examples, which are presented to provide those of ordinary skill in the art with a detailed description of the invention and to provide a further understanding of the invention, are presented in terms of implementation and operation. It should be noted that the protection scope of the present invention is not limited to the following embodiments, and several adjustments and improvements made on the premise of the inventive concept are all within the protection scope of the present invention.
The method of the following embodiment includes:
step one, a ribosome library (RBS library) of the multi-subunit enzyme GcoAB is constructed, and an E.coli (GcoAB; RBS: G/C) biocatalyst with high conversion efficiency, high growth rate and high enzyme activity is obtained, and catechol is produced by taking guaiacol as a substrate;
Step two, modifying escherichia coli to obtain a high-efficiency biocatalyst E.coli (GcoAB-ASTB-OM 2), taking guaiacol as a starting material, adding p-nitrophenyl sulfate as a sulfo donor, and successfully synthesizing catechol-O-sulfate;
Step three, screening from various laccase, reforming a biocatalyst E.coli (GoL) obtained for the first time by escherichia coli and combining with an E.coli (GcoAB; RBS: G/C) catalyst, and successfully synthesizing the erythropolin by taking 3-methoxy catechol as a raw material;
the obtaining method
In the first step, the construction of the biocatalyst E.coli (GcoAB; RBS: G/C) constructs a ribosome library (RBS library) of GcoA and GcoB by a Golden gate cloning method, and the optimal RBS combination is obtained by screening and is used for catalyzing guaiacol to produce catechol;
in the second step, the construction of the biocatalyst E.coli (GcoAB-ASTB-OM 2) is realized by over-expressing GcoAB (RBS: G/C) and an arylsulfonyl transferase mutant ASTB-OM2 (Q191Y/Y218W/L225V) which is derived from Desulfitobacterium hafniens in the E.coli and is used for catalyzing guaiacol to synthesize catechol-O-sulfate;
In the third step, the biocatalysts E.coli (GoL 3), E.coli (Spr-CotA), E.coli (Bsu-CotA) and the like are realized by over-expressing laccase GoL3 derived from Gramella forsetii KT0803, laccase Spr-CotA derived from Streptomyces PRISTINAESPIRALIS ATCC25486 and laccase Bsu-CotA derived from Bacillus subtilis in E.coli. Then, a biocatalyst with laccase activity is obtained by screening, and GcoAB (RBS: G/C) is further introduced for the synthesis of the erythropolis.
Example 1
(1) E.acquisition of the coll (GcoAB; RBS: G/C) biocatalyst and production of catechol (construction schematic diagrams are shown in FIG. 1, FIG. 2).
A Golden gate clone method is adopted to construct GcoA and GcoB ribosome library (RBS library), the ribosome library is transformed and introduced into BL21, and E.coli (GcoAB; RBS: G/C) biocatalyst is obtained by screening. The specific method comprises the following steps:
From the company, codon optimized GcoA and GcoB were synthesized, ligated into pE1k-RFP by the Golden gate method, and transformed into BL21 to form pE1k-GcoAB-M3 (RBS: N/N), wherein the pE1k-RFP gene sequence is SEQ ID NO.6, and N represents degenerate bases A, T, C, G. All RBS combinations of pE1k-GcoAB-M3 (RBS: N/N), namely RBS library of GcoAB for short, are obtained through sequencing, all RBS conversion efficiency, growth rate and enzyme activity are compared, the optimal E.coli (pE 1k-GcoAB-M3; RBS: G/C) biocatalyst is obtained, the protein expression condition of GcoAB RBS library, the exponential phase growth rate, the guaiacol conversion rate and the enzyme activity of crude enzyme solution are compared, and the optimal biocatalyst E.coli (GcoAB; RBS: G/C) is selected, wherein the catalyst grows fast, the protein GcoA and GcoB are suitable in expression quantity, the conversion rate is fast, and the enzyme activity of crude enzyme solution is high. The catalyst can be used for producing catechol by adding the substrate guaiacol once or multiple times.
(2) Bioconversion of catechol synthesis (synthetic scheme is shown in FIG. 2 and FIG. 3)
Inoculating the selected biocatalyst E.coli (pE 1k-GcoAB-M3, RBS: G/C) into 3mL LB for activation, transferring the activated biocatalyst into 100mL LB according to the proportion of 1:100 after 12-16h at 37 ℃, adding IPTG inducer with the final concentration of 0.2mM and cofactor of 100 mg/L5 aminolevulinic acid and 200mg/L ammonium ferric (III) when OD600 reaches 0.6, centrifuging at 8000rpm/min for 3min after 4h induction at 37 ℃, collecting thalli, re-suspending in M9Y culture medium until OD600 = 40.0, adding guaiacol with the final concentration of 10mM,10G/L glucose, and converting for 1h at 37 ℃, thus obtaining catechol with the final concentration of 8.41mM, wherein the conversion rate is 84.1%. Or the centrifugally collected bacteria were resuspended to od=10.0, and 18.0mM catechol was produced by adding the bacteria and 3mM guaiacol multiple times, with a conversion rate of 62.96%.
Example 2
(1) Construction of biocatalysts for the Synthesis of catechol-O-sulfate
Plasmid pB1C-ASTB-OM2 was synthesized from Jin Weizhi, and BL21 was transformed together with pE1k-GcoAB-M3 (RBS: G/C) obtained by the screening in example 1 to obtain biocatalyst E.coli (GcoAB-ASTB-OM 2).
(2) Bioconversion of catechol-O-sulfate (synthetic scheme is shown in FIG. 4)
Inoculating a biocatalyst E.coli (GcoAB-ASTB-OM 2) into 3mL LB for activation, transferring the activated biocatalyst into 100mL LB according to the proportion of 1:100 after 12-16 hours at 37 ℃, adding an IPTG inducer with the final concentration of 0.2mM and a cofactor of 100 mg/L5-aminolevulinic acid (GcoA) and 200mg/L ammonium ferric citrate (III) when the OD600 reaches 0.6, centrifuging for 3 minutes at 8000rpm after induction for 4 hours at 25 ℃, collecting thalli, re-suspending in an M9Y medium until the OD=40.0, adding guaiacol 10mM,10mM p-nitrophenyl sulfate, 10g/L glucose and converting for 24 hours at 25 ℃, and obtaining catechol-O-sulfate with the final concentration of 2.21mM, wherein the conversion rate is 22.1%.
Example 3
(1) Construction of biocatalyst for the Synthesis of Red bisphenol (synthetic scheme is shown in FIG. 5)
Plasmids pB1c-GoL3, pB1c-Spr-CotA, pB1c-Bsu-CotA were synthesized and BL21 was transformed to obtain biocatalysts E.coli (GoL), E.coli (Spr-CotA) and E.coli (Bsu-CotA). The pB1c-Spr-CotA gene sequence is SEQ ID NO.4. The gene sequence of pB1c-Bsu-CotA is SEQ ID NO.5. Biocatalysts E.coli (GoL), E.coli (Spr-CotA) and E.coli (Bsu-CotA) are respectively inoculated into 3ml LB for activation, after the temperature is 37 ℃ and the time is 12-16 hours, the activated biocatalysts are transferred into 100ml LB5 according to the proportion of 2:100, when the OD600 reaches 0.5, 1mM IPTG inducer and 0.25mM CuCl 2 are added, after the induction is carried out for 4 hours at the temperature of 100rpm/min at the temperature of 25 ℃, the rotating speed is regulated to 0, the induction is carried out for 20 hours, bacterial cells are collected, the bacterial cells are resuspended in an M9Y culture medium until the OD=40.0, the final concentration of pyrogallol is added for 2.5mM, the pyrogallol is converted for 0.5 hours at the temperature of 37 ℃, and only E.coli (GoL 3) has the activity of catalyzing the pyrogallol to generate the red-bisphenol, and the conversion rate is 10.6%.
(2) Bioconversion of Red bisphenol (synthetic schematic diagrams are shown in FIGS. 6 and 7)
Inoculating a biocatalyst E.coli (GoL) into 3ml LB for activation, after 12-16 hours at 37 ℃, transferring the activated biocatalyst into 100ml LB5 according to a ratio of 2:100, when the OD600 reaches 0.5, adding a final concentration of 1mM IPTG inducer and 0.25mM Cucl2, after induction for 4 hours at 25 ℃, adjusting the rotating speed to 0, and after induction for 20 hours, centrifugation for 3 minutes at 800 rpm, collecting thalli, and re-suspending in M9Y culture medium until the OD=40.0.
Inoculating the selected biocatalyst E.coli (GcobB, RBS: G/C) into 3mL LB for activation, after the temperature is 37 ℃, transferring the activated biocatalyst into 100mL LB according to the proportion of 1:100 after 12-16 hours, adding an IPTG inducer with the final concentration of 0.2mM and a cofactor of 100 mg/L5-aminolevulinic acid (GcoA) and 200mg/L ammonium ferric citrate (III) when the OD600 reaches 0.6, centrifuging for 3 minutes at 37 ℃ after the induction of 4 hours at 8000rpm, collecting thalli, re-suspending in an M9Y culture medium until the OD=40.0, 10G/L glucose, adding 5mM 3-methoxy catechol with the final concentration, converting for 1.5 hours at 37 ℃, adding the obtained biocatalyst E.coli (GoL 3) with the final concentration of OD=40.0, centrifuging until the conversion rate is 100%, and the maximum yield is 14 percent.
There are many ways in which the invention may be practiced, and what has been described above is merely a preferred embodiment of the invention. It should be noted that the above examples are only for illustrating the present invention and are not intended to limit the scope of the present invention. It will be apparent to those skilled in the art that modifications may be made without departing from the principles of the invention, and such modifications are intended to be within the scope of the invention.
The foregoing describes specific embodiments of the present invention. It is to be understood that the invention is not limited to the particular embodiments described above, and that various changes and modifications may be made by one skilled in the art within the scope of the claims without affecting the spirit of the invention.
Sequence listing
<110> Shanghai university of transportation
<120> Expression optimization of Multi-subunit enzyme for monolignol Synthesis of high value-added Compounds
<130> KAG47745
<160> 6
<170> SIPOSequenceListing 1.0
<210> 1
<211> 5805
<212> DNA
<213> Artificial sequence (ARTIFICIAL SEQUENCE)
<400> 1
gacgtcgaca ccatcgaatg gtgcaaaacc tttcgcggta tggcatgata gcgcccggaa 60
gagagtcaat tcagggtggt gaatgtgaaa ccagtaacgt tatacgatgt cgcagagtat 120
gccggtgtct cttatcagac cgtttcccgc gtggtgaacc aggccagcca cgtttctgcg 180
aaaacgcggg aaaaagtgga agcggcgatg gcggagctga attacattcc caaccgcgtg 240
gcacaacaac tggcgggcaa acagtcgttg ctgattggcg ttgccacctc cagtctggcc 300
ctgcacgcgc cgtcgcaaat tgtcgcggcg attaaatctc gcgccgatca actgggtgcc 360
agcgtggtgg tgtcgatggt agaacgaagc ggcgtcgaag cctgtaaagc ggcggtgcac 420
aatcttctcg cgcaacgcgt cagtgggctg atcattaact atccgctgga tgaccaggat 480
gccattgctg tggaagctgc ctgcactaat gttccggcgt tatttcttga tgtctctgac 540
cagacaccca tcaacagtat tattttctcc catgaagacg gtacgcgact gggcgtggag 600
catctggtcg cattgggtca ccagcaaatc gcgctgttag cgggcccatt aagttctgtc 660
tcggcgcgtc tgcgtctggc tggctggcat aaatatctca ctcgcaatca aattcagccg 720
atagcggaac gggaaggcga ctggagtgcc atgtccggtt ttcaacaaac catgcaaatg 780
ctgaatgagg gcatcgttcc cactgcgatg ctggttgcca acgatcagat ggcgctgggc 840
gcaatgcgcg ccattaccga gtccgggctg cgcgttggtg cggatatctc ggtagtggga 900
tacgacgata ccgaagacag ctcatgttat atcccgccgt taaccaccat caaacaggat 960
tttcgcctgc tggggcaaac cagcgtggac cgcttgctgc aactctctca gggccaggcg 1020
gtgaagggca atcagctgtt gcccgtctca ctggtgaaaa gaaaaaccac cctggcgccc 1080
aatacgcaaa ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag 1140
gtttcccgac tggaaagcgg gcagtgagcg caacgcaatt aatgtaagtt agcgcgaatt 1200
gatctggttt gacagcttat catcgactgc acggtgcacc aatgcttctg gcgtcaggca 1260
gccatcggaa gctgtggtat ggctgtgcag gtcgtaaatc actgcataat tcgtgtcgct 1320
caaggcgcac tcccgttctg gataatgttt tttgcgccga catcataacg gttctggcaa 1380
atattctgaa atgagctgtt gacaattaat catccggctc gtataatgtg tggaattgtg 1440
agcggataac aatttcagaa ttcaaaagat ctacaaacgt cttattaagg nggattttca 1500
tgaccaccac cgaacgccct gacctggcat ggctggatga agtgaccatg acccagctgg 1560
aacgtaatcc gtacgaagtt tacgaacgcc tgcgtgccga agcccctctg gcattcgttc 1620
ctgtcctggg aagctatgtt gctagtacgg ccgaagtgtg tcgcgaagtt gcaaccagcc 1680
ctgattttga ggcagttatt acccctgccg gtggtcgtac ctttggtcat cctgcaatta 1740
ttggtgttaa tggggatatt catgcagatt tacgtagtat ggttgagccg gcactgcagc 1800
cggctgaagt agatcgttgg attgatgatc tggttcgtcc gattgcccgt cgttatctgg 1860
aacgttttga gaatgatggt catgcagagc tggttgcgca gtattgtgaa cctgtttcag 1920
ttcgtagtct gggtgatctg ctgggtctgc aggaagttga cagcgataaa ctgcgtgaat 1980
ggtttgcaaa actgaatcgt agttttacta atgcagcagt tgatgagaat ggtgaatttg 2040
caaatcctga ggggtttgct gaaggtgatc aggcaaaagc agaaattcgt gcagtggttg 2100
atccgctgat tgacaaatgg attgaacacc cggatgatag cgcaatcagt cattggctgc 2160
acgatggaat gccgccgggt caaacacgtg atcgcgaata tatttatccg acgatttatg 2220
tttatctgct gggcgccatg caggaacctg gtcatggaat ggcaagcacc ctggttggtc 2280
tgtttagccg tcctgagcag ctggaagaag ttgtggatga cccgaccctg attccgcgtg 2340
ctattgctga aggactgcgt tggaccagtc cgatttggag tgcaaccgca cgtatttcta 2400
ccaaacctgt taccattgca ggtgttgatc tgccggcagg tacccctgtt atgctgagtt 2460
acggtagtgc aaatcatgat accggtaaat acgaagcacc gagccagtac gacctgcatc 2520
gccctcctct gcctcacctg gcatttggtg caggtaatca cgcatgtgcc ggtatttatt 2580
ttgcgaatca tgttatgcgc attgccctgg aagaactgtt cgaagccatt cctaatctgg 2640
aacgtgatac ccgcgaaggt gttgaatttt gggggtgggg ttttcgtggg ccgacatctc 2700
tgcatgttac ctgggaagtt taacatcatc tataaaataa ttaattaatt aaggnggtat 2760
ttttatgacc tttgccgttt ccgttggggg ccgtcgcgtt gattgtgaac cgggtcagac 2820
cctgctggag gcatttctgc gtgggggtgt gtggatgccg aacagttgta accaggggac 2880
ctgtggcacc tgtaaactgc aggttctgtc aggtgaggtt gatcatggtg gggcaccgga 2940
agatacactg tctgccgaag aacgtgcctc tgggctggca ctggcttgtc aagcacgccc 3000
tctggcagat accgaagttc gttctaccgc agatgcgggt cgtgttacac atcctctgcg 3060
tgacctgacc gcaacagtgc tggaagttgc tgatattgct cgtgataccc gtcgtgtcct 3120
gctgggactg gcagaacctc tggcatttga agcaggtcaa tatgttgaac tggttgttcc 3180
gggtagcggt gcccgtcgtc aatattctct ggcgaatacc gcggatgaag ataaagttct 3240
ggaactgcat gtgcgtcgtg taccgggggg tgttgcaaca gatggttggc tgtttgatgg 3300
tctggcggca ggtgatcgtg ttgaagcaac cggcccactg ggagattttc atctgcctcc 3360
gcctgatgaa gatgatggtg gtccgatggt tctgattggt ggtggtaccg gtctggcacc 3420
tctggttggt attgcacgta ccgcactggc acgtcatccg agtcgtgaag ttctgctgta 3480
tcatggggtt cgtggtgcag cagatttata tgatctgggg cgttttgcag aaattgctga 3540
agaacatccg ggttttcgtt ttgttccggt tctgagcgat gaaccggacc ctgcttatcg 3600
tggtggtttt ccgacagacg catttgtgga ggatgttcct agtggtcgtg ggtggagcgg 3660
ttggctgtgt ggtcctcctg caatggttga agcaggggtg aaagcattta aacgccgtcg 3720
tatgagtccg cgtcgtattc atcgtgaaaa atttacccca gcaagttaag gatccaaact 3780
cgagtaagga tctccaggca tcaaataaaa cgaaaggctc agtcgaaaga ctgggccttt 3840
cgttttatct gttgtttgtc ggtgaacgct ctctactaga gtcacactgg ctcaccttcg 3900
ggtgggcctt tctgcgttta tacctagggc gttcggctgc ggcgagcggt atcagctcac 3960
tcaaaggcgg taatacggtt atccacagaa tcaggggata acgcaggaaa gaacatgtga 4020
gcaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg cgttgctggc gtttttccat 4080
aggctccgcc cccctgacga gcatcacaaa aatcgacgct caagtcagag gtggcgaaac 4140
ccgacaggac tataaagata ccaggcgttt ccccctggaa gctccctcgt gcgctctcct 4200
gttccgaccc tgccgcttac cggatacctg tccgcctttc tcccttcggg aagcgtggcg 4260
ctttctcata gctcacgctg taggtatctc agttcggtgt aggtcgttcg ctccaagctg 4320
ggctgtgtgc acgaaccccc cgttcagccc gaccgctgcg ccttatccgg taactatcgt 4380
cttgagtcca acccggtaag acacgactta tcgccactgg cagcagccac tggtaacagg 4440
attagcagag cgaggtatgt aggcggtgct acagagttct tgaagtggtg gcctaactac 4500
ggctacacta gaaggacagt atttggtatc tgcgctctgc tgaagccagt taccttcgga 4560
aaaagagttg gtagctcttg atccggcaaa caaaccaccg ctggtagcgg tggttttttt 4620
gtttgcaagc agcagattac gcgcagaaaa aaaggatctc aagaagatcc tttgatcttt 4680
tctacggggt ctgacgctca gtggaacgaa aactcacgtt aagggatttt ggtcatgact 4740
agtgcttgga ttctcaccaa taaaaaacgc ccggcggcaa ccgagcgttc tgaacaaatc 4800
cagatggagt tctgaggtca ttactggatc tatcaacagg agtccaagcg agctctcgaa 4860
ccccagagtc ccgctcagaa gaactcgtca agaaggcgat agaaggcgat gcgctgcgaa 4920
tcgggagcgg cgataccgta aagcacgagg aagcggtcag cccattcgcc gccaagctct 4980
tcagcaatat cacgggtagc caacgctatg tcctgatagc ggtccgccac acccagccgg 5040
ccacagtcga tgaatccaga aaagcggcca ttttccacca tgatattcgg caagcaggca 5100
tcgccatggg tcacgacgag atcctcgccg tcgggcatgc gcgccttgag cctggcgaac 5160
agttcggctg gcgcgagccc ctgatgctct tcgtccagat catcctgatc gacaagaccg 5220
gcttccatcc gagtacgtgc tcgctcgatg cgatgtttcg cttggtggtc gaatgggcag 5280
gtagccggat caagcgtatg cagccgccgc attgcatcag ccatgatgga tactttctcg 5340
gcaggagcaa ggtgagatga caggagatcc tgccccggca cttcgcccaa tagcagccag 5400
tcccttcccg cttcagtgac aacgtcgagc acagctgcgc aaggaacgcc cgtcgtggcc 5460
agccacgata gccgcgctgc ctcgtcctgc agttcattca gggcaccgga caggtcggtc 5520
ttgacaaaaa gaaccgggcg cccctgcgct gacagccgga acacggcggc atcagagcag 5580
ccgattgtct gttgtgccca gtcatagccg aatagcctct ccacccaagc ggccggagaa 5640
cctgcgtgca atccatcttg ttcaatcatg cgaaacgatc ctcatcctgt ctcttgatca 5700
gatcatgatc ccctgcgcca tcagatcctt ggcggcaaga aagccatcca gtttactttg 5760
cagggcttcc caaccttacc agagggcgcc ccagctggca attcc 5805
<210> 2
<211> 5772
<212> DNA
<213> Artificial sequence (ARTIFICIAL SEQUENCE)
<400> 2
gacgtcgaca ccatcgaatg gtgcaaaacc tttcgcggta tggcatgata gcgcccggaa 60
gagagtcaat tcagggtggt gaatgtgaaa ccagtaacgt tatacgatgt cgcagagtat 120
gccggtgtct cttatcagac cgtttcccgc gtggtgaacc aggccagcca cgtttctgcg 180
aaaacgcggg aaaaagtgga agcggcgatg gcggagctga attacattcc caaccgcgtg 240
gcacaacaac tggcgggcaa acagtcgttg ctgattggcg ttgccacctc cagtctggcc 300
ctgcacgcgc cgtcgcaaat tgtcgcggcg attaaatctc gcgccgatca actgggtgcc 360
agcgtggtgg tgtcgatggt agaacgaagc ggcgtcgaag cctgtaaagc ggcggtgcac 420
aatcttctcg cgcaacgcgt cagtgggctg atcattaact atccgctgga tgaccaggat 480
gccattgctg tggaagctgc ctgcactaat gttccggcgt tatttcttga tgtctctgac 540
cagacaccca tcaacagtat tattttctcc catgaagacg gtacgcgact gggcgtggag 600
catctggtcg cattgggtca ccagcaaatc gcgctgttag cgggcccatt aagttctgtc 660
tcggcgcgtc tgcgtctggc tggctggcat aaatatctca ctcgcaatca aattcagccg 720
atagcggaac gggaaggcga ctggagtgcc atgtccggtt ttcaacaaac catgcaaatg 780
ctgaatgagg gcatcgttcc cactgcgatg ctggttgcca acgatcagat ggcgctgggc 840
gcaatgcgcg ccattaccga gtccgggctg cgcgttggtg cggatatctc ggtagtggga 900
tacgacgata ccgaagacag ctcatgttat atcccgccgt taaccaccat caaacaggat 960
tttcgcctgc tggggcaaac cagcgtggac cgcttgctgc aactctctca gggccaggcg 1020
gtgaagggca atcagctgtt gcccgtctca ctggtgaaaa gaaaaaccac cctggcgccc 1080
aatacgcaaa ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag 1140
gtttcccgac tggaaagcgg gcagtgagcg caacgcaatt aatgtaagtt agcgcgaatt 1200
gatctggttt gacagcttat catcgactgc acggtgcacc aatgcttctg gcgtcaggca 1260
gccatcggaa gctgtggtat ggctgtgcag gtcgtaaatc actgcataat tcgtgtcgct 1320
caaggcgcac tcccgttctg gataatgttt tttgcgccga catcataacg gttctggcaa 1380
atattctgaa atgagctgtt gacaattaat catccggctc gtataatgtg tggaattgtg 1440
agcggataac aatttcagaa ttcaaaagat cttttaagaa ggagatatac atatgcgtac 1500
ctacctgaat accgaaaaac atctgattac cctgcaagct gaatctgaag aacgtttcct 1560
ggccgaactg cgtgctggta actacaccgc cgaatcaccg ctggttgtga aaaacccgta 1620
tattatcaat ccgctggcgg ccgttatttg ctttaatacg gatgaagaaa ccacggccga 1680
aattaccgtc aaaggcaaag caatcgaagg tgacctgtct cataccttcg cagctgcgaa 1740
agaacacgtt ctgccggtct atggcctgta cgatgactat gtgaacacgg tcgtgatcaa 1800
actgagtaat ggtaaaacca gcgaagtgaa aattgaagtg gaagaactga acgttaataa 1860
agccctgtac tgccgcacca cgccggaata cttcggcaaa gatttcatgc tgatctcaac 1920
cacgaccccg ctgatcgaat cggctcgtac ggcaggcttt gattacgcag gtgacctgcg 1980
ttggtgtatt accaacctgc agtcatggga tatcaaaaaa ctggaaaatg gtcgcctgct 2040
gtatacgtcg catcgtaccg tgtataaacc gtattacaac gtgggcgtta tggaaatgga 2100
tttctgtggt aaaatctaca aagaataccg tctgccgggc ggttggcatc acgacgcggt 2160
tgaagtggaa aacggcaata ttctggccgc aagtgataac gactttaatg attccgtgga 2220
agacttcgtt gtcgaaattg aacgcgccac cggcgcagtt atcaaaagtt gggatctgca 2280
gaaaattctg ccgcgcggcc agggtaaagc tggtgattgg aaccatcacg actggtttca 2340
taacaatgcg gtgtggtacg ataaaccgac gaatagcatc accatgtctg gccgccacat 2400
ggacgctgtt attaacttcg attatgacag cggtgcgctg aattggatcc tgggcgatcc 2460
ggaaggttgg tctgaagaat ggcagaaata ctttttcaaa aacgtgacca aaggcgattt 2520
tgactggcag tatgaacaac atgctgcgcg tattctgccg aatggcgatg tttttctgtt 2580
cgacaacggc acgtatcgca gtaaaaatga agctacccgt gtggatccgg aacagaattt 2640
ttcccgcggt gttatttacc gtatcgatac cgacaaaatg gaaatcgaac aagtgtggca 2700
atatggcaaa gaacgcggtg ccgaattcta cagcccgtat atctgcaacg tcgattatta 2760
cggcgaaggt cattacatgg tgcactctgg cggtattgcc acgtatcgtg gcaaacacac 2820
cgatggcctg ggtgcaatgc tgctgaacaa atacaaagac gaacatatcc acctgacgct 2880
ggaatcaatc accgtcgaag tgcagaacga tcaactgaaa tacgaactga aagtgcaggg 2940
cggtaattat taccgcgcac gtcgcgtttc gccgtatgat gaaaaaacca acctggtcct 3000
gggcaaaggt gaactgctgg gcggttttgg tgttacgccg gaatttatga aagtcaattt 3060
caaagatgcg gaaaccgaac tgagcgaaaa acataacctg aatgtcatcc tggaagaaga 3120
ccgtctggct attcgcgcgt catttcgtga aggctcgcag gttttcctgg aactgaaggg 3180
tgcggaacaa agtaaatttt ataacattcc gacggaagtg cacgatgtta ccgccgcatg 3240
tgtctccttc gaagaacaga acgataatga ctttcaattc tatgtgagcc gtgaaggcct 3300
gtctggtgaa ttcggcatct acctgaacat tgatagcaaa cgctacgata cgcatctgtc 3360
tgtgaaactg gagctctctg catggagcca tccgcagttc gaaaagtaag gatccaaact 3420
cgagtaagga tctccaggca tcaaataaaa cgaaaggctc agtcgaaaga ctgggccttt 3480
cgttttatct gttgtttgtc ggtgaacgct ctctactaga gtcacactgg ctcaccttcg 3540
ggtgggcctt tctgcgttta tacctaggct acagccgata gtctggaaca gcgcacttac 3600
gggttgctgc gcaacccaag tgctaccggc gcggcagcgt gacccgtgtc ggcggctcca 3660
acggctcgcc atcgtccaga aaacacggct catcgggcat cggcaggcgc tgctgcccgc 3720
gccgttccca ttcctccgtt tcggtcaagg ctggcaggtc tggttccatg cccggaatgc 3780
cgggctggct gggcggctcc tcgccggggc cggtcggtag ttgctgctcg cccggataca 3840
gggtcgggat gcggcgcagg tcgccatgcc ccaacagcga ttcgtcctgg tcgtcgtgat 3900
caaccaccac ggcggcactg aacaccgaca ggcgcaactg gtcgcggggc tggccccacg 3960
ccacgcggtc attgaccacg taggccaaca cggtgccggg gccgttgagc ttcacgacgg 4020
agatccagcg ctcggccacc aagtccttga ctgcgtattg gaccgtccgc aaagaacgtc 4080
cgatgagctt ggaaagtgtc ttctggctga ccaccacggc gttctggtgg cccatctgcg 4140
ccacgaggtg atgcagcagc attgccgccg tgggtttcct cgcaataagc ccggcccacg 4200
cctcatgcgc tttgcgttcc gtttgcaccc agtgaccggg cttgttcttg gcttgaatgc 4260
cgatttctct ggactgcgtg gccatgctta tctccatgcg gtaggggtgc cgcacggttg 4320
cggcaccatg cgcaatcagc tgcaactttt cggcagcgcg acaacaatta tgcgttgcgt 4380
aaaagtggca gtcaattaca gattttcttt aacctacgca atgagctatt gcggggggtg 4440
ccgcaatgag ctgttgcgta cccccctttt ttaagttgtt gatttttaag tctttcgcat 4500
ttcgccctat atctagttct ttggtgccca aagaagggca cccctgcggg gttcccccac 4560
gccttcggcg cggctccccc tccggcaaaa agtggcccct ccggggcttg ttgatcgact 4620
gcgcggcctt cggccttgcc caaggtggcg ctgccccctt ggaacccccg cactcgccgc 4680
cgtgaggctc ggggggcagg cgggcgggct tcgcccttcg actgccccca ctcgcatagg 4740
cttgggtcgt tccaggcgcg tcaaggccaa gccgctgcgc ggtcgctgcg cgagccttga 4800
cccgccttcc acttggtgtc caaccggcaa gcgaagcgcg caggccgcag gccggaggca 4860
ctagtgcttg gattctcacc aataaaaaac gcccggcggc aaccgagcgt tctgaacaaa 4920
tccagatgga gttctgaggt cattactgga tctatcaaca ggagtccaag cgagctcgat 4980
atcaaattac gccccgccct gccactcatc gcagtactgt tgtaattcat taagcattct 5040
gccgacatgg aagccatcac aaacggcatg atgaacctga atcgccagcg gcatcagcac 5100
cttgtcgcct tgcgtataat atttgcccat ggtgaaaacg ggggcgaaga agttgtccat 5160
attggccacg tttaaatcaa aactggtgaa actcacccag ggattggctg agacgaaaaa 5220
catattctca ataaaccctt tagggaaata ggccaggttt tcaccgtaac acgccacatc 5280
ttgcgaatat atgtgtagaa actgccggaa atcgtcgtgg tattcactcc agagcgatga 5340
aaacgtttca gtttgctcat ggaaaacggt gtaacaaggg tgaacactat cccatatcac 5400
cagctcaccg tctttcattg ccatacgaaa ttccggatga gcattcatca ggcgggcaag 5460
aatgtgaata aaggccggat aaaacttgtg cttatttttc tttacggtct ttaaaaaggc 5520
cgtaatatcc agctgaacgg tctggttata ggtacattga gcaactgact gaaatgcctc 5580
aaaatgttct ttacgatgcc attgggatat atcaacggtg gtatatccag tgattttttt 5640
ctccatttta gcttccttag ctcctgaaaa tctcgataac tcaaaaaata cgcccggtag 5700
tgatcttatt tcattatggt gaaagttgga acctcttacg tgccgatcaa cgtctcattt 5760
tcgccagata tc 5772
<210> 3
<211> 5439
<212> DNA
<213> Artificial sequence (ARTIFICIAL SEQUENCE)
<400> 3
gacgtcgaca ccatcgaatg gtgcaaaacc tttcgcggta tggcatgata gcgcccggaa 60
gagagtcaat tcagggtggt gaatgtgaaa ccagtaacgt tatacgatgt cgcagagtat 120
gccggtgtct cttatcagac cgtttcccgc gtggtgaacc aggccagcca cgtttctgcg 180
aaaacgcggg aaaaagtgga agcggcgatg gcggagctga attacattcc caaccgcgtg 240
gcacaacaac tggcgggcaa acagtcgttg ctgattggcg ttgccacctc cagtctggcc 300
ctgcacgcgc cgtcgcaaat tgtcgcggcg attaaatctc gcgccgatca actgggtgcc 360
agcgtggtgg tgtcgatggt agaacgaagc ggcgtcgaag cctgtaaagc ggcggtgcac 420
aatcttctcg cgcaacgcgt cagtgggctg atcattaact atccgctgga tgaccaggat 480
gccattgctg tggaagctgc ctgcactaat gttccggcgt tatttcttga tgtctctgac 540
cagacaccca tcaacagtat tattttctcc catgaagacg gtacgcgact gggcgtggag 600
catctggtcg cattgggtca ccagcaaatc gcgctgttag cgggcccatt aagttctgtc 660
tcggcgcgtc tgcgtctggc tggctggcat aaatatctca ctcgcaatca aattcagccg 720
atagcggaac gggaaggcga ctggagtgcc atgtccggtt ttcaacaaac catgcaaatg 780
ctgaatgagg gcatcgttcc cactgcgatg ctggttgcca acgatcagat ggcgctgggc 840
gcaatgcgcg ccattaccga gtccgggctg cgcgttggtg cggatatctc ggtagtggga 900
tacgacgata ccgaagacag ctcatgttat atcccgccgt taaccaccat caaacaggat 960
tttcgcctgc tggggcaaac cagcgtggac cgcttgctgc aactctctca gggccaggcg 1020
gtgaagggca atcagctgtt gcccgtctca ctggtgaaaa gaaaaaccac cctggcgccc 1080
aatacgcaaa ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag 1140
gtttcccgac tggaaagcgg gcagtgagcg caacgcaatt aatgtaagtt agcgcgaatt 1200
gatctggttt gacagcttat catcgactgc acggtgcacc aatgcttctg gcgtcaggca 1260
gccatcggaa gctgtggtat ggctgtgcag gtcgtaaatc actgcataat tcgtgtcgct 1320
caaggcgcac tcccgttctg gataatgttt tttgcgccga catcataacg gttctggcaa 1380
atattctgaa atgagctgtt gacaattaat catccggctc gtataatgtg tggaattgtg 1440
agcggataac aatttcagaa ttcaaaagat cttttaagaa ggagatatac atatggatac 1500
gagcacccgc catccggaaa ccggcaacaa aatgaacaaa gattttattg cggatctgga 1560
tattcagctg accgcgagcc cgagtcagac caacattttt ccggataaaa gcaccaacac 1620
ctatagctat aaagcgagca ttattaaagg cagcgaagat aacctgcaga acattgaagg 1680
cagctatctg ggcccggtgc tgcgcgtgaa aaaaggcgat aaagtgcgcg tgcgctatga 1740
aaatcagatt ccggcggaaa gcattgtgca ttggcatggc ctgcatgtga gccatgaaaa 1800
cgatggccat ccggcgcatg tgattggcga aggcgatacc tattactatg aatttgaagt 1860
gatgaaccgc gcgggcacct attggtttca tccgcatccg catcgccata ccggcgaaca 1920
agtgtatcaa ggcctggcgg gcctgtttat tgtgagcgat aaagaagagg aaaaactgaa 1980
cctgccgcaa ggcgaatatg atattccggt ggtgattcaa gatcgcacct ttgatgataa 2040
caaacagctg cagtatctgg gcgatggtca gatggatcgc atgcaaggct ttctgggcga 2100
acagattctg attaacggca aaattgataa caccctggaa ctgggcgcga acggcaaata 2160
tcgcctgcgc ctgctgaacg gcagcaacag ccgcgcgtat aaactggcgt gggatcatgg 2220
cgaagcgatt accgtgctgg gcgtggatgg cggcctgctg aaagcgccga aacgcatgcc 2280
gtatctgatg ctgggcccgg cgcagcgcgt ggatatttgg ctggatctga gtcagcaagt 2340
ggaaaacagc cgcattaaac tggtgcatct gccgattagc ctggatatga tgggcggtgg 2400
tatgatgaac ggcggcatga tgggcaacag taacagcaac catctgccgt atgatacgca 2460
gtttgatatt atggaaatta acgtgggcgc gagcgcggaa aacgatgcgc agctgccggg 2520
cgaactgagc agcctgaaca ccctggcggc gaccgatgcg attaacaaaa acaacccgcg 2580
cacctttacc tttgcgatgg gcggtatgat ggaatggacc attaacggcc atacctataa 2640
cggcaccgaa gtggcggaag aggaaaccgt gaaactggat accaccgaaa tttggcgcat 2700
taacaacggc agtcagttta gcagcgatcc ggatgacgat agcggcatga tgggtggcgg 2760
catgcatggc aacggcggca tgatgggcgg ccaaggcggc atgggcaaca tgatgcagat 2820
gccgcatccg gtgcatattc atcagctgca gtttaacatt ctgaaccgca acgcggataa 2880
agtggatgat aaactgtggg aagcgaccaa agatggcttt attaacgaag gccgccaaga 2940
tagcgtgtat ctgctgccgg gcatgcagat ggatctgatt atgcgctttg aagattttaa 3000
aggcctgttt ctgtatcatt gccataacct ggaacatgaa gatatgggca tgatgcgcaa 3060
ctttaaaatt gtgtaaggat ccaaactcga gtaaggatct ccaggcatca aataaaacga 3120
aaggctcagt cgaaagactg ggcctttcgt tttatctgtt gtttgtcggt gaacgctctc 3180
tactagagtc acactggctc accttcgggt gggcctttct gcgtttatac ctaggctaca 3240
gccgatagtc tggaacagcg cacttacggg ttgctgcgca acccaagtgc taccggcgcg 3300
gcagcgtgac ccgtgtcggc ggctccaacg gctcgccatc gtccagaaaa cacggctcat 3360
cgggcatcgg caggcgctgc tgcccgcgcc gttcccattc ctccgtttcg gtcaaggctg 3420
gcaggtctgg ttccatgccc ggaatgccgg gctggctggg cggctcctcg ccggggccgg 3480
tcggtagttg ctgctcgccc ggatacaggg tcgggatgcg gcgcaggtcg ccatgcccca 3540
acagcgattc gtcctggtcg tcgtgatcaa ccaccacggc ggcactgaac accgacaggc 3600
gcaactggtc gcggggctgg ccccacgcca cgcggtcatt gaccacgtag gccaacacgg 3660
tgccggggcc gttgagcttc acgacggaga tccagcgctc ggccaccaag tccttgactg 3720
cgtattggac cgtccgcaaa gaacgtccga tgagcttgga aagtgtcttc tggctgacca 3780
ccacggcgtt ctggtggccc atctgcgcca cgaggtgatg cagcagcatt gccgccgtgg 3840
gtttcctcgc aataagcccg gcccacgcct catgcgcttt gcgttccgtt tgcacccagt 3900
gaccgggctt gttcttggct tgaatgccga tttctctgga ctgcgtggcc atgcttatct 3960
ccatgcggta ggggtgccgc acggttgcgg caccatgcgc aatcagctgc aacttttcgg 4020
cagcgcgaca acaattatgc gttgcgtaaa agtggcagtc aattacagat tttctttaac 4080
ctacgcaatg agctattgcg gggggtgccg caatgagctg ttgcgtaccc ccctttttta 4140
agttgttgat ttttaagtct ttcgcatttc gccctatatc tagttctttg gtgcccaaag 4200
aagggcaccc ctgcggggtt cccccacgcc ttcggcgcgg ctccccctcc ggcaaaaagt 4260
ggcccctccg gggcttgttg atcgactgcg cggccttcgg ccttgcccaa ggtggcgctg 4320
cccccttgga acccccgcac tcgccgccgt gaggctcggg gggcaggcgg gcgggcttcg 4380
cccttcgact gcccccactc gcataggctt gggtcgttcc aggcgcgtca aggccaagcc 4440
gctgcgcggt cgctgcgcga gccttgaccc gccttccact tggtgtccaa ccggcaagcg 4500
aagcgcgcag gccgcaggcc ggaggcacta gtgcttggat tctcaccaat aaaaaacgcc 4560
cggcggcaac cgagcgttct gaacaaatcc agatggagtt ctgaggtcat tactggatct 4620
atcaacagga gtccaagcga gctcgatatc aaattacgcc ccgccctgcc actcatcgca 4680
gtactgttgt aattcattaa gcattctgcc gacatggaag ccatcacaaa cggcatgatg 4740
aacctgaatc gccagcggca tcagcacctt gtcgccttgc gtataatatt tgcccatggt 4800
gaaaacgggg gcgaagaagt tgtccatatt ggccacgttt aaatcaaaac tggtgaaact 4860
cacccaggga ttggctgaga cgaaaaacat attctcaata aaccctttag ggaaataggc 4920
caggttttca ccgtaacacg ccacatcttg cgaatatatg tgtagaaact gccggaaatc 4980
gtcgtggtat tcactccaga gcgatgaaaa cgtttcagtt tgctcatgga aaacggtgta 5040
acaagggtga acactatccc atatcaccag ctcaccgtct ttcattgcca tacgaaattc 5100
cggatgagca ttcatcaggc gggcaagaat gtgaataaag gccggataaa acttgtgctt 5160
atttttcttt acggtcttta aaaaggccgt aatatccagc tgaacggtct ggttataggt 5220
acattgagca actgactgaa atgcctcaaa atgttcttta cgatgccatt gggatatatc 5280
aacggtggta tatccagtga tttttttctc cattttagct tccttagctc ctgaaaatct 5340
cgataactca aaaaatacgc ccggtagtga tcttatttca ttatggtgaa agttggaacc 5400
tcttacgtgc cgatcaacgt ctcattttcg ccagatatc 5439
<210> 4
<211> 4848
<212> DNA
<213> Artificial sequence (ARTIFICIAL SEQUENCE)
<400> 4
gacgtcgaca ccatcgaatg gtgcaaaacc tttcgcggta tggcatgata gcgcccggaa 60
gagagtcaat tcagggtggt gaatgtgaaa ccagtaacgt tatacgatgt cgcagagtat 120
gccggtgtct cttatcagac cgtttcccgc gtggtgaacc aggccagcca cgtttctgcg 180
aaaacgcggg aaaaagtgga agcggcgatg gcggagctga attacattcc caaccgcgtg 240
gcacaacaac tggcgggcaa acagtcgttg ctgattggcg ttgccacctc cagtctggcc 300
ctgcacgcgc cgtcgcaaat tgtcgcggcg attaaatctc gcgccgatca actgggtgcc 360
agcgtggtgg tgtcgatggt agaacgaagc ggcgtcgaag cctgtaaagc ggcggtgcac 420
aatcttctcg cgcaacgcgt cagtgggctg atcattaact atccgctgga tgaccaggat 480
gccattgctg tggaagctgc ctgcactaat gttccggcgt tatttcttga tgtctctgac 540
cagacaccca tcaacagtat tattttctcc catgaagacg gtacgcgact gggcgtggag 600
catctggtcg cattgggtca ccagcaaatc gcgctgttag cgggcccatt aagttctgtc 660
tcggcgcgtc tgcgtctggc tggctggcat aaatatctca ctcgcaatca aattcagccg 720
atagcggaac gggaaggcga ctggagtgcc atgtccggtt ttcaacaaac catgcaaatg 780
ctgaatgagg gcatcgttcc cactgcgatg ctggttgcca acgatcagat ggcgctgggc 840
gcaatgcgcg ccattaccga gtccgggctg cgcgttggtg cggatatctc ggtagtggga 900
tacgacgata ccgaagacag ctcatgttat atcccgccgt taaccaccat caaacaggat 960
tttcgcctgc tggggcaaac cagcgtggac cgcttgctgc aactctctca gggccaggcg 1020
gtgaagggca atcagctgtt gcccgtctca ctggtgaaaa gaaaaaccac cctggcgccc 1080
aatacgcaaa ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag 1140
gtttcccgac tggaaagcgg gcagtgagcg caacgcaatt aatgtaagtt agcgcgaatt 1200
gatctggttt gacagcttat catcgactgc acggtgcacc aatgcttctg gcgtcaggca 1260
gccatcggaa gctgtggtat ggctgtgcag gtcgtaaatc actgcataat tcgtgtcgct 1320
caaggcgcac tcccgttctg gataatgttt tttgcgccga catcataacg gttctggcaa 1380
atattctgaa atgagctgtt gacaattaat catccggctc gtataatgtg tggaattgtg 1440
agcggataac aatttcagaa ttcaaaagat cttttaagaa ggagatatac atatggacag 1500
acggagcttc aaccggcgtc tcctcgcggg cggcgcggcc gcggcggcga caggcgtgac 1560
atcgttgtcg atcacttccg cctccaacgc ggcgccggcc ccggcgaagg gcgcgccccg 1620
caccgcgcag gccggcggtc aggtgcgcca cctcaagatg tacgccgaga aacgggccga 1680
cggatcgatg ggctacggcc tcgagaaggg caaggccacc gtccccgggc cgctgatcga 1740
actcgtcgag ggcgacacgc tgcacatcga gttcgagaac ctgatggacg tgccggtcag 1800
cctgcatccg cacggcgtcg actacgacat ctccaacgac ggcacgaaga tgagccgcag 1860
ccatgtcgag ccgggcgcca cccgcaccta cacctggcgc acccacgcac ccggccgccg 1920
cgcggacggc acctggcggc cgggcagcgc gggttactgg cactaccacg accatgtcgt 1980
cggcacggat cacggcaccg gcggcatccg caagggcctc tacggtccga tggtggtgcg 2040
caggaaggac gacatccttc ccgacaagca gttcaccatc gtcttcaacg acatgacgat 2100
caacaaccgg cccgcggccg acccgcccaa cttccttgcc acggtggggg accgggtcga 2160
gatcatcatg atcacgcacg gcgagtacta ccacacgttc catatgcacg gtcaccgctg 2220
ggcggacaac cggaccggcc tgctgtcggg tcccgaggac gtcagccggg tgatcgacaa 2280
caagatcacc ggcccggcgg actccttcgg cttccaggtg atcgcgggcg aacacgtggg 2340
cccgggcgcg tggatgtacc actgccacgt ccagagccac tcggacatgg gcatggccgg 2400
gctgttcctc gtcgccaagg aggacggcac gatccccggg tacgagccgc accatcccac 2460
gtccgaggag ggccacgacc actaaggatc caaactcgag taaggatctc caggcatcaa 2520
ataaaacgaa aggctcagtc gaaagactgg gcctttcgtt ttatctgttg tttgtcggtg 2580
aacgctctct actagagtca cactggctca ccttcgggtg ggcctttctg cgtttatacc 2640
taggctacag ccgatagtct ggaacagcgc acttacgggt tgctgcgcaa cccaagtgct 2700
accggcgcgg cagcgtgacc cgtgtcggcg gctccaacgg ctcgccatcg tccagaaaac 2760
acggctcatc gggcatcggc aggcgctgct gcccgcgccg ttcccattcc tccgtttcgg 2820
tcaaggctgg caggtctggt tccatgcccg gaatgccggg ctggctgggc ggctcctcgc 2880
cggggccggt cggtagttgc tgctcgcccg gatacagggt cgggatgcgg cgcaggtcgc 2940
catgccccaa cagcgattcg tcctggtcgt cgtgatcaac caccacggcg gcactgaaca 3000
ccgacaggcg caactggtcg cggggctggc cccacgccac gcggtcattg accacgtagg 3060
ccaacacggt gccggggccg ttgagcttca cgacggagat ccagcgctcg gccaccaagt 3120
ccttgactgc gtattggacc gtccgcaaag aacgtccgat gagcttggaa agtgtcttct 3180
ggctgaccac cacggcgttc tggtggccca tctgcgccac gaggtgatgc agcagcattg 3240
ccgccgtggg tttcctcgca ataagcccgg cccacgcctc atgcgctttg cgttccgttt 3300
gcacccagtg accgggcttg ttcttggctt gaatgccgat ttctctggac tgcgtggcca 3360
tgcttatctc catgcggtag gggtgccgca cggttgcggc accatgcgca atcagctgca 3420
acttttcggc agcgcgacaa caattatgcg ttgcgtaaaa gtggcagtca attacagatt 3480
ttctttaacc tacgcaatga gctattgcgg ggggtgccgc aatgagctgt tgcgtacccc 3540
ccttttttaa gttgttgatt tttaagtctt tcgcatttcg ccctatatct agttctttgg 3600
tgcccaaaga agggcacccc tgcggggttc ccccacgcct tcggcgcggc tccccctccg 3660
gcaaaaagtg gcccctccgg ggcttgttga tcgactgcgc ggccttcggc cttgcccaag 3720
gtggcgctgc ccccttggaa cccccgcact cgccgccgtg aggctcgggg ggcaggcggg 3780
cgggcttcgc ccttcgactg cccccactcg cataggcttg ggtcgttcca ggcgcgtcaa 3840
ggccaagccg ctgcgcggtc gctgcgcgag ccttgacccg ccttccactt ggtgtccaac 3900
cggcaagcga agcgcgcagg ccgcaggccg gaggcactag tgcttggatt ctcaccaata 3960
aaaaacgccc ggcggcaacc gagcgttctg aacaaatcca gatggagttc tgaggtcatt 4020
actggatcta tcaacaggag tccaagcgag ctcgatatca aattacgccc cgccctgcca 4080
ctcatcgcag tactgttgta attcattaag cattctgccg acatggaagc catcacaaac 4140
ggcatgatga acctgaatcg ccagcggcat cagcaccttg tcgccttgcg tataatattt 4200
gcccatggtg aaaacggggg cgaagaagtt gtccatattg gccacgttta aatcaaaact 4260
ggtgaaactc acccagggat tggctgagac gaaaaacata ttctcaataa accctttagg 4320
gaaataggcc aggttttcac cgtaacacgc cacatcttgc gaatatatgt gtagaaactg 4380
ccggaaatcg tcgtggtatt cactccagag cgatgaaaac gtttcagttt gctcatggaa 4440
aacggtgtaa caagggtgaa cactatccca tatcaccagc tcaccgtctt tcattgccat 4500
acgaaattcc ggatgagcat tcatcaggcg ggcaagaatg tgaataaagg ccggataaaa 4560
cttgtgctta tttttcttta cggtctttaa aaaggccgta atatccagct gaacggtctg 4620
gttataggta cattgagcaa ctgactgaaa tgcctcaaaa tgttctttac gatgccattg 4680
ggatatatca acggtggtat atccagtgat ttttttctcc attttagctt ccttagctcc 4740
tgaaaatctc gataactcaa aaaatacgcc cggtagtgat cttatttcat tatggtgaaa 4800
gttggaacct cttacgtgcc gatcaacgtc tcattttcgc cagatatc 4848
<210> 5
<211> 5397
<212> DNA
<213> Artificial sequence (ARTIFICIAL SEQUENCE)
<400> 5
gacgtcgaca ccatcgaatg gtgcaaaacc tttcgcggta tggcatgata gcgcccggaa 60
gagagtcaat tcagggtggt gaatgtgaaa ccagtaacgt tatacgatgt cgcagagtat 120
gccggtgtct cttatcagac cgtttcccgc gtggtgaacc aggccagcca cgtttctgcg 180
aaaacgcggg aaaaagtgga agcggcgatg gcggagctga attacattcc caaccgcgtg 240
gcacaacaac tggcgggcaa acagtcgttg ctgattggcg ttgccacctc cagtctggcc 300
ctgcacgcgc cgtcgcaaat tgtcgcggcg attaaatctc gcgccgatca actgggtgcc 360
agcgtggtgg tgtcgatggt agaacgaagc ggcgtcgaag cctgtaaagc ggcggtgcac 420
aatcttctcg cgcaacgcgt cagtgggctg atcattaact atccgctgga tgaccaggat 480
gccattgctg tggaagctgc ctgcactaat gttccggcgt tatttcttga tgtctctgac 540
cagacaccca tcaacagtat tattttctcc catgaagacg gtacgcgact gggcgtggag 600
catctggtcg cattgggtca ccagcaaatc gcgctgttag cgggcccatt aagttctgtc 660
tcggcgcgtc tgcgtctggc tggctggcat aaatatctca ctcgcaatca aattcagccg 720
atagcggaac gggaaggcga ctggagtgcc atgtccggtt ttcaacaaac catgcaaatg 780
ctgaatgagg gcatcgttcc cactgcgatg ctggttgcca acgatcagat ggcgctgggc 840
gcaatgcgcg ccattaccga gtccgggctg cgcgttggtg cggatatctc ggtagtggga 900
tacgacgata ccgaagacag ctcatgttat atcccgccgt taaccaccat caaacaggat 960
tttcgcctgc tggggcaaac cagcgtggac cgcttgctgc aactctctca gggccaggcg 1020
gtgaagggca atcagctgtt gcccgtctca ctggtgaaaa gaaaaaccac cctggcgccc 1080
aatacgcaaa ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag 1140
gtttcccgac tggaaagcgg gcagtgagcg caacgcaatt aatgtaagtt agcgcgaatt 1200
gatctggttt gacagcttat catcgactgc acggtgcacc aatgcttctg gcgtcaggca 1260
gccatcggaa gctgtggtat ggctgtgcag gtcgtaaatc actgcataat tcgtgtcgct 1320
caaggcgcac tcccgttctg gataatgttt tttgcgccga catcataacg gttctggcaa 1380
atattctgaa atgagctgtt gacaattaat catccggctc gtataatgtg tggaattgtg 1440
agcggataac aatttcagaa ttcaaaagat cttttaagaa ggagatatac atatgacact 1500
tgaaaaattt gtggatgctc tcccaatccc agatacacta aagccagtac agcaatcaaa 1560
agaaaaaaca tactacgaag tcaccatgga ggaatgcact catcagctcc atcgcgatct 1620
ccctccaacc cgcctgtggg gctacaacgg cttatttccg ggaccgacca ttgaggttaa 1680
aagaaatgaa aacgtatatg taaaatggat gaataacctt ccttccacgc atttccttcc 1740
gattgatcac accattcatc acagtgacag ccagcatgaa gagcccgagg taaagactgt 1800
tgttcattta cacggcggcg tcacgccaga tgatagtgac gggtatccgg aggcttggtt 1860
ttccaaagac tttgaacaaa caggacctta tttcaaaaga gaggtttatc attatccaaa 1920
ccagcagcgc ggggctatat tgtggtatca cgatcacgcc atggcgctca ccaggctaaa 1980
tgtctatgcc ggacttgtcg gtgcatatat cattcatgac ccaaaggaaa aacgcttaaa 2040
actgccttca gacgaatacg atgtgccgct tcttatcaca gaccgcacga tcaatgagga 2100
tggttctttg ttttatccga gcgcaccgga aaacccttct ccgtcactgc ctaatccttc 2160
aatcgttccg gctttttgcg gagaaaccat actcgtcaac gggaaggtat ggccatactt 2220
ggaagtcgag ccaaggaaat accgattccg tgtcatcaac gcctccaata caagaaccta 2280
taacctgtca ctcgataatg gcggagattt tattcagatt ggttcagatg gagggctcct 2340
gccgcgatct gttaaactga attctttcag ccttgcgcct gctgaacgtt acgatatcat 2400
cattgacttc acagcatatg aaggagaatc gatcattttg gcaaacagcg cgggctgcgg 2460
cggtgacgtc aatcctgaaa cagatgcgaa tatcatgcaa ttcagagtca caaaaccatt 2520
ggcacaaaaa gacgaaagca gaaagccgaa gtacctcgcc tcataccctt cggtacagca 2580
tgaaagaata caaaacatca gaacgttaaa actggcaggc acccaggacg aatacggcag 2640
acccgtcctt ctgcttaata acaaacgctg gcacgatccc gtcacagaaa caccaaaagt 2700
cggcacaact gaaatatggt ccattatcaa cccgacacgc ggaacacatc cgatccacct 2760
gcatctagtc tccttccgtg tattagaccg gcggccgttt gatatcgccc gttatcaaga 2820
aagcggggaa ttgtcctata ccggtccggc tgtcccgccg ccgccaagtg aaaagggctg 2880
gaaagacacc attcaagcgc atgcaggtga agtcctgaga atcgcggcga cattcggtcc 2940
gtacagcgga cgatacgtat ggcattgcca tattctagag catgaagact atgacatgat 3000
gagaccgatg gatataactg atccccataa ataaggatcc aaactcgagt aaggatctcc 3060
aggcatcaaa taaaacgaaa ggctcagtcg aaagactggg cctttcgttt tatctgttgt 3120
ttgtcggtga acgctctcta ctagagtcac actggctcac cttcgggtgg gcctttctgc 3180
gtttatacct aggctacagc cgatagtctg gaacagcgca cttacgggtt gctgcgcaac 3240
ccaagtgcta ccggcgcggc agcgtgaccc gtgtcggcgg ctccaacggc tcgccatcgt 3300
ccagaaaaca cggctcatcg ggcatcggca ggcgctgctg cccgcgccgt tcccattcct 3360
ccgtttcggt caaggctggc aggtctggtt ccatgcccgg aatgccgggc tggctgggcg 3420
gctcctcgcc ggggccggtc ggtagttgct gctcgcccgg atacagggtc gggatgcggc 3480
gcaggtcgcc atgccccaac agcgattcgt cctggtcgtc gtgatcaacc accacggcgg 3540
cactgaacac cgacaggcgc aactggtcgc ggggctggcc ccacgccacg cggtcattga 3600
ccacgtaggc caacacggtg ccggggccgt tgagcttcac gacggagatc cagcgctcgg 3660
ccaccaagtc cttgactgcg tattggaccg tccgcaaaga acgtccgatg agcttggaaa 3720
gtgtcttctg gctgaccacc acggcgttct ggtggcccat ctgcgccacg aggtgatgca 3780
gcagcattgc cgccgtgggt ttcctcgcaa taagcccggc ccacgcctca tgcgctttgc 3840
gttccgtttg cacccagtga ccgggcttgt tcttggcttg aatgccgatt tctctggact 3900
gcgtggccat gcttatctcc atgcggtagg ggtgccgcac ggttgcggca ccatgcgcaa 3960
tcagctgcaa cttttcggca gcgcgacaac aattatgcgt tgcgtaaaag tggcagtcaa 4020
ttacagattt tctttaacct acgcaatgag ctattgcggg gggtgccgca atgagctgtt 4080
gcgtaccccc cttttttaag ttgttgattt ttaagtcttt cgcatttcgc cctatatcta 4140
gttctttggt gcccaaagaa gggcacccct gcggggttcc cccacgcctt cggcgcggct 4200
ccccctccgg caaaaagtgg cccctccggg gcttgttgat cgactgcgcg gccttcggcc 4260
ttgcccaagg tggcgctgcc cccttggaac ccccgcactc gccgccgtga ggctcggggg 4320
gcaggcgggc gggcttcgcc cttcgactgc ccccactcgc ataggcttgg gtcgttccag 4380
gcgcgtcaag gccaagccgc tgcgcggtcg ctgcgcgagc cttgacccgc cttccacttg 4440
gtgtccaacc ggcaagcgaa gcgcgcaggc cgcaggccgg aggcactagt gcttggattc 4500
tcaccaataa aaaacgcccg gcggcaaccg agcgttctga acaaatccag atggagttct 4560
gaggtcatta ctggatctat caacaggagt ccaagcgagc tcgatatcaa attacgcccc 4620
gccctgccac tcatcgcagt actgttgtaa ttcattaagc attctgccga catggaagcc 4680
atcacaaacg gcatgatgaa cctgaatcgc cagcggcatc agcaccttgt cgccttgcgt 4740
ataatatttg cccatggtga aaacgggggc gaagaagttg tccatattgg ccacgtttaa 4800
atcaaaactg gtgaaactca cccagggatt ggctgagacg aaaaacatat tctcaataaa 4860
ccctttaggg aaataggcca ggttttcacc gtaacacgcc acatcttgcg aatatatgtg 4920
tagaaactgc cggaaatcgt cgtggtattc actccagagc gatgaaaacg tttcagtttg 4980
ctcatggaaa acggtgtaac aagggtgaac actatcccat atcaccagct caccgtcttt 5040
cattgccata cgaaattccg gatgagcatt catcaggcgg gcaagaatgt gaataaaggc 5100
cggataaaac ttgtgcttat ttttctttac ggtctttaaa aaggccgtaa tatccagctg 5160
aacggtctgg ttataggtac attgagcaac tgactgaaat gcctcaaaat gttctttacg 5220
atgccattgg gatatatcaa cggtggtata tccagtgatt tttttctcca ttttagcttc 5280
cttagctcct gaaaatctcg ataactcaaa aaatacgccc ggtagtgatc ttatttcatt 5340
atggtgaaag ttggaacctc ttacgtgccg atcaacgtct cattttcgcc agatatc 5397
<210> 6
<211> 4206
<212> DNA
<213> Artificial sequence (ARTIFICIAL SEQUENCE)
<400> 6
gacgtcgaca ccatcgaatg gtgcaaaacc tttcgcggta tggcatgata gcgcccggaa 60
gagagtcaat tcagggtggt gaatgtgaaa ccagtaacgt tatacgatgt cgcagagtat 120
gccggtgtct cttatcagac cgtttcccgc gtggtgaacc aggccagcca cgtttctgcg 180
aaaacgcggg aaaaagtgga agcggcgatg gcggagctga attacattcc caaccgcgtg 240
gcacaacaac tggcgggcaa acagtcgttg ctgattggcg ttgccacctc cagtctggcc 300
ctgcacgcgc cgtcgcaaat tgtcgcggcg attaaatctc gcgccgatca actgggtgcc 360
agcgtggtgg tgtcgatggt agaacgaagc ggcgtcgaag cctgtaaagc ggcggtgcac 420
aatcttctcg cgcaacgcgt cagtgggctg atcattaact atccgctgga tgaccaggat 480
gccattgctg tggaagctgc ctgcactaat gttccggcgt tatttcttga tgtctctgac 540
cagacaccca tcaacagtat tattttctcc catgaagacg gtacgcgact gggcgtggag 600
catctggtcg cattgggtca ccagcaaatc gcgctgttag cgggcccatt aagttctgtc 660
tcggcgcgtc tgcgtctggc tggctggcat aaatatctca ctcgcaatca aattcagccg 720
atagcggaac gggaaggcga ctggagtgcc atgtccggtt ttcaacaaac catgcaaatg 780
ctgaatgagg gcatcgttcc cactgcgatg ctggttgcca acgatcagat ggcgctgggc 840
gcaatgcgcg ccattaccga gtccgggctg cgcgttggtg cggatatctc ggtagtggga 900
tacgacgata ccgaagacag ctcatgttat atcccgccgt taaccaccat caaacaggat 960
tttcgcctgc tggggcaaac cagcgtggac cgcttgctgc aactctctca gggccaggcg 1020
gtgaagggca atcagctgtt gcccgtctca ctggtgaaaa gaaaaaccac cctggcgccc 1080
aatacgcaaa ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag 1140
gtttcccgac tggaaagcgg gcagtgagcg caacgcaatt aatgtaagtt agcgcgaatt 1200
gatctggttt gacagcttat catcgactgc acggtgcacc aatgcttctg gcgtcaggca 1260
gccatcggaa gctgtggtat ggctgtgcag gtcgtaaatc actgcataat tcgtgtcgct 1320
caaggcgcac tcccgttctg gataatgttt tttgcgccga catcataacg gttctggcaa 1380
atattctgaa atgagctgtt gacaattaat catccggctc gtataatgtg tggaattgtg 1440
agcggataac aatttcagaa ttcaaaagat cttttaagaa ggagatatac atatggcgag 1500
tagcgaagac gttatcaaag agttcatgcg tttcaaagtt cgtatggaag gttccgttaa 1560
cggtcacgag ttcgaaatcg aaggtgaagg tgaaggtcgt ccgtacgaag gtacccagac 1620
cgctaaactg aaagttacca aaggtggtcc gctgccgttc gcttgggaca tcctgtcccc 1680
gcagttccag tacggttcca aagcttacgt taaacacccg gctgacatcc cggactacct 1740
gaaactgtcc ttcccggaag gtttcaaatg ggaacgtgtt atgaacttcg aagacggtgg 1800
tgttgttacc gttacccagg actcctccct gcaagacggt gagttcatct acaaagttaa 1860
actgcgtggt accaacttcc cgtccgacgg tccggttatg cagaaaaaaa ccatgggttg 1920
ggaagcttcc accgaacgta tgtacccgga agacggtgct ctgaaaggtg aaatcaaaat 1980
gcgtctgaaa ctgaaagacg gtggtcacta cgacgctgaa gttaaaacca cctacatggc 2040
taaaaaaccg gttcagctgc cgggtgctta caaaaccgac atcaaactgg acatcacctc 2100
ccacaacgaa gactacacca tcgttgaaca gtacgaacgt gctgaaggtc gtcactccac 2160
cggtgcttaa ggatccaaac tcgagtaagg atctccaggc atcaaataaa acgaaaggct 2220
cagtcgaaag actgggcctt tcgttttatc tgttgtttgt cggtgaacgc tctctactag 2280
agtcacactg gctcaccttc gggtgggcct ttctgcgttt atacctaggg cgttcggctg 2340
cggcgagcgg tatcagctca ctcaaaggcg gtaatacggt tatccacaga atcaggggat 2400
aacgcaggaa agaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc 2460
gcgttgctgg cgtttttcca taggctccgc ccccctgacg agcatcacaa aaatcgacgc 2520
tcaagtcaga ggtggcgaaa cccgacagga ctataaagat accaggcgtt tccccctgga 2580
agctccctcg tgcgctctcc tgttccgacc ctgccgctta ccggatacct gtccgccttt 2640
ctcccttcgg gaagcgtggc gctttctcat agctcacgct gtaggtatct cagttcggtg 2700
taggtcgttc gctccaagct gggctgtgtg cacgaacccc ccgttcagcc cgaccgctgc 2760
gccttatccg gtaactatcg tcttgagtcc aacccggtaa gacacgactt atcgccactg 2820
gcagcagcca ctggtaacag gattagcaga gcgaggtatg taggcggtgc tacagagttc 2880
ttgaagtggt ggcctaacta cggctacact agaaggacag tatttggtat ctgcgctctg 2940
ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt gatccggcaa acaaaccacc 3000
gctggtagcg gtggtttttt tgtttgcaag cagcagatta cgcgcagaaa aaaaggatct 3060
caagaagatc ctttgatctt ttctacgggg tctgacgctc agtggaacga aaactcacgt 3120
taagggattt tggtcatgac tagtgcttgg attctcacca ataaaaaacg cccggcggca 3180
accgagcgtt ctgaacaaat ccagatggag ttctgaggtc attactggat ctatcaacag 3240
gagtccaagc gagctctcga accccagagt cccgctcaga agaactcgtc aagaaggcga 3300
tagaaggcga tgcgctgcga atcgggagcg gcgataccgt aaagcacgag gaagcggtca 3360
gcccattcgc cgccaagctc ttcagcaata tcacgggtag ccaacgctat gtcctgatag 3420
cggtccgcca cacccagccg gccacagtcg atgaatccag aaaagcggcc attttccacc 3480
atgatattcg gcaagcaggc atcgccatgg gtcacgacga gatcctcgcc gtcgggcatg 3540
cgcgccttga gcctggcgaa cagttcggct ggcgcgagcc cctgatgctc ttcgtccaga 3600
tcatcctgat cgacaagacc ggcttccatc cgagtacgtg ctcgctcgat gcgatgtttc 3660
gcttggtggt cgaatgggca ggtagccgga tcaagcgtat gcagccgccg cattgcatca 3720
gccatgatgg atactttctc ggcaggagca aggtgagatg acaggagatc ctgccccggc 3780
acttcgccca atagcagcca gtcccttccc gcttcagtga caacgtcgag cacagctgcg 3840
caaggaacgc ccgtcgtggc cagccacgat agccgcgctg cctcgtcctg cagttcattc 3900
agggcaccgg acaggtcggt cttgacaaaa agaaccgggc gcccctgcgc tgacagccgg 3960
aacacggcgg catcagagca gccgattgtc tgttgtgccc agtcatagcc gaatagcctc 4020
tccacccaag cggccggaga acctgcgtgc aatccatctt gttcaatcat gcgaaacgat 4080
cctcatcctg tctcttgatc agatcatgat cccctgcgcc atcagatcct tggcggcaag 4140
aaagccatcc agtttacttt gcagggcttc ccaaccttac cagagggcgc cccagctggc 4200
aattcc 4206

Claims (1)

1. A method for optimizing the expression of a multi-subunit enzyme for synthesizing a high-added-value compound by using a monolignol compound as a starting material, and synthesizing the high-added-value compound by using a biocatalyst;
the catalyst is prepared by one of the following methods:
The method comprises the following steps: constructing RBS library containing GcoA and GcoB multi-subunit enzyme GcoAB by a Golden gate method, converting the RBS library into E.coli, and screening to obtain a biocatalyst E.coli-GcoAB; RBS G/C;
The second method is that the biocatalyst E.coli-GcoAB-ASTB-OM2 is obtained by screening the gene corresponding to the biocatalyst and the aryl sulfotransferase mutant ASTB-OM2 in the first method of over-expression in E.coli;
The method III, obtaining a biocatalyst E.coli-GoL3 by over-expressing laccase GoL3 in E.coli;
Screening the obtained GcoAB in the first method; the gene sequence of the RBS G/C is SEQ ID NO.1;
In the second method, the sequence of the plasmid pB1c-ASTB-OM2 gene used for over-expressing the aryl sulfotransferase mutant ASTB-OM2 is shown as SEQ ID NO. 2;
in the third method, the sequence of the plasmid pB1c-GoL3 gene used for over-expressing laccase GoL3 is shown as SEQ ID NO. 3;
The biocatalyst is E.coli-GcoAB; in the process of RBS G/C, guaiacol is taken as a starting material, and a synthesized high-added-value compound is catechol;
when the biocatalyst is E.coli-GcoAB-ASTB-OM 2, guaiacol is used as a starting material, and the synthesized high-added-value compound is catechol-O-sulfate;
The biocatalyst is E.coli-GoL and E.coli-GcoAB; when RBS/C is combined, 3-methoxy catechol is used as a starting material, and the synthesized high added value compound is red bisphenol.
CN202110702934.XA 2021-06-24 2021-06-24 Expression optimization of multi-subunit enzymes for monolignol synthesis of high value-added compounds Active CN113462626B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110702934.XA CN113462626B (en) 2021-06-24 2021-06-24 Expression optimization of multi-subunit enzymes for monolignol synthesis of high value-added compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110702934.XA CN113462626B (en) 2021-06-24 2021-06-24 Expression optimization of multi-subunit enzymes for monolignol synthesis of high value-added compounds

Publications (2)

Publication Number Publication Date
CN113462626A CN113462626A (en) 2021-10-01
CN113462626B true CN113462626B (en) 2024-06-07

Family

ID=77872622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110702934.XA Active CN113462626B (en) 2021-06-24 2021-06-24 Expression optimization of multi-subunit enzymes for monolignol synthesis of high value-added compounds

Country Status (1)

Country Link
CN (1) CN113462626B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111057660A (en) * 2014-04-15 2020-04-24 Ao生物医学有限责任公司 Ammonia oxidizing nitrosomonas D23
CN112300972A (en) * 2019-08-02 2021-02-02 南京理工大学 Gene engineering bacterium for producing myxofuroic acid by taking lignin as raw material
CN112481336A (en) * 2020-11-27 2021-03-12 上海交通大学 Method for biosynthesizing high value-added compound by utilizing lignocellulose derivative

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10196656B2 (en) * 2015-03-09 2019-02-05 Alliance For Sustainable Energy, Llc Enzymes and methods for dealkylation of substrates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111057660A (en) * 2014-04-15 2020-04-24 Ao生物医学有限责任公司 Ammonia oxidizing nitrosomonas D23
CN112300972A (en) * 2019-08-02 2021-02-02 南京理工大学 Gene engineering bacterium for producing myxofuroic acid by taking lignin as raw material
CN112481336A (en) * 2020-11-27 2021-03-12 上海交通大学 Method for biosynthesizing high value-added compound by utilizing lignocellulose derivative

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Salony et.al.Laccase of Cyathus bulleri: structural, catalytic characterization and expression in Escherichia coli.Biochimica et Biophysica Acta.2007,259-268. *

Also Published As

Publication number Publication date
CN113462626A (en) 2021-10-01

Similar Documents

Publication Publication Date Title
KR102700050B1 (en) Production of human milk oligosaccharides in microbial hosts with engineered introgression/extrogression
DK3027733T3 (en) Preparation of 3-Hydroxypropionic Acid in Recombinant Yeast Expressing an Insect Aspartate-1 Decarboxylase
JP2022173457A (en) Alpha (1,2) fucosyltransferase syngenes for use in the production of fucosylated oligosaccharides
KR20190120287A (en) Genome Editing System and Method
CN113136357B (en) Gene engineering bacterium for producing lactoyl-N-neotetraose and production method
CN101679990A (en) Delta-8 desaturases and their use in making polyunsaturated fatty acids
KR20130027063A (en) Improving activity of fe-s cluster requiring proteins
KR20160043973A (en) Modified microorganism for improved production of alanine
CN113462626B (en) Expression optimization of multi-subunit enzymes for monolignol synthesis of high value-added compounds
CN113584033B (en) CRISPR/Cpf1 gene editing system, construction method thereof and application thereof in gibberella
KR102304834B1 (en) Improved microorganisms for succinic acid production
CN113186140B (en) Genetically engineered bacteria for preventing and/or treating hangover and liver disease
CN109722436B (en) CRISPR-Cas 9-based genome traceless editing vector and application
KR102304838B1 (en) Modified microorganism with improved biomass separation behaviour
CN114836473B (en) Lentiviral vector for constructing cell strain model for screening pharmaceutical activity and application
CN111019966B (en) Expression plasmid with higher replication capacity of corynebacteria and construction method thereof
CN113774071B (en) Polynucleotide for expressing HPV66L1, expression vector, host cell and application thereof
US6156544A (en) Process for the preparation of N-acetylneuraminic acid
CN103305541A (en) Activating tag Ac/Ds transposons system and application thereof in building of plant mutant library
CN113122556B (en) Oscillating gene expression system, construction method and application thereof in rhamnolipid fermentation
KR101990240B1 (en) Transformed corynebacterium glutamicum having capability of producing butyrate
CN113684163A (en) Genetically engineered bacterium for improving yield of lactoyl-N-tetrasaccharide and production method thereof
CN114959919A (en) Method for constructing saccharomyces cerevisiae artificial small promoter library and application
RU2730661C2 (en) Gene-therapeutic dna-vector based on gene-therapeutic dna-vector vtvaf17, carrying target gene selected from group of genes col1a1, col1a2, p4ha1, p4ha2, col7a1, clca2, eln, plod1 to increase level of expression of said target genes, method for production and use thereof, strain escherichia coli scs110-af/vtvaf17-col1a1, or escherichia coli scs110-af/vtvaf17-col1a2, or escherichia coli scs110-af/vtvaf17-p4ha1, or escherichia coli scs110-af/vtvaf17-p4ha2, or escherichia coli scs110-af/vtvaf17-col7a1, or escherichia coli scs110-af/vtvaf17-clca2, or escherichia coli scs110-af/vtvaf17-eln, or escherichia coli scs110-af/vtvaf17- plod1, carrying gene-therapeutic dna vector, method for production thereof, method for industrial production of gene-therapeutic dna vector
CN109797165B (en) Method for improving yield of dibasic acid by traceless editing technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Xiao Yi

Inventor after: Zhang Shun

Inventor before: Xiao Yi

GR01 Patent grant