CN113462626A - Expression optimization of multi-subunit enzyme for synthesizing high value-added compound by using lignin monomer - Google Patents

Expression optimization of multi-subunit enzyme for synthesizing high value-added compound by using lignin monomer Download PDF

Info

Publication number
CN113462626A
CN113462626A CN202110702934.XA CN202110702934A CN113462626A CN 113462626 A CN113462626 A CN 113462626A CN 202110702934 A CN202110702934 A CN 202110702934A CN 113462626 A CN113462626 A CN 113462626A
Authority
CN
China
Prior art keywords
rbs
coli
catechol
high value
biocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110702934.XA
Other languages
Chinese (zh)
Other versions
CN113462626B (en
Inventor
肖毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202110702934.XA priority Critical patent/CN113462626B/en
Priority claimed from CN202110702934.XA external-priority patent/CN113462626B/en
Publication of CN113462626A publication Critical patent/CN113462626A/en
Application granted granted Critical
Publication of CN113462626B publication Critical patent/CN113462626B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0055Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10)
    • C12N9/0057Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3)
    • C12N9/0061Laccase (1.10.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/13Transferases (2.) transferring sulfur containing groups (2.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P11/00Preparation of sulfur-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • C12P7/26Ketones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y110/00Oxidoreductases acting on diphenols and related substances as donors (1.10)
    • C12Y110/03Oxidoreductases acting on diphenols and related substances as donors (1.10) with an oxygen as acceptor (1.10.3)
    • C12Y110/03002Laccase (1.10.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/14Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen (1.14.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y208/00Transferases transferring sulfur-containing groups (2.8)
    • C12Y208/02Sulfotransferases (2.8.2)
    • C12Y208/02001Aryl sulfotransferase (2.8.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to a method for expression optimization of multi-subunit enzyme and biosynthesis of a high value-added compound by utilizing a lignin monomer, wherein an RBS library of pE 1K-GcobA-M3 is constructed by a Golden gate cloning method, the RBS library of the library G/C is screened by researching the growth rate, the conversion rate, the expression ratio of the enzyme, the enzyme activity of crude enzyme liquid and the like of the library, the growth rate of a strain is high, and the enzyme activity is also high. Thereafter, the RBS library was used for enzymatic reaction pathway construction, catalyzing monolignol compounds guaiacol (guaiacol) and pyrogallol (pyrogallol) to produce high value-added compounds such as catechol, catechol-O-sulfate, and erythrophenol. The invention utilizes the constructed biocatalyst to realize the high-efficiency utilization of aromatic compounds (guaiacol and 3-methoxy catechol) from lignin through biotransformation, and constructs the biosynthesis route of catechol-O-sulfate and rhodophenol for the first time.

Description

Expression optimization of multi-subunit enzyme for synthesizing high value-added compound by using lignin monomer
Technical Field
The invention belongs to the technical field of microorganisms, and relates to the expression optimization of multi-subunit enzyme for synthesizing a high-added-value compound by using a lignin monomer.
Background
In view of the gradual decrease of non-renewable resources such as petroleum, natural gas, etc., the development and comprehensive utilization of renewable resources such as lignin are receiving much attention. Lignin is a natural high molecular compound, widely present in higher plant cells, and is a second-order biomass in nature. The lignin is a natural aromatic polymer formed by connecting phenylpropane units through C-O-C and C-C bonds and carrying out catalytic dehydrogenation polymerization and free radical polymerization of enzyme. It is believed from a prior view that lignin building blocks mainly comprise: p-Hydroxyphenyl propane (p-Hydroxyphenyl propane/H), Guaiacyl propane (Guaiacryl/G) and Syringyl propane (Syringyl/S). Lignin forms various aromatic compounds after thermochemical conversion and biological conversion, most compounds also contain methyl, after microbial demethylation, intermediate metabolites such as catechol, protocatechuic acid, 3,4, 5-trihydroxybenzoic acid and the like are formed, and then the intermediate metabolites can further enter central carbon metabolism and downstream high-added-value product generation, so that demethylation of a monomer compound from lignin is an important link for lignin utilization.
Many studies have been made to establish cell factories for efficient utilization of lignin and biorefinery of high value-added compounds, such as in the fields of medicine, biofuel, food and chemical industry, by modifying microorganisms. Genetic modification of microorganisms is common, but in the process of genetic modification, due to modification of endogenous genes and insertion of exogenous genes, metabolic flow imbalance is caused, growth is delayed, and yield of target compounds is low. In order to solve the imbalance of metabolic flux, accelerate strain optimization and improve the production of various high-value bio-based chemicals, technologies such as multivariate modular metabolic engineering (multivariate metabolic engineering), modular co-culture engineering (modular co-culture engineering) and spatio-temporal and genome integration have been widely used. The above techniques, focusing on one or more metabolic pathways, focus on the regulation of expression of multiple enzymes, while there is little interest in single-function multi-subunit enzymes.
The P450 protein is a multifunctional enzyme and can catalyze monomer compounds from various lignin sources. O-demethylation, consisting of the cytochrome P450 protein (GcoA) of the CYP255A family and a three-domain constitutive reductase (GcoB). By optimizing the multicomponent O-demethylase double subunits GcoA and GcoB, the expression ratio and enzyme activity, growth rate and the like of the enzymes in cells are researched, and a foundation is provided for the utilization of aromatic compounds.
Catechol (hereinafter referred to as CAT) is a white crystalline compound which is soluble in water, ethanol, diethyl ether, benzene, toluene, and chloroform, and is easily soluble in pyridine and an alkaline aqueous solution. Is an important chemical intermediate, and is mainly used for producing antioxidants, tanning agents, spices and the like. For example, in the aspect of pesticide production, the compound is used for synthesizing diethofencarb, propoxur, carbofuran and the like; in the aspect of medical synthesis, the medicine is used for preparing the cumin epinephrine, the berberine and the like. At present, the industrial production of catechol is mainly a chemical synthesis method, phenol is taken as a raw material, strong acid or hydrogen peroxide is taken as a catalyst, but the method has the factors of harsh reaction conditions, low conversion rate, more byproducts, complex components, complex product separation process, serious environmental pollution and the like.
It has been reported in the literature (Production of carbonate from Benzoate by the Wild Strain metabolites Ba-0323and charaterization of Its salts 1,2-Dioxygenase, Bioscience, Biotechnology, and Biochemistry,2014, 65:9,1957 and 1964) that Ralstonia sp.Ba-0323 can convert sodium Benzoate to form 1.9mg/ml Catechol.
catechol-O-sulfate is an aryl sulfate, which is catechol having one of the two hydroxyl groups substituted with a sulfo group. It is a member of the aryl sulfates and phenols. The catechol-O-sulfate salt may improve cardiac muscle cell beating and Ca2+ signaling in response to sustained stimulation of β -adrenergic receptors by promoting cardioprotection in the following manner.
Little has been reported about the biosynthesis of catechol-O-sulfate, and only ASTB-OM2 (aryl sulfotransferase B) catalyzes catechol to produce catechol-O-sulfate (Loop engineering of aryl sulfotransferase B for improving catalytic performance in a metabolic substrate, Catal. Sci. technol.,2020,10, 2369).
Hongbaolin (Purpurogenin) is a natural phenol extracted from nuts and oak bark, and has strong Xanthine Oxidase (XO) inhibitory activity, and IC of 0.2 μ M. The rhodophenol has antioxidant, anticancer and anti-inflammatory properties. Xanthine oxidase is the terminal enzyme of human purine catabolism, catalyzing the oxidation of hypoxanthine and xanthine. These reactions produce uric acid and active oxygen such as superoxide anion and hydrogen peroxide. It is well known that the onset of gout is due to an excessive accumulation of blood uric acid: this excessive accumulation is considered to be associated with eating habits, and therefore, although gout is a classic disease, it is now recognized as a lifestyle-related disease, and more patients are recently suffering from the disease. Cardiovascular disease is another lifestyle-related disease that is well known to be associated with oxidative stress caused by superoxide anions, hydrogen peroxide, nitric oxide and its metabolites (hydroxyl radicals, peroxynitrite, etc.). Therefore, inhibition of xanthine oxidase overworking is important for prevention of such lifestyle-related diseases. Repazol inhibits the production of proinflammatory cytokines by inhibiting the mRNA and protein expression of IL-1 β and TNF- α in LPS stimulated BV2 microglia. Erythrophenol exerts an anti-inflammatory effect by inhibiting LPS stimulated BV2 microglia phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase signaling pathways. Honegyphenol inhibits esophageal squamous cell carcinoma by directly targeting the mitogen-activated protein kinase 1/2(MEK1/2) signaling pathway. Therefore, the synthesis of the rhodophenol is of great significance. The reported synthesis of rhodophenol has focused on chemical methods.
France sco Ferlin et al report (heterologous Man-catalyst oxide C-H/C-catalysis to Access pharmaceutical Active Compounds, ChemCat Chem 2020,12, 449-454) as H2O2And O2And 1mmol pyrogallol as a reaction reagent, Mn8KO16As a catalyst, 0.94mmol of red-ployphenol can be produced.
Disclosure of Invention
Aiming at the defects of the prior art, the invention provides a method for synthesizing a high value-added compound by using expression optimization of multi-subunit enzyme for researching expression optimization of the multi-subunit enzyme.
In the invention, an RBS library of pE 1K-GcobA-M3 is constructed by a Golden gate cloning method, the RBS library of the library G/C is screened by researching the growth rate, the conversion rate, the expression ratio of enzyme, the enzyme activity of crude enzyme solution and the like of the library, the growth rate of a strain is high, and the enzyme activity is also high. Thereafter, the RBS library was used for enzymatic reaction pathway construction, catalyzing monolignol compounds guaiacol (guaiacol) and pyrogallol (pyrogallol) to produce high value-added compounds such as catechol, catechol-O-sulfate, and erythrophenol.
The purpose of the invention is realized by the following technical scheme:
the invention provides a method for synthesizing a high value-added compound by using a lignin monomer through expression optimization of a multi-subunit enzyme, wherein the high value-added compound is synthesized by using the lignin monomer compound as an initial raw material through a biocatalyst;
the catalyst is prepared by one of the following methods:
the method comprises the following steps: constructing an RBS library of a multi-subunit enzyme GcoAB containing GcoA and GcoB by a Golden gate method, converting the RBS library into E.coli, and screening to obtain a biocatalyst;
secondly, screening a gene GcobA (RBS: G/C) corresponding to the obtained biocatalyst and an aryl sulfotransferase mutant ASTB-OM2(Q191Y/Y218W/L225V) in the E.coli overexpression method I to obtain the biocatalyst;
coli by over-expressing laccase GoL3 in e.
Preferably, the catalyst prepared by Process one is E.coli (GcobA; RBS: G/C).
Preferably, the catalyst prepared by process two is E.coli (GcoaB-ASTB-OM 2).
Preferably, the catalyst produced by process three is e.coli (GoL 3).
Preferably, the method for obtaining the E.coli (GcoaB; RBS: G/C) is as follows: an RBS library of the multi-subunit enzyme GcoAB comprising GcoA and GcoB is constructed by the method of Golden gate, the GcoA and the GcoB are firstly transformed into BL21 to form pE1k-GcoAB-M3(RBS: N/N), and then the RBS library of the GcoAB is obtained by sequencing. Wherein, the biocatalyst E.coli (GcoaB; RBS: G/C) is obtained by screening. Screening the obtained GcobA; the gene sequence of RBS G/C is SEQ ID NO. 1.
The genes GcoA and GcoB are derived from Amycolatopsis sp ATCC 39116, and the genes GcoA and GcoB are codon optimized. The screening is to screen the best biocatalyst E.coli (GcobA; RBS: G/C) by comparing the protein expression, exponential phase growth rate, converted guaiacol rate and crude enzyme liquid enzyme activity of the RBS library of GcobA, wherein the catalyst has the advantages of fast growth, proper expression amount of the proteins GcobA and GcobB, fast conversion rate and high crude enzyme liquid enzyme activity.
Preferably, the ASTB-OM2(Q191Y/Y218W/L225V) is a mutant of an aryl sulfotransferase derived from Desutobacterium hafniens. ASTB-OM2(Q191Y/Y218W/L225V) refers to that the 191 th amino acid of ASTB-OM2 is mutated from Glutamine (Q) to Tyrosine (Y), the 218 th amino acid Tyrosine (Y) is mutated to tryptophan (W), and the 225 th Leucine (L) is mutated to Valine (V) compared with wild type ASTB. pB1c-ASTB-OM2 gene sequence SEQ ID NO. 2.
Preferably, the laccase GoL3 is derived from Gramella forsetii KT 0803. The gene sequence of pB1c-GoL3 is SEQ ID NO. 3.
Preferably, the sequence of the RBS core region of GcoA is AGGGGG, and the sequence of the RBS core region of GcoB is AGGCGG.
Preferably, the method for obtaining e.coli (GoL 3): plasmid pB1c-GoL3 was synthesized and subsequently achieved in e.coli BL21 by chemical transformation.
The biocatalyst is prepared by adopting an electrotransfer method, 2 mu L of plasmid is taken and mixed with 100 mu L of electrotransfer competence BL21, the mixture is transferred to an electric shock cup, pulse is carried out at 1700V, 900 mu L of LB culture medium is immediately added, the mixture is transferred to an EP tube, after the mixture is cultured for 1h at 37 ℃ and 180rpm/min, 200 mu L of bacterial liquid is taken and coated on an LB solid plate containing corresponding resistance, overnight culture is carried out at 37 ℃, the bacterial liquid is picked and monoclone is selected in an LB test tube containing corresponding antibiotic, and culture is carried out at 37 ℃ and 220rpm/min, thus obtaining the corresponding biocatalyst.
Preferably, the monolignol compound comprises guaiacol or 3-methoxy catechol.
Preferably, the high value-added compound comprises at least one of catechol, catechol-O-sulfate, and rhodol.
Preferably, when the biocatalyst is E.coli (GcobA; RBS: G/C), guaiacol is used as a starting material to synthesize catechol.
Preferably, when the biocatalyst is E.coli (GcobA-ASTB-OM 2), the catechol-O-sulfate is synthesized by using guaiacol as a starting material.
Preferably, when the biocatalyst is E.coli (GoL3), 3-methoxy catechol is used as a starting material to synthesize the rhodol.
Preferably, when the biocatalyst is E.coli (GoL3) and E.coli (GcoaB; RBS: G/C), 3-methoxy catechol is used as the starting material to synthesize the Hongbao phenol.
Compared with the prior art, the invention has the following beneficial effects:
(1) according to the invention, a GcoAB library is constructed by a molecular cloning means, the expression of two components of GcoA and GcoB is optimized, an RBS combination with high conversion rate, high growth rate and good enzyme activity is obtained, an optimal biocatalyst is obtained, and the demethylation reaction of guaiacol and 3-methoxy catechol can be rapidly catalyzed.
(2) The invention utilizes the constructed biocatalyst to realize the high-efficiency utilization of aromatic compounds (guaiacol and 3-methoxy catechol) from lignin through biotransformation, and constructs the biosynthesis route of catechol-O-sulfate and rhodophenol for the first time.
Drawings
Other features, objects and advantages of the invention will become more apparent upon reading of the detailed description of non-limiting embodiments with reference to the following drawings:
FIG. 1 is a schematic representation of the ribosome library (RBS library) of GcobA, growth rate and protein ratio; wherein a is a ribosome library of GcobA (RBS library) pE1 k-GcobA-M3 schematic diagram; b is a schematic diagram of catalyzing guaiacol to form catechol by GcoA and GcoB; c is SDS-PAGE pattern of protein expression of GcoA and GcoB in the ribosome library of GcoAB (RBS library); d is the molar ratio of GcoA and GcoB protein expression in the ribosome library of GcoAB (RBS library); e is thermodynamic diagram of the growth rate of the ribosome library of GcoAB (RBS library) in exponential phase, the left side refers to the case where no guaiacol is added, the right side to the case where guaiacol is added;
FIG. 2 shows the conversion rate and catechol synthesis of the ribosome library of GcobA (RBS library);
wherein a is the guaiacol conversion rate of the ribosome library of GcoAB (RBS library); b is the enzyme activity of the crude enzyme liquid of ribosome library (RBS library) of GcobA; c is catalyst E.coli (GcoaB; RBS: G/C) to convert guaiacol into catechol;
FIG. 3 shows the production of catechol by the multiple addition of catalyst E.coli (GcoaB; RBS: G/C) and guaiacol;
FIG. 4 is a chart of the catechol-O-sulfate synthesis results and mass spectra: a is a schematic diagram of E.coli (GcobA-ASTB-OM 2) catalyzing guaiacol to generate catechol-O-sulfate; coli (GcoAB-ASTB-OM2) catalyzes guaiacol to generate catechol-O-sulfate; mass spectrograms of the product and catechol-O-sulfate;
FIG. 5 shows the biocatalyst screening and optimum pH optimization with the conversion of pyrogallol to erythrophenol; wherein a is the activity of comparing 3 biocatalysts for production of red betaxol; coli (GoL3) catalyzes the conversion rate of pyrogallol to erythrophenol;
FIG. 6 is a schematic diagram of synthesis of rhodophenol, a result diagram and a mass spectrum diagram; wherein a is a schematic diagram of generation of the rhodophenol, and the biocatalysts E.coli (GcobA; RBS: G/C) and E.coli (GoL3) catalyze 3-methoxy catechol to generate the rhodophenol; coli (GcobA; RBS: G/C) catalyzes 3-methoxy catechol to generate pyrogallol; c is the production of the red betal; d, mass spectrograms of the sample and the red double phenol standard substance;
FIG. 7 is a general diagram showing the use of biocatalysts for the production of catechol, catechol-O-sulfate and Hongbiol. a is a schematic diagram of GcoA and GcoB catalyzing guaiacol to form catechol; coli (GcoAB-ASTB-OM2) catalyzes guaiacol to generate catechol-O-sulfate; c is a schematic diagram of the formation of the rhodophenol, and the biocatalysts E.coli (GcobA; RBS: G/C) and E.coli (GoL3) catalyze 3-methoxy catechol to form the rhodophenol.
Detailed Description
The invention is described in detail below with reference to the figures and specific embodiments. The following examples, which are set forth to provide a detailed description of the invention and a detailed description of the operation, will help those skilled in the art to further understand the present invention. It should be noted that the scope of the present invention is not limited to the following embodiments, and that several modifications and improvements made on the premise of the idea of the present invention belong to the scope of the present invention.
The method of the following example includes:
step one, constructing a ribosome library (RBS library) of a multi-subunit enzyme GcobA, obtaining an E.coli (GcobA; RBS: G/C) biocatalyst with high conversion efficiency, high growth rate and high enzyme activity, and producing catechol by using guaiacol as a substrate;
coli (GcoAB-ASTB-OM2) as an efficient biocatalyst, and catechol-O-sulfate is successfully synthesized by taking guaiacol as a starting material and adding p-nitrophenyl sulfate as a sulfo donor;
step three, screening various laccase, modifying a biocatalyst E.coli (GoL3) obtained by escherichia coli for the first time, combining the E.coli (GcoaB; RBS: G/C) catalyst, and successfully synthesizing the rhodophenol by using 3-methoxy catechol as a raw material;
the obtaining method
Constructing a ribosome library (RBS library) of GcoA and GcoB by a Golden gate cloning method, and screening to obtain an optimal RBS combination for catalyzing guaiacol to produce catechol;
in the second step, the biocatalyst E.coli (GcobA-ASTB-OM 2) is constructed by over-expressing GcobA (RBS: G/C) and an aryl sulfotransferase mutant ASTB-OM2(Q191Y/Y218W/L225V) derived from DesF bacterium hafniens in E.coli, and is used for catalyzing guaiacol to synthesize catechol-O-sulfate;
in step three, the biocatalysts E.coli (GoL3), E.coli (Spr-CotA) and E.coli (Bsu-CotA) etc. were achieved by overexpressing in E.coli the laccase GoL3 derived from Gramela forsetii KT0803, the laccase Spr-CotA derived from Streptomyces pristinaespiralis ATCC25486, and the laccase Bsu-CotA derived from Bacillus subtilis. Then, through screening, the biocatalyst with laccase activity is obtained, and is further introduced into GcoaB (RBS: G/C) for the synthesis of the rhodophenol.
Example 1
(1) Coli (GcoaB; RBS: G/C) biocatalyst acquisition and catechol production (construction schematic diagram is shown in figure 1 and figure 2).
A ribosome library (RBS library) of GcoA and GcoB is constructed by adopting a Golden gate cloning method, transformed and introduced into BL21, and screened to obtain the E.coli (GcoAB; RBS: G/C) biocatalyst. The specific method comprises the following steps:
codon optimized GcoA and GcoB were synthesized from a company, ligated to pE1k-RFP by the Golden gate method, and transformed into BL21 to form pE1k-GcoAB-M3(RBS: N/N), wherein the pE1k-RFP gene sequence is SEQ ID NO.6, and N represents degenerate bases A, T, C, G. All RBS combinations of pE1 k-GcobA-M3 (RBS: N/N), namely RBS library of GcobA for short, are obtained through sequencing, the conversion efficiency, the growth rate and the enzyme activity of all RBS are compared, the optimal E.coli (pE1 k-GcobA-M3; RBS: G/C) biocatalyst is obtained, and the optimal biocatalyst E.coli (GcobA; RBS: G/C) is screened through comparing the protein expression condition, the exponential phase growth rate, the converted guaiacol rate and the crude enzyme liquid enzyme activity (figure 1 and figure 2) of the RBS library of the GcobA, wherein the optimal biocatalyst E.coli (GcobA; RBS: G/C) is obtained through comparison, the catalysts grow fast, the protein GcobA and the protein GcobB expression quantity are proper, the conversion rate is fast, and the crude enzyme liquid enzyme activity is high. The catalyst can produce catechol by adding the substrate guaiacol once or repeatedly.
(2) Biotransformation synthesis of catechol (the synthesis schematic diagram is shown in figure 2 and figure 3)
Inoculating the screened biocatalyst E.coli (pE1k-GcoaB-M3, RBS: G/C) into 3mL LB for activation, transferring the activated biocatalyst into 100mL LB according to the ratio of 1:100 after 12-16h at 37 ℃, adding 0.2mM IPTG inducer and cofactor 100 mg/L5 aminolevulinic acid and 200mg/L ammonium iron citrate (III) when OD600 reaches 0.6, inducing for 4h at 37 ℃, centrifuging at 8000rpm/min for 3min, collecting thalli, resuspending in M9Y culture medium to OD600 ═ 40.0, adding guaiacol 10mM, glucose 10G/L at final concentration, and converting for 1h at 37 ℃ to obtain 8.41mM catechol with the conversion rate of 84.1%. Or the centrifugally collected bacterial cells were resuspended at an OD of 10.0, and 18.0mM catechol was produced by adding the bacterial cells and 3mM guaiacol several times, with a conversion rate of 62.96%.
Example 2
(1) Method for synthesizing catechol-O-sulfate by constructing biocatalyst
BL21 was co-transformed with plasmid pB1C-ASTB-OM2 synthesized from Jinzhi and pE1 k-GcobA-M3 (RBS: G/C) obtained by screening in example 1 to obtain biocatalyst E.coli (GcobA-ASTB-OM 2).
(2) Biotransformation of catechol-O-sulfate (the synthetic scheme is shown in FIG. 4)
Inoculating a biocatalyst E.coli (GcoaB-ASTB-OM2) into 3mL LB for activation, after 12-16h at 37 ℃, transferring the activated biocatalyst into 100mL LB according to a ratio of 1:100, adding a final concentration of 0.2mM IPTG inducer, a cofactor of 100 mg/L5-aminolevulinic acid (GcoA) and 200mg/L ammonium iron citrate (III) when OD600 reaches 0.6, inducing at 25 ℃ for 4h, centrifuging at 8000rpm/min for 3min, collecting thalli, resuspending in an M9Y culture medium until OD is 40.0, adding a final concentration of guaiacol of 10mM, 10mM p-nitrophenyl sulfate, 10g/L glucose, and converting at 25 ℃ for 24h to obtain 2.21mM catechol-O-sulfate with a conversion rate of 22.1%.
Example 3
(1) Construction of biocatalyst for Synthesis of Red Diphenols (schematic for the Synthesis is shown in FIG. 5)
Plasmids pB1c-GoL3, pB1c-Spr-CotA, pB1c-Bsu-CotA and transformation of BL21 were synthesized to obtain biocatalysts E.coli (GoL3), E.coli (Spr-CotA) and E.coli (Bsu-CotA). The gene sequence of pB1c-Spr-CotA is SEQ ID NO. 4. The gene sequence of pB1c-Bsu-CotA is SEQ ID NO. 5. Biocatalysts E.coli (GoL3), E.coli (Spr-CotA) and E.coli (Bsu-CotA) were inoculated into 3ml of LB separately for activation at 37 deg.C12-16h later, the activated biocatalyst was transferred to 100mL LB5 at a ratio of 2:100, and when OD600 reached 0.5, 1mM IPTG inducer and 0.25mM CuCl were added to the final concentration2After 4 hours of induction at 25 ℃ and 100rpm/min, the rotation speed was adjusted to 0, induction was carried out for 20 hours, the cells were collected, resuspended in M9Y medium until the OD became 40.0, pyrogallol was added at a final concentration of 2.5mM, and the cells were transformed at 37 ℃ for 0.5 hours, and only e.coli (GoL3) had the activity of catalyzing the production of pyrogallol into rhodotriphenol, with a transformation rate of 10.6%.
(2) Biotransformation to synthesize rhodophenol (the synthesis scheme is shown in FIGS. 6 and 7)
Inoculating a biocatalyst E.coli (GoL3) into 3mL LB for activation, transferring the activated biocatalyst into 100mL LB5 according to a ratio of 2:100 after 12-16h at 37 ℃, adding a final concentration of 1mM IPTG inducer and 0.25mM Cucl2 when OD600 reaches 0.5, inducing for 4h at 25 ℃ at 100rpm/min, regulating the rotation speed to 0, inducing for 20h, centrifuging for 3min at 8000rpm/min, collecting thalli, and resuspending in an M9Y culture medium until OD is 40.0.
Inoculating the screened biocatalyst E.coli (GcoaB, RBS: G/C) into 3ml LB to activate, after 12-16h at 37 ℃, the activated biocatalyst was transferred to 100mL LB at a ratio of 1:100, and when OD600 reached 0.6, adding 5-aminolevulinic acid (GcoA) and ammonium iron citrate (III) with a final concentration of 0.2mM IPTG inducer and cofactors of 100mg/L and 200mg/L, inducing for 4h at 37 ℃, the cells were centrifuged at 8000rpm/min for 3min, collected, resuspended in M9Y medium until OD is 40.0 and 10g/L glucose, 5mM 3-methoxycatechol was added to the final concentration, and the cells were transformed at 37 ℃ for 1.5h, after which the centrifuged cells were added with the above-mentioned biocatalyst E.coli (GoL3) whose volume OD is 40.0, the transformation rate was 100%, and 0.35mM rhodophenol was produced at the highest yield of 14%.
The invention has many applications, and the above description is only a preferred embodiment of the invention. It should be noted that the above examples are only for illustrating the present invention, and are not intended to limit the scope of the present invention. It will be apparent to those skilled in the art that various modifications can be made without departing from the principles of the invention and these modifications are to be considered within the scope of the invention.
The foregoing description of specific embodiments of the present invention has been presented. It is to be understood that the present invention is not limited to the specific embodiments described above, and that various changes and modifications may be made by one skilled in the art within the scope of the appended claims without departing from the spirit of the invention.
Sequence listing
<110> Shanghai university of transportation
<120> expression optimization of multi-subunit enzyme for synthesizing high value-added compound by using lignin monomer
<130> KAG47745
<160> 6
<170> SIPOSequenceListing 1.0
<210> 1
<211> 5805
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
gacgtcgaca ccatcgaatg gtgcaaaacc tttcgcggta tggcatgata gcgcccggaa 60
gagagtcaat tcagggtggt gaatgtgaaa ccagtaacgt tatacgatgt cgcagagtat 120
gccggtgtct cttatcagac cgtttcccgc gtggtgaacc aggccagcca cgtttctgcg 180
aaaacgcggg aaaaagtgga agcggcgatg gcggagctga attacattcc caaccgcgtg 240
gcacaacaac tggcgggcaa acagtcgttg ctgattggcg ttgccacctc cagtctggcc 300
ctgcacgcgc cgtcgcaaat tgtcgcggcg attaaatctc gcgccgatca actgggtgcc 360
agcgtggtgg tgtcgatggt agaacgaagc ggcgtcgaag cctgtaaagc ggcggtgcac 420
aatcttctcg cgcaacgcgt cagtgggctg atcattaact atccgctgga tgaccaggat 480
gccattgctg tggaagctgc ctgcactaat gttccggcgt tatttcttga tgtctctgac 540
cagacaccca tcaacagtat tattttctcc catgaagacg gtacgcgact gggcgtggag 600
catctggtcg cattgggtca ccagcaaatc gcgctgttag cgggcccatt aagttctgtc 660
tcggcgcgtc tgcgtctggc tggctggcat aaatatctca ctcgcaatca aattcagccg 720
atagcggaac gggaaggcga ctggagtgcc atgtccggtt ttcaacaaac catgcaaatg 780
ctgaatgagg gcatcgttcc cactgcgatg ctggttgcca acgatcagat ggcgctgggc 840
gcaatgcgcg ccattaccga gtccgggctg cgcgttggtg cggatatctc ggtagtggga 900
tacgacgata ccgaagacag ctcatgttat atcccgccgt taaccaccat caaacaggat 960
tttcgcctgc tggggcaaac cagcgtggac cgcttgctgc aactctctca gggccaggcg 1020
gtgaagggca atcagctgtt gcccgtctca ctggtgaaaa gaaaaaccac cctggcgccc 1080
aatacgcaaa ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag 1140
gtttcccgac tggaaagcgg gcagtgagcg caacgcaatt aatgtaagtt agcgcgaatt 1200
gatctggttt gacagcttat catcgactgc acggtgcacc aatgcttctg gcgtcaggca 1260
gccatcggaa gctgtggtat ggctgtgcag gtcgtaaatc actgcataat tcgtgtcgct 1320
caaggcgcac tcccgttctg gataatgttt tttgcgccga catcataacg gttctggcaa 1380
atattctgaa atgagctgtt gacaattaat catccggctc gtataatgtg tggaattgtg 1440
agcggataac aatttcagaa ttcaaaagat ctacaaacgt cttattaagg nggattttca 1500
tgaccaccac cgaacgccct gacctggcat ggctggatga agtgaccatg acccagctgg 1560
aacgtaatcc gtacgaagtt tacgaacgcc tgcgtgccga agcccctctg gcattcgttc 1620
ctgtcctggg aagctatgtt gctagtacgg ccgaagtgtg tcgcgaagtt gcaaccagcc 1680
ctgattttga ggcagttatt acccctgccg gtggtcgtac ctttggtcat cctgcaatta 1740
ttggtgttaa tggggatatt catgcagatt tacgtagtat ggttgagccg gcactgcagc 1800
cggctgaagt agatcgttgg attgatgatc tggttcgtcc gattgcccgt cgttatctgg 1860
aacgttttga gaatgatggt catgcagagc tggttgcgca gtattgtgaa cctgtttcag 1920
ttcgtagtct gggtgatctg ctgggtctgc aggaagttga cagcgataaa ctgcgtgaat 1980
ggtttgcaaa actgaatcgt agttttacta atgcagcagt tgatgagaat ggtgaatttg 2040
caaatcctga ggggtttgct gaaggtgatc aggcaaaagc agaaattcgt gcagtggttg 2100
atccgctgat tgacaaatgg attgaacacc cggatgatag cgcaatcagt cattggctgc 2160
acgatggaat gccgccgggt caaacacgtg atcgcgaata tatttatccg acgatttatg 2220
tttatctgct gggcgccatg caggaacctg gtcatggaat ggcaagcacc ctggttggtc 2280
tgtttagccg tcctgagcag ctggaagaag ttgtggatga cccgaccctg attccgcgtg 2340
ctattgctga aggactgcgt tggaccagtc cgatttggag tgcaaccgca cgtatttcta 2400
ccaaacctgt taccattgca ggtgttgatc tgccggcagg tacccctgtt atgctgagtt 2460
acggtagtgc aaatcatgat accggtaaat acgaagcacc gagccagtac gacctgcatc 2520
gccctcctct gcctcacctg gcatttggtg caggtaatca cgcatgtgcc ggtatttatt 2580
ttgcgaatca tgttatgcgc attgccctgg aagaactgtt cgaagccatt cctaatctgg 2640
aacgtgatac ccgcgaaggt gttgaatttt gggggtgggg ttttcgtggg ccgacatctc 2700
tgcatgttac ctgggaagtt taacatcatc tataaaataa ttaattaatt aaggnggtat 2760
ttttatgacc tttgccgttt ccgttggggg ccgtcgcgtt gattgtgaac cgggtcagac 2820
cctgctggag gcatttctgc gtgggggtgt gtggatgccg aacagttgta accaggggac 2880
ctgtggcacc tgtaaactgc aggttctgtc aggtgaggtt gatcatggtg gggcaccgga 2940
agatacactg tctgccgaag aacgtgcctc tgggctggca ctggcttgtc aagcacgccc 3000
tctggcagat accgaagttc gttctaccgc agatgcgggt cgtgttacac atcctctgcg 3060
tgacctgacc gcaacagtgc tggaagttgc tgatattgct cgtgataccc gtcgtgtcct 3120
gctgggactg gcagaacctc tggcatttga agcaggtcaa tatgttgaac tggttgttcc 3180
gggtagcggt gcccgtcgtc aatattctct ggcgaatacc gcggatgaag ataaagttct 3240
ggaactgcat gtgcgtcgtg taccgggggg tgttgcaaca gatggttggc tgtttgatgg 3300
tctggcggca ggtgatcgtg ttgaagcaac cggcccactg ggagattttc atctgcctcc 3360
gcctgatgaa gatgatggtg gtccgatggt tctgattggt ggtggtaccg gtctggcacc 3420
tctggttggt attgcacgta ccgcactggc acgtcatccg agtcgtgaag ttctgctgta 3480
tcatggggtt cgtggtgcag cagatttata tgatctgggg cgttttgcag aaattgctga 3540
agaacatccg ggttttcgtt ttgttccggt tctgagcgat gaaccggacc ctgcttatcg 3600
tggtggtttt ccgacagacg catttgtgga ggatgttcct agtggtcgtg ggtggagcgg 3660
ttggctgtgt ggtcctcctg caatggttga agcaggggtg aaagcattta aacgccgtcg 3720
tatgagtccg cgtcgtattc atcgtgaaaa atttacccca gcaagttaag gatccaaact 3780
cgagtaagga tctccaggca tcaaataaaa cgaaaggctc agtcgaaaga ctgggccttt 3840
cgttttatct gttgtttgtc ggtgaacgct ctctactaga gtcacactgg ctcaccttcg 3900
ggtgggcctt tctgcgttta tacctagggc gttcggctgc ggcgagcggt atcagctcac 3960
tcaaaggcgg taatacggtt atccacagaa tcaggggata acgcaggaaa gaacatgtga 4020
gcaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg cgttgctggc gtttttccat 4080
aggctccgcc cccctgacga gcatcacaaa aatcgacgct caagtcagag gtggcgaaac 4140
ccgacaggac tataaagata ccaggcgttt ccccctggaa gctccctcgt gcgctctcct 4200
gttccgaccc tgccgcttac cggatacctg tccgcctttc tcccttcggg aagcgtggcg 4260
ctttctcata gctcacgctg taggtatctc agttcggtgt aggtcgttcg ctccaagctg 4320
ggctgtgtgc acgaaccccc cgttcagccc gaccgctgcg ccttatccgg taactatcgt 4380
cttgagtcca acccggtaag acacgactta tcgccactgg cagcagccac tggtaacagg 4440
attagcagag cgaggtatgt aggcggtgct acagagttct tgaagtggtg gcctaactac 4500
ggctacacta gaaggacagt atttggtatc tgcgctctgc tgaagccagt taccttcgga 4560
aaaagagttg gtagctcttg atccggcaaa caaaccaccg ctggtagcgg tggttttttt 4620
gtttgcaagc agcagattac gcgcagaaaa aaaggatctc aagaagatcc tttgatcttt 4680
tctacggggt ctgacgctca gtggaacgaa aactcacgtt aagggatttt ggtcatgact 4740
agtgcttgga ttctcaccaa taaaaaacgc ccggcggcaa ccgagcgttc tgaacaaatc 4800
cagatggagt tctgaggtca ttactggatc tatcaacagg agtccaagcg agctctcgaa 4860
ccccagagtc ccgctcagaa gaactcgtca agaaggcgat agaaggcgat gcgctgcgaa 4920
tcgggagcgg cgataccgta aagcacgagg aagcggtcag cccattcgcc gccaagctct 4980
tcagcaatat cacgggtagc caacgctatg tcctgatagc ggtccgccac acccagccgg 5040
ccacagtcga tgaatccaga aaagcggcca ttttccacca tgatattcgg caagcaggca 5100
tcgccatggg tcacgacgag atcctcgccg tcgggcatgc gcgccttgag cctggcgaac 5160
agttcggctg gcgcgagccc ctgatgctct tcgtccagat catcctgatc gacaagaccg 5220
gcttccatcc gagtacgtgc tcgctcgatg cgatgtttcg cttggtggtc gaatgggcag 5280
gtagccggat caagcgtatg cagccgccgc attgcatcag ccatgatgga tactttctcg 5340
gcaggagcaa ggtgagatga caggagatcc tgccccggca cttcgcccaa tagcagccag 5400
tcccttcccg cttcagtgac aacgtcgagc acagctgcgc aaggaacgcc cgtcgtggcc 5460
agccacgata gccgcgctgc ctcgtcctgc agttcattca gggcaccgga caggtcggtc 5520
ttgacaaaaa gaaccgggcg cccctgcgct gacagccgga acacggcggc atcagagcag 5580
ccgattgtct gttgtgccca gtcatagccg aatagcctct ccacccaagc ggccggagaa 5640
cctgcgtgca atccatcttg ttcaatcatg cgaaacgatc ctcatcctgt ctcttgatca 5700
gatcatgatc ccctgcgcca tcagatcctt ggcggcaaga aagccatcca gtttactttg 5760
cagggcttcc caaccttacc agagggcgcc ccagctggca attcc 5805
<210> 2
<211> 5772
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
gacgtcgaca ccatcgaatg gtgcaaaacc tttcgcggta tggcatgata gcgcccggaa 60
gagagtcaat tcagggtggt gaatgtgaaa ccagtaacgt tatacgatgt cgcagagtat 120
gccggtgtct cttatcagac cgtttcccgc gtggtgaacc aggccagcca cgtttctgcg 180
aaaacgcggg aaaaagtgga agcggcgatg gcggagctga attacattcc caaccgcgtg 240
gcacaacaac tggcgggcaa acagtcgttg ctgattggcg ttgccacctc cagtctggcc 300
ctgcacgcgc cgtcgcaaat tgtcgcggcg attaaatctc gcgccgatca actgggtgcc 360
agcgtggtgg tgtcgatggt agaacgaagc ggcgtcgaag cctgtaaagc ggcggtgcac 420
aatcttctcg cgcaacgcgt cagtgggctg atcattaact atccgctgga tgaccaggat 480
gccattgctg tggaagctgc ctgcactaat gttccggcgt tatttcttga tgtctctgac 540
cagacaccca tcaacagtat tattttctcc catgaagacg gtacgcgact gggcgtggag 600
catctggtcg cattgggtca ccagcaaatc gcgctgttag cgggcccatt aagttctgtc 660
tcggcgcgtc tgcgtctggc tggctggcat aaatatctca ctcgcaatca aattcagccg 720
atagcggaac gggaaggcga ctggagtgcc atgtccggtt ttcaacaaac catgcaaatg 780
ctgaatgagg gcatcgttcc cactgcgatg ctggttgcca acgatcagat ggcgctgggc 840
gcaatgcgcg ccattaccga gtccgggctg cgcgttggtg cggatatctc ggtagtggga 900
tacgacgata ccgaagacag ctcatgttat atcccgccgt taaccaccat caaacaggat 960
tttcgcctgc tggggcaaac cagcgtggac cgcttgctgc aactctctca gggccaggcg 1020
gtgaagggca atcagctgtt gcccgtctca ctggtgaaaa gaaaaaccac cctggcgccc 1080
aatacgcaaa ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag 1140
gtttcccgac tggaaagcgg gcagtgagcg caacgcaatt aatgtaagtt agcgcgaatt 1200
gatctggttt gacagcttat catcgactgc acggtgcacc aatgcttctg gcgtcaggca 1260
gccatcggaa gctgtggtat ggctgtgcag gtcgtaaatc actgcataat tcgtgtcgct 1320
caaggcgcac tcccgttctg gataatgttt tttgcgccga catcataacg gttctggcaa 1380
atattctgaa atgagctgtt gacaattaat catccggctc gtataatgtg tggaattgtg 1440
agcggataac aatttcagaa ttcaaaagat cttttaagaa ggagatatac atatgcgtac 1500
ctacctgaat accgaaaaac atctgattac cctgcaagct gaatctgaag aacgtttcct 1560
ggccgaactg cgtgctggta actacaccgc cgaatcaccg ctggttgtga aaaacccgta 1620
tattatcaat ccgctggcgg ccgttatttg ctttaatacg gatgaagaaa ccacggccga 1680
aattaccgtc aaaggcaaag caatcgaagg tgacctgtct cataccttcg cagctgcgaa 1740
agaacacgtt ctgccggtct atggcctgta cgatgactat gtgaacacgg tcgtgatcaa 1800
actgagtaat ggtaaaacca gcgaagtgaa aattgaagtg gaagaactga acgttaataa 1860
agccctgtac tgccgcacca cgccggaata cttcggcaaa gatttcatgc tgatctcaac 1920
cacgaccccg ctgatcgaat cggctcgtac ggcaggcttt gattacgcag gtgacctgcg 1980
ttggtgtatt accaacctgc agtcatggga tatcaaaaaa ctggaaaatg gtcgcctgct 2040
gtatacgtcg catcgtaccg tgtataaacc gtattacaac gtgggcgtta tggaaatgga 2100
tttctgtggt aaaatctaca aagaataccg tctgccgggc ggttggcatc acgacgcggt 2160
tgaagtggaa aacggcaata ttctggccgc aagtgataac gactttaatg attccgtgga 2220
agacttcgtt gtcgaaattg aacgcgccac cggcgcagtt atcaaaagtt gggatctgca 2280
gaaaattctg ccgcgcggcc agggtaaagc tggtgattgg aaccatcacg actggtttca 2340
taacaatgcg gtgtggtacg ataaaccgac gaatagcatc accatgtctg gccgccacat 2400
ggacgctgtt attaacttcg attatgacag cggtgcgctg aattggatcc tgggcgatcc 2460
ggaaggttgg tctgaagaat ggcagaaata ctttttcaaa aacgtgacca aaggcgattt 2520
tgactggcag tatgaacaac atgctgcgcg tattctgccg aatggcgatg tttttctgtt 2580
cgacaacggc acgtatcgca gtaaaaatga agctacccgt gtggatccgg aacagaattt 2640
ttcccgcggt gttatttacc gtatcgatac cgacaaaatg gaaatcgaac aagtgtggca 2700
atatggcaaa gaacgcggtg ccgaattcta cagcccgtat atctgcaacg tcgattatta 2760
cggcgaaggt cattacatgg tgcactctgg cggtattgcc acgtatcgtg gcaaacacac 2820
cgatggcctg ggtgcaatgc tgctgaacaa atacaaagac gaacatatcc acctgacgct 2880
ggaatcaatc accgtcgaag tgcagaacga tcaactgaaa tacgaactga aagtgcaggg 2940
cggtaattat taccgcgcac gtcgcgtttc gccgtatgat gaaaaaacca acctggtcct 3000
gggcaaaggt gaactgctgg gcggttttgg tgttacgccg gaatttatga aagtcaattt 3060
caaagatgcg gaaaccgaac tgagcgaaaa acataacctg aatgtcatcc tggaagaaga 3120
ccgtctggct attcgcgcgt catttcgtga aggctcgcag gttttcctgg aactgaaggg 3180
tgcggaacaa agtaaatttt ataacattcc gacggaagtg cacgatgtta ccgccgcatg 3240
tgtctccttc gaagaacaga acgataatga ctttcaattc tatgtgagcc gtgaaggcct 3300
gtctggtgaa ttcggcatct acctgaacat tgatagcaaa cgctacgata cgcatctgtc 3360
tgtgaaactg gagctctctg catggagcca tccgcagttc gaaaagtaag gatccaaact 3420
cgagtaagga tctccaggca tcaaataaaa cgaaaggctc agtcgaaaga ctgggccttt 3480
cgttttatct gttgtttgtc ggtgaacgct ctctactaga gtcacactgg ctcaccttcg 3540
ggtgggcctt tctgcgttta tacctaggct acagccgata gtctggaaca gcgcacttac 3600
gggttgctgc gcaacccaag tgctaccggc gcggcagcgt gacccgtgtc ggcggctcca 3660
acggctcgcc atcgtccaga aaacacggct catcgggcat cggcaggcgc tgctgcccgc 3720
gccgttccca ttcctccgtt tcggtcaagg ctggcaggtc tggttccatg cccggaatgc 3780
cgggctggct gggcggctcc tcgccggggc cggtcggtag ttgctgctcg cccggataca 3840
gggtcgggat gcggcgcagg tcgccatgcc ccaacagcga ttcgtcctgg tcgtcgtgat 3900
caaccaccac ggcggcactg aacaccgaca ggcgcaactg gtcgcggggc tggccccacg 3960
ccacgcggtc attgaccacg taggccaaca cggtgccggg gccgttgagc ttcacgacgg 4020
agatccagcg ctcggccacc aagtccttga ctgcgtattg gaccgtccgc aaagaacgtc 4080
cgatgagctt ggaaagtgtc ttctggctga ccaccacggc gttctggtgg cccatctgcg 4140
ccacgaggtg atgcagcagc attgccgccg tgggtttcct cgcaataagc ccggcccacg 4200
cctcatgcgc tttgcgttcc gtttgcaccc agtgaccggg cttgttcttg gcttgaatgc 4260
cgatttctct ggactgcgtg gccatgctta tctccatgcg gtaggggtgc cgcacggttg 4320
cggcaccatg cgcaatcagc tgcaactttt cggcagcgcg acaacaatta tgcgttgcgt 4380
aaaagtggca gtcaattaca gattttcttt aacctacgca atgagctatt gcggggggtg 4440
ccgcaatgag ctgttgcgta cccccctttt ttaagttgtt gatttttaag tctttcgcat 4500
ttcgccctat atctagttct ttggtgccca aagaagggca cccctgcggg gttcccccac 4560
gccttcggcg cggctccccc tccggcaaaa agtggcccct ccggggcttg ttgatcgact 4620
gcgcggcctt cggccttgcc caaggtggcg ctgccccctt ggaacccccg cactcgccgc 4680
cgtgaggctc ggggggcagg cgggcgggct tcgcccttcg actgccccca ctcgcatagg 4740
cttgggtcgt tccaggcgcg tcaaggccaa gccgctgcgc ggtcgctgcg cgagccttga 4800
cccgccttcc acttggtgtc caaccggcaa gcgaagcgcg caggccgcag gccggaggca 4860
ctagtgcttg gattctcacc aataaaaaac gcccggcggc aaccgagcgt tctgaacaaa 4920
tccagatgga gttctgaggt cattactgga tctatcaaca ggagtccaag cgagctcgat 4980
atcaaattac gccccgccct gccactcatc gcagtactgt tgtaattcat taagcattct 5040
gccgacatgg aagccatcac aaacggcatg atgaacctga atcgccagcg gcatcagcac 5100
cttgtcgcct tgcgtataat atttgcccat ggtgaaaacg ggggcgaaga agttgtccat 5160
attggccacg tttaaatcaa aactggtgaa actcacccag ggattggctg agacgaaaaa 5220
catattctca ataaaccctt tagggaaata ggccaggttt tcaccgtaac acgccacatc 5280
ttgcgaatat atgtgtagaa actgccggaa atcgtcgtgg tattcactcc agagcgatga 5340
aaacgtttca gtttgctcat ggaaaacggt gtaacaaggg tgaacactat cccatatcac 5400
cagctcaccg tctttcattg ccatacgaaa ttccggatga gcattcatca ggcgggcaag 5460
aatgtgaata aaggccggat aaaacttgtg cttatttttc tttacggtct ttaaaaaggc 5520
cgtaatatcc agctgaacgg tctggttata ggtacattga gcaactgact gaaatgcctc 5580
aaaatgttct ttacgatgcc attgggatat atcaacggtg gtatatccag tgattttttt 5640
ctccatttta gcttccttag ctcctgaaaa tctcgataac tcaaaaaata cgcccggtag 5700
tgatcttatt tcattatggt gaaagttgga acctcttacg tgccgatcaa cgtctcattt 5760
tcgccagata tc 5772
<210> 3
<211> 5439
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
gacgtcgaca ccatcgaatg gtgcaaaacc tttcgcggta tggcatgata gcgcccggaa 60
gagagtcaat tcagggtggt gaatgtgaaa ccagtaacgt tatacgatgt cgcagagtat 120
gccggtgtct cttatcagac cgtttcccgc gtggtgaacc aggccagcca cgtttctgcg 180
aaaacgcggg aaaaagtgga agcggcgatg gcggagctga attacattcc caaccgcgtg 240
gcacaacaac tggcgggcaa acagtcgttg ctgattggcg ttgccacctc cagtctggcc 300
ctgcacgcgc cgtcgcaaat tgtcgcggcg attaaatctc gcgccgatca actgggtgcc 360
agcgtggtgg tgtcgatggt agaacgaagc ggcgtcgaag cctgtaaagc ggcggtgcac 420
aatcttctcg cgcaacgcgt cagtgggctg atcattaact atccgctgga tgaccaggat 480
gccattgctg tggaagctgc ctgcactaat gttccggcgt tatttcttga tgtctctgac 540
cagacaccca tcaacagtat tattttctcc catgaagacg gtacgcgact gggcgtggag 600
catctggtcg cattgggtca ccagcaaatc gcgctgttag cgggcccatt aagttctgtc 660
tcggcgcgtc tgcgtctggc tggctggcat aaatatctca ctcgcaatca aattcagccg 720
atagcggaac gggaaggcga ctggagtgcc atgtccggtt ttcaacaaac catgcaaatg 780
ctgaatgagg gcatcgttcc cactgcgatg ctggttgcca acgatcagat ggcgctgggc 840
gcaatgcgcg ccattaccga gtccgggctg cgcgttggtg cggatatctc ggtagtggga 900
tacgacgata ccgaagacag ctcatgttat atcccgccgt taaccaccat caaacaggat 960
tttcgcctgc tggggcaaac cagcgtggac cgcttgctgc aactctctca gggccaggcg 1020
gtgaagggca atcagctgtt gcccgtctca ctggtgaaaa gaaaaaccac cctggcgccc 1080
aatacgcaaa ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag 1140
gtttcccgac tggaaagcgg gcagtgagcg caacgcaatt aatgtaagtt agcgcgaatt 1200
gatctggttt gacagcttat catcgactgc acggtgcacc aatgcttctg gcgtcaggca 1260
gccatcggaa gctgtggtat ggctgtgcag gtcgtaaatc actgcataat tcgtgtcgct 1320
caaggcgcac tcccgttctg gataatgttt tttgcgccga catcataacg gttctggcaa 1380
atattctgaa atgagctgtt gacaattaat catccggctc gtataatgtg tggaattgtg 1440
agcggataac aatttcagaa ttcaaaagat cttttaagaa ggagatatac atatggatac 1500
gagcacccgc catccggaaa ccggcaacaa aatgaacaaa gattttattg cggatctgga 1560
tattcagctg accgcgagcc cgagtcagac caacattttt ccggataaaa gcaccaacac 1620
ctatagctat aaagcgagca ttattaaagg cagcgaagat aacctgcaga acattgaagg 1680
cagctatctg ggcccggtgc tgcgcgtgaa aaaaggcgat aaagtgcgcg tgcgctatga 1740
aaatcagatt ccggcggaaa gcattgtgca ttggcatggc ctgcatgtga gccatgaaaa 1800
cgatggccat ccggcgcatg tgattggcga aggcgatacc tattactatg aatttgaagt 1860
gatgaaccgc gcgggcacct attggtttca tccgcatccg catcgccata ccggcgaaca 1920
agtgtatcaa ggcctggcgg gcctgtttat tgtgagcgat aaagaagagg aaaaactgaa 1980
cctgccgcaa ggcgaatatg atattccggt ggtgattcaa gatcgcacct ttgatgataa 2040
caaacagctg cagtatctgg gcgatggtca gatggatcgc atgcaaggct ttctgggcga 2100
acagattctg attaacggca aaattgataa caccctggaa ctgggcgcga acggcaaata 2160
tcgcctgcgc ctgctgaacg gcagcaacag ccgcgcgtat aaactggcgt gggatcatgg 2220
cgaagcgatt accgtgctgg gcgtggatgg cggcctgctg aaagcgccga aacgcatgcc 2280
gtatctgatg ctgggcccgg cgcagcgcgt ggatatttgg ctggatctga gtcagcaagt 2340
ggaaaacagc cgcattaaac tggtgcatct gccgattagc ctggatatga tgggcggtgg 2400
tatgatgaac ggcggcatga tgggcaacag taacagcaac catctgccgt atgatacgca 2460
gtttgatatt atggaaatta acgtgggcgc gagcgcggaa aacgatgcgc agctgccggg 2520
cgaactgagc agcctgaaca ccctggcggc gaccgatgcg attaacaaaa acaacccgcg 2580
cacctttacc tttgcgatgg gcggtatgat ggaatggacc attaacggcc atacctataa 2640
cggcaccgaa gtggcggaag aggaaaccgt gaaactggat accaccgaaa tttggcgcat 2700
taacaacggc agtcagttta gcagcgatcc ggatgacgat agcggcatga tgggtggcgg 2760
catgcatggc aacggcggca tgatgggcgg ccaaggcggc atgggcaaca tgatgcagat 2820
gccgcatccg gtgcatattc atcagctgca gtttaacatt ctgaaccgca acgcggataa 2880
agtggatgat aaactgtggg aagcgaccaa agatggcttt attaacgaag gccgccaaga 2940
tagcgtgtat ctgctgccgg gcatgcagat ggatctgatt atgcgctttg aagattttaa 3000
aggcctgttt ctgtatcatt gccataacct ggaacatgaa gatatgggca tgatgcgcaa 3060
ctttaaaatt gtgtaaggat ccaaactcga gtaaggatct ccaggcatca aataaaacga 3120
aaggctcagt cgaaagactg ggcctttcgt tttatctgtt gtttgtcggt gaacgctctc 3180
tactagagtc acactggctc accttcgggt gggcctttct gcgtttatac ctaggctaca 3240
gccgatagtc tggaacagcg cacttacggg ttgctgcgca acccaagtgc taccggcgcg 3300
gcagcgtgac ccgtgtcggc ggctccaacg gctcgccatc gtccagaaaa cacggctcat 3360
cgggcatcgg caggcgctgc tgcccgcgcc gttcccattc ctccgtttcg gtcaaggctg 3420
gcaggtctgg ttccatgccc ggaatgccgg gctggctggg cggctcctcg ccggggccgg 3480
tcggtagttg ctgctcgccc ggatacaggg tcgggatgcg gcgcaggtcg ccatgcccca 3540
acagcgattc gtcctggtcg tcgtgatcaa ccaccacggc ggcactgaac accgacaggc 3600
gcaactggtc gcggggctgg ccccacgcca cgcggtcatt gaccacgtag gccaacacgg 3660
tgccggggcc gttgagcttc acgacggaga tccagcgctc ggccaccaag tccttgactg 3720
cgtattggac cgtccgcaaa gaacgtccga tgagcttgga aagtgtcttc tggctgacca 3780
ccacggcgtt ctggtggccc atctgcgcca cgaggtgatg cagcagcatt gccgccgtgg 3840
gtttcctcgc aataagcccg gcccacgcct catgcgcttt gcgttccgtt tgcacccagt 3900
gaccgggctt gttcttggct tgaatgccga tttctctgga ctgcgtggcc atgcttatct 3960
ccatgcggta ggggtgccgc acggttgcgg caccatgcgc aatcagctgc aacttttcgg 4020
cagcgcgaca acaattatgc gttgcgtaaa agtggcagtc aattacagat tttctttaac 4080
ctacgcaatg agctattgcg gggggtgccg caatgagctg ttgcgtaccc ccctttttta 4140
agttgttgat ttttaagtct ttcgcatttc gccctatatc tagttctttg gtgcccaaag 4200
aagggcaccc ctgcggggtt cccccacgcc ttcggcgcgg ctccccctcc ggcaaaaagt 4260
ggcccctccg gggcttgttg atcgactgcg cggccttcgg ccttgcccaa ggtggcgctg 4320
cccccttgga acccccgcac tcgccgccgt gaggctcggg gggcaggcgg gcgggcttcg 4380
cccttcgact gcccccactc gcataggctt gggtcgttcc aggcgcgtca aggccaagcc 4440
gctgcgcggt cgctgcgcga gccttgaccc gccttccact tggtgtccaa ccggcaagcg 4500
aagcgcgcag gccgcaggcc ggaggcacta gtgcttggat tctcaccaat aaaaaacgcc 4560
cggcggcaac cgagcgttct gaacaaatcc agatggagtt ctgaggtcat tactggatct 4620
atcaacagga gtccaagcga gctcgatatc aaattacgcc ccgccctgcc actcatcgca 4680
gtactgttgt aattcattaa gcattctgcc gacatggaag ccatcacaaa cggcatgatg 4740
aacctgaatc gccagcggca tcagcacctt gtcgccttgc gtataatatt tgcccatggt 4800
gaaaacgggg gcgaagaagt tgtccatatt ggccacgttt aaatcaaaac tggtgaaact 4860
cacccaggga ttggctgaga cgaaaaacat attctcaata aaccctttag ggaaataggc 4920
caggttttca ccgtaacacg ccacatcttg cgaatatatg tgtagaaact gccggaaatc 4980
gtcgtggtat tcactccaga gcgatgaaaa cgtttcagtt tgctcatgga aaacggtgta 5040
acaagggtga acactatccc atatcaccag ctcaccgtct ttcattgcca tacgaaattc 5100
cggatgagca ttcatcaggc gggcaagaat gtgaataaag gccggataaa acttgtgctt 5160
atttttcttt acggtcttta aaaaggccgt aatatccagc tgaacggtct ggttataggt 5220
acattgagca actgactgaa atgcctcaaa atgttcttta cgatgccatt gggatatatc 5280
aacggtggta tatccagtga tttttttctc cattttagct tccttagctc ctgaaaatct 5340
cgataactca aaaaatacgc ccggtagtga tcttatttca ttatggtgaa agttggaacc 5400
tcttacgtgc cgatcaacgt ctcattttcg ccagatatc 5439
<210> 4
<211> 4848
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
gacgtcgaca ccatcgaatg gtgcaaaacc tttcgcggta tggcatgata gcgcccggaa 60
gagagtcaat tcagggtggt gaatgtgaaa ccagtaacgt tatacgatgt cgcagagtat 120
gccggtgtct cttatcagac cgtttcccgc gtggtgaacc aggccagcca cgtttctgcg 180
aaaacgcggg aaaaagtgga agcggcgatg gcggagctga attacattcc caaccgcgtg 240
gcacaacaac tggcgggcaa acagtcgttg ctgattggcg ttgccacctc cagtctggcc 300
ctgcacgcgc cgtcgcaaat tgtcgcggcg attaaatctc gcgccgatca actgggtgcc 360
agcgtggtgg tgtcgatggt agaacgaagc ggcgtcgaag cctgtaaagc ggcggtgcac 420
aatcttctcg cgcaacgcgt cagtgggctg atcattaact atccgctgga tgaccaggat 480
gccattgctg tggaagctgc ctgcactaat gttccggcgt tatttcttga tgtctctgac 540
cagacaccca tcaacagtat tattttctcc catgaagacg gtacgcgact gggcgtggag 600
catctggtcg cattgggtca ccagcaaatc gcgctgttag cgggcccatt aagttctgtc 660
tcggcgcgtc tgcgtctggc tggctggcat aaatatctca ctcgcaatca aattcagccg 720
atagcggaac gggaaggcga ctggagtgcc atgtccggtt ttcaacaaac catgcaaatg 780
ctgaatgagg gcatcgttcc cactgcgatg ctggttgcca acgatcagat ggcgctgggc 840
gcaatgcgcg ccattaccga gtccgggctg cgcgttggtg cggatatctc ggtagtggga 900
tacgacgata ccgaagacag ctcatgttat atcccgccgt taaccaccat caaacaggat 960
tttcgcctgc tggggcaaac cagcgtggac cgcttgctgc aactctctca gggccaggcg 1020
gtgaagggca atcagctgtt gcccgtctca ctggtgaaaa gaaaaaccac cctggcgccc 1080
aatacgcaaa ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag 1140
gtttcccgac tggaaagcgg gcagtgagcg caacgcaatt aatgtaagtt agcgcgaatt 1200
gatctggttt gacagcttat catcgactgc acggtgcacc aatgcttctg gcgtcaggca 1260
gccatcggaa gctgtggtat ggctgtgcag gtcgtaaatc actgcataat tcgtgtcgct 1320
caaggcgcac tcccgttctg gataatgttt tttgcgccga catcataacg gttctggcaa 1380
atattctgaa atgagctgtt gacaattaat catccggctc gtataatgtg tggaattgtg 1440
agcggataac aatttcagaa ttcaaaagat cttttaagaa ggagatatac atatggacag 1500
acggagcttc aaccggcgtc tcctcgcggg cggcgcggcc gcggcggcga caggcgtgac 1560
atcgttgtcg atcacttccg cctccaacgc ggcgccggcc ccggcgaagg gcgcgccccg 1620
caccgcgcag gccggcggtc aggtgcgcca cctcaagatg tacgccgaga aacgggccga 1680
cggatcgatg ggctacggcc tcgagaaggg caaggccacc gtccccgggc cgctgatcga 1740
actcgtcgag ggcgacacgc tgcacatcga gttcgagaac ctgatggacg tgccggtcag 1800
cctgcatccg cacggcgtcg actacgacat ctccaacgac ggcacgaaga tgagccgcag 1860
ccatgtcgag ccgggcgcca cccgcaccta cacctggcgc acccacgcac ccggccgccg 1920
cgcggacggc acctggcggc cgggcagcgc gggttactgg cactaccacg accatgtcgt 1980
cggcacggat cacggcaccg gcggcatccg caagggcctc tacggtccga tggtggtgcg 2040
caggaaggac gacatccttc ccgacaagca gttcaccatc gtcttcaacg acatgacgat 2100
caacaaccgg cccgcggccg acccgcccaa cttccttgcc acggtggggg accgggtcga 2160
gatcatcatg atcacgcacg gcgagtacta ccacacgttc catatgcacg gtcaccgctg 2220
ggcggacaac cggaccggcc tgctgtcggg tcccgaggac gtcagccggg tgatcgacaa 2280
caagatcacc ggcccggcgg actccttcgg cttccaggtg atcgcgggcg aacacgtggg 2340
cccgggcgcg tggatgtacc actgccacgt ccagagccac tcggacatgg gcatggccgg 2400
gctgttcctc gtcgccaagg aggacggcac gatccccggg tacgagccgc accatcccac 2460
gtccgaggag ggccacgacc actaaggatc caaactcgag taaggatctc caggcatcaa 2520
ataaaacgaa aggctcagtc gaaagactgg gcctttcgtt ttatctgttg tttgtcggtg 2580
aacgctctct actagagtca cactggctca ccttcgggtg ggcctttctg cgtttatacc 2640
taggctacag ccgatagtct ggaacagcgc acttacgggt tgctgcgcaa cccaagtgct 2700
accggcgcgg cagcgtgacc cgtgtcggcg gctccaacgg ctcgccatcg tccagaaaac 2760
acggctcatc gggcatcggc aggcgctgct gcccgcgccg ttcccattcc tccgtttcgg 2820
tcaaggctgg caggtctggt tccatgcccg gaatgccggg ctggctgggc ggctcctcgc 2880
cggggccggt cggtagttgc tgctcgcccg gatacagggt cgggatgcgg cgcaggtcgc 2940
catgccccaa cagcgattcg tcctggtcgt cgtgatcaac caccacggcg gcactgaaca 3000
ccgacaggcg caactggtcg cggggctggc cccacgccac gcggtcattg accacgtagg 3060
ccaacacggt gccggggccg ttgagcttca cgacggagat ccagcgctcg gccaccaagt 3120
ccttgactgc gtattggacc gtccgcaaag aacgtccgat gagcttggaa agtgtcttct 3180
ggctgaccac cacggcgttc tggtggccca tctgcgccac gaggtgatgc agcagcattg 3240
ccgccgtggg tttcctcgca ataagcccgg cccacgcctc atgcgctttg cgttccgttt 3300
gcacccagtg accgggcttg ttcttggctt gaatgccgat ttctctggac tgcgtggcca 3360
tgcttatctc catgcggtag gggtgccgca cggttgcggc accatgcgca atcagctgca 3420
acttttcggc agcgcgacaa caattatgcg ttgcgtaaaa gtggcagtca attacagatt 3480
ttctttaacc tacgcaatga gctattgcgg ggggtgccgc aatgagctgt tgcgtacccc 3540
ccttttttaa gttgttgatt tttaagtctt tcgcatttcg ccctatatct agttctttgg 3600
tgcccaaaga agggcacccc tgcggggttc ccccacgcct tcggcgcggc tccccctccg 3660
gcaaaaagtg gcccctccgg ggcttgttga tcgactgcgc ggccttcggc cttgcccaag 3720
gtggcgctgc ccccttggaa cccccgcact cgccgccgtg aggctcgggg ggcaggcggg 3780
cgggcttcgc ccttcgactg cccccactcg cataggcttg ggtcgttcca ggcgcgtcaa 3840
ggccaagccg ctgcgcggtc gctgcgcgag ccttgacccg ccttccactt ggtgtccaac 3900
cggcaagcga agcgcgcagg ccgcaggccg gaggcactag tgcttggatt ctcaccaata 3960
aaaaacgccc ggcggcaacc gagcgttctg aacaaatcca gatggagttc tgaggtcatt 4020
actggatcta tcaacaggag tccaagcgag ctcgatatca aattacgccc cgccctgcca 4080
ctcatcgcag tactgttgta attcattaag cattctgccg acatggaagc catcacaaac 4140
ggcatgatga acctgaatcg ccagcggcat cagcaccttg tcgccttgcg tataatattt 4200
gcccatggtg aaaacggggg cgaagaagtt gtccatattg gccacgttta aatcaaaact 4260
ggtgaaactc acccagggat tggctgagac gaaaaacata ttctcaataa accctttagg 4320
gaaataggcc aggttttcac cgtaacacgc cacatcttgc gaatatatgt gtagaaactg 4380
ccggaaatcg tcgtggtatt cactccagag cgatgaaaac gtttcagttt gctcatggaa 4440
aacggtgtaa caagggtgaa cactatccca tatcaccagc tcaccgtctt tcattgccat 4500
acgaaattcc ggatgagcat tcatcaggcg ggcaagaatg tgaataaagg ccggataaaa 4560
cttgtgctta tttttcttta cggtctttaa aaaggccgta atatccagct gaacggtctg 4620
gttataggta cattgagcaa ctgactgaaa tgcctcaaaa tgttctttac gatgccattg 4680
ggatatatca acggtggtat atccagtgat ttttttctcc attttagctt ccttagctcc 4740
tgaaaatctc gataactcaa aaaatacgcc cggtagtgat cttatttcat tatggtgaaa 4800
gttggaacct cttacgtgcc gatcaacgtc tcattttcgc cagatatc 4848
<210> 5
<211> 5397
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
gacgtcgaca ccatcgaatg gtgcaaaacc tttcgcggta tggcatgata gcgcccggaa 60
gagagtcaat tcagggtggt gaatgtgaaa ccagtaacgt tatacgatgt cgcagagtat 120
gccggtgtct cttatcagac cgtttcccgc gtggtgaacc aggccagcca cgtttctgcg 180
aaaacgcggg aaaaagtgga agcggcgatg gcggagctga attacattcc caaccgcgtg 240
gcacaacaac tggcgggcaa acagtcgttg ctgattggcg ttgccacctc cagtctggcc 300
ctgcacgcgc cgtcgcaaat tgtcgcggcg attaaatctc gcgccgatca actgggtgcc 360
agcgtggtgg tgtcgatggt agaacgaagc ggcgtcgaag cctgtaaagc ggcggtgcac 420
aatcttctcg cgcaacgcgt cagtgggctg atcattaact atccgctgga tgaccaggat 480
gccattgctg tggaagctgc ctgcactaat gttccggcgt tatttcttga tgtctctgac 540
cagacaccca tcaacagtat tattttctcc catgaagacg gtacgcgact gggcgtggag 600
catctggtcg cattgggtca ccagcaaatc gcgctgttag cgggcccatt aagttctgtc 660
tcggcgcgtc tgcgtctggc tggctggcat aaatatctca ctcgcaatca aattcagccg 720
atagcggaac gggaaggcga ctggagtgcc atgtccggtt ttcaacaaac catgcaaatg 780
ctgaatgagg gcatcgttcc cactgcgatg ctggttgcca acgatcagat ggcgctgggc 840
gcaatgcgcg ccattaccga gtccgggctg cgcgttggtg cggatatctc ggtagtggga 900
tacgacgata ccgaagacag ctcatgttat atcccgccgt taaccaccat caaacaggat 960
tttcgcctgc tggggcaaac cagcgtggac cgcttgctgc aactctctca gggccaggcg 1020
gtgaagggca atcagctgtt gcccgtctca ctggtgaaaa gaaaaaccac cctggcgccc 1080
aatacgcaaa ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag 1140
gtttcccgac tggaaagcgg gcagtgagcg caacgcaatt aatgtaagtt agcgcgaatt 1200
gatctggttt gacagcttat catcgactgc acggtgcacc aatgcttctg gcgtcaggca 1260
gccatcggaa gctgtggtat ggctgtgcag gtcgtaaatc actgcataat tcgtgtcgct 1320
caaggcgcac tcccgttctg gataatgttt tttgcgccga catcataacg gttctggcaa 1380
atattctgaa atgagctgtt gacaattaat catccggctc gtataatgtg tggaattgtg 1440
agcggataac aatttcagaa ttcaaaagat cttttaagaa ggagatatac atatgacact 1500
tgaaaaattt gtggatgctc tcccaatccc agatacacta aagccagtac agcaatcaaa 1560
agaaaaaaca tactacgaag tcaccatgga ggaatgcact catcagctcc atcgcgatct 1620
ccctccaacc cgcctgtggg gctacaacgg cttatttccg ggaccgacca ttgaggttaa 1680
aagaaatgaa aacgtatatg taaaatggat gaataacctt ccttccacgc atttccttcc 1740
gattgatcac accattcatc acagtgacag ccagcatgaa gagcccgagg taaagactgt 1800
tgttcattta cacggcggcg tcacgccaga tgatagtgac gggtatccgg aggcttggtt 1860
ttccaaagac tttgaacaaa caggacctta tttcaaaaga gaggtttatc attatccaaa 1920
ccagcagcgc ggggctatat tgtggtatca cgatcacgcc atggcgctca ccaggctaaa 1980
tgtctatgcc ggacttgtcg gtgcatatat cattcatgac ccaaaggaaa aacgcttaaa 2040
actgccttca gacgaatacg atgtgccgct tcttatcaca gaccgcacga tcaatgagga 2100
tggttctttg ttttatccga gcgcaccgga aaacccttct ccgtcactgc ctaatccttc 2160
aatcgttccg gctttttgcg gagaaaccat actcgtcaac gggaaggtat ggccatactt 2220
ggaagtcgag ccaaggaaat accgattccg tgtcatcaac gcctccaata caagaaccta 2280
taacctgtca ctcgataatg gcggagattt tattcagatt ggttcagatg gagggctcct 2340
gccgcgatct gttaaactga attctttcag ccttgcgcct gctgaacgtt acgatatcat 2400
cattgacttc acagcatatg aaggagaatc gatcattttg gcaaacagcg cgggctgcgg 2460
cggtgacgtc aatcctgaaa cagatgcgaa tatcatgcaa ttcagagtca caaaaccatt 2520
ggcacaaaaa gacgaaagca gaaagccgaa gtacctcgcc tcataccctt cggtacagca 2580
tgaaagaata caaaacatca gaacgttaaa actggcaggc acccaggacg aatacggcag 2640
acccgtcctt ctgcttaata acaaacgctg gcacgatccc gtcacagaaa caccaaaagt 2700
cggcacaact gaaatatggt ccattatcaa cccgacacgc ggaacacatc cgatccacct 2760
gcatctagtc tccttccgtg tattagaccg gcggccgttt gatatcgccc gttatcaaga 2820
aagcggggaa ttgtcctata ccggtccggc tgtcccgccg ccgccaagtg aaaagggctg 2880
gaaagacacc attcaagcgc atgcaggtga agtcctgaga atcgcggcga cattcggtcc 2940
gtacagcgga cgatacgtat ggcattgcca tattctagag catgaagact atgacatgat 3000
gagaccgatg gatataactg atccccataa ataaggatcc aaactcgagt aaggatctcc 3060
aggcatcaaa taaaacgaaa ggctcagtcg aaagactggg cctttcgttt tatctgttgt 3120
ttgtcggtga acgctctcta ctagagtcac actggctcac cttcgggtgg gcctttctgc 3180
gtttatacct aggctacagc cgatagtctg gaacagcgca cttacgggtt gctgcgcaac 3240
ccaagtgcta ccggcgcggc agcgtgaccc gtgtcggcgg ctccaacggc tcgccatcgt 3300
ccagaaaaca cggctcatcg ggcatcggca ggcgctgctg cccgcgccgt tcccattcct 3360
ccgtttcggt caaggctggc aggtctggtt ccatgcccgg aatgccgggc tggctgggcg 3420
gctcctcgcc ggggccggtc ggtagttgct gctcgcccgg atacagggtc gggatgcggc 3480
gcaggtcgcc atgccccaac agcgattcgt cctggtcgtc gtgatcaacc accacggcgg 3540
cactgaacac cgacaggcgc aactggtcgc ggggctggcc ccacgccacg cggtcattga 3600
ccacgtaggc caacacggtg ccggggccgt tgagcttcac gacggagatc cagcgctcgg 3660
ccaccaagtc cttgactgcg tattggaccg tccgcaaaga acgtccgatg agcttggaaa 3720
gtgtcttctg gctgaccacc acggcgttct ggtggcccat ctgcgccacg aggtgatgca 3780
gcagcattgc cgccgtgggt ttcctcgcaa taagcccggc ccacgcctca tgcgctttgc 3840
gttccgtttg cacccagtga ccgggcttgt tcttggcttg aatgccgatt tctctggact 3900
gcgtggccat gcttatctcc atgcggtagg ggtgccgcac ggttgcggca ccatgcgcaa 3960
tcagctgcaa cttttcggca gcgcgacaac aattatgcgt tgcgtaaaag tggcagtcaa 4020
ttacagattt tctttaacct acgcaatgag ctattgcggg gggtgccgca atgagctgtt 4080
gcgtaccccc cttttttaag ttgttgattt ttaagtcttt cgcatttcgc cctatatcta 4140
gttctttggt gcccaaagaa gggcacccct gcggggttcc cccacgcctt cggcgcggct 4200
ccccctccgg caaaaagtgg cccctccggg gcttgttgat cgactgcgcg gccttcggcc 4260
ttgcccaagg tggcgctgcc cccttggaac ccccgcactc gccgccgtga ggctcggggg 4320
gcaggcgggc gggcttcgcc cttcgactgc ccccactcgc ataggcttgg gtcgttccag 4380
gcgcgtcaag gccaagccgc tgcgcggtcg ctgcgcgagc cttgacccgc cttccacttg 4440
gtgtccaacc ggcaagcgaa gcgcgcaggc cgcaggccgg aggcactagt gcttggattc 4500
tcaccaataa aaaacgcccg gcggcaaccg agcgttctga acaaatccag atggagttct 4560
gaggtcatta ctggatctat caacaggagt ccaagcgagc tcgatatcaa attacgcccc 4620
gccctgccac tcatcgcagt actgttgtaa ttcattaagc attctgccga catggaagcc 4680
atcacaaacg gcatgatgaa cctgaatcgc cagcggcatc agcaccttgt cgccttgcgt 4740
ataatatttg cccatggtga aaacgggggc gaagaagttg tccatattgg ccacgtttaa 4800
atcaaaactg gtgaaactca cccagggatt ggctgagacg aaaaacatat tctcaataaa 4860
ccctttaggg aaataggcca ggttttcacc gtaacacgcc acatcttgcg aatatatgtg 4920
tagaaactgc cggaaatcgt cgtggtattc actccagagc gatgaaaacg tttcagtttg 4980
ctcatggaaa acggtgtaac aagggtgaac actatcccat atcaccagct caccgtcttt 5040
cattgccata cgaaattccg gatgagcatt catcaggcgg gcaagaatgt gaataaaggc 5100
cggataaaac ttgtgcttat ttttctttac ggtctttaaa aaggccgtaa tatccagctg 5160
aacggtctgg ttataggtac attgagcaac tgactgaaat gcctcaaaat gttctttacg 5220
atgccattgg gatatatcaa cggtggtata tccagtgatt tttttctcca ttttagcttc 5280
cttagctcct gaaaatctcg ataactcaaa aaatacgccc ggtagtgatc ttatttcatt 5340
atggtgaaag ttggaacctc ttacgtgccg atcaacgtct cattttcgcc agatatc 5397
<210> 6
<211> 4206
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
gacgtcgaca ccatcgaatg gtgcaaaacc tttcgcggta tggcatgata gcgcccggaa 60
gagagtcaat tcagggtggt gaatgtgaaa ccagtaacgt tatacgatgt cgcagagtat 120
gccggtgtct cttatcagac cgtttcccgc gtggtgaacc aggccagcca cgtttctgcg 180
aaaacgcggg aaaaagtgga agcggcgatg gcggagctga attacattcc caaccgcgtg 240
gcacaacaac tggcgggcaa acagtcgttg ctgattggcg ttgccacctc cagtctggcc 300
ctgcacgcgc cgtcgcaaat tgtcgcggcg attaaatctc gcgccgatca actgggtgcc 360
agcgtggtgg tgtcgatggt agaacgaagc ggcgtcgaag cctgtaaagc ggcggtgcac 420
aatcttctcg cgcaacgcgt cagtgggctg atcattaact atccgctgga tgaccaggat 480
gccattgctg tggaagctgc ctgcactaat gttccggcgt tatttcttga tgtctctgac 540
cagacaccca tcaacagtat tattttctcc catgaagacg gtacgcgact gggcgtggag 600
catctggtcg cattgggtca ccagcaaatc gcgctgttag cgggcccatt aagttctgtc 660
tcggcgcgtc tgcgtctggc tggctggcat aaatatctca ctcgcaatca aattcagccg 720
atagcggaac gggaaggcga ctggagtgcc atgtccggtt ttcaacaaac catgcaaatg 780
ctgaatgagg gcatcgttcc cactgcgatg ctggttgcca acgatcagat ggcgctgggc 840
gcaatgcgcg ccattaccga gtccgggctg cgcgttggtg cggatatctc ggtagtggga 900
tacgacgata ccgaagacag ctcatgttat atcccgccgt taaccaccat caaacaggat 960
tttcgcctgc tggggcaaac cagcgtggac cgcttgctgc aactctctca gggccaggcg 1020
gtgaagggca atcagctgtt gcccgtctca ctggtgaaaa gaaaaaccac cctggcgccc 1080
aatacgcaaa ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag 1140
gtttcccgac tggaaagcgg gcagtgagcg caacgcaatt aatgtaagtt agcgcgaatt 1200
gatctggttt gacagcttat catcgactgc acggtgcacc aatgcttctg gcgtcaggca 1260
gccatcggaa gctgtggtat ggctgtgcag gtcgtaaatc actgcataat tcgtgtcgct 1320
caaggcgcac tcccgttctg gataatgttt tttgcgccga catcataacg gttctggcaa 1380
atattctgaa atgagctgtt gacaattaat catccggctc gtataatgtg tggaattgtg 1440
agcggataac aatttcagaa ttcaaaagat cttttaagaa ggagatatac atatggcgag 1500
tagcgaagac gttatcaaag agttcatgcg tttcaaagtt cgtatggaag gttccgttaa 1560
cggtcacgag ttcgaaatcg aaggtgaagg tgaaggtcgt ccgtacgaag gtacccagac 1620
cgctaaactg aaagttacca aaggtggtcc gctgccgttc gcttgggaca tcctgtcccc 1680
gcagttccag tacggttcca aagcttacgt taaacacccg gctgacatcc cggactacct 1740
gaaactgtcc ttcccggaag gtttcaaatg ggaacgtgtt atgaacttcg aagacggtgg 1800
tgttgttacc gttacccagg actcctccct gcaagacggt gagttcatct acaaagttaa 1860
actgcgtggt accaacttcc cgtccgacgg tccggttatg cagaaaaaaa ccatgggttg 1920
ggaagcttcc accgaacgta tgtacccgga agacggtgct ctgaaaggtg aaatcaaaat 1980
gcgtctgaaa ctgaaagacg gtggtcacta cgacgctgaa gttaaaacca cctacatggc 2040
taaaaaaccg gttcagctgc cgggtgctta caaaaccgac atcaaactgg acatcacctc 2100
ccacaacgaa gactacacca tcgttgaaca gtacgaacgt gctgaaggtc gtcactccac 2160
cggtgcttaa ggatccaaac tcgagtaagg atctccaggc atcaaataaa acgaaaggct 2220
cagtcgaaag actgggcctt tcgttttatc tgttgtttgt cggtgaacgc tctctactag 2280
agtcacactg gctcaccttc gggtgggcct ttctgcgttt atacctaggg cgttcggctg 2340
cggcgagcgg tatcagctca ctcaaaggcg gtaatacggt tatccacaga atcaggggat 2400
aacgcaggaa agaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc 2460
gcgttgctgg cgtttttcca taggctccgc ccccctgacg agcatcacaa aaatcgacgc 2520
tcaagtcaga ggtggcgaaa cccgacagga ctataaagat accaggcgtt tccccctgga 2580
agctccctcg tgcgctctcc tgttccgacc ctgccgctta ccggatacct gtccgccttt 2640
ctcccttcgg gaagcgtggc gctttctcat agctcacgct gtaggtatct cagttcggtg 2700
taggtcgttc gctccaagct gggctgtgtg cacgaacccc ccgttcagcc cgaccgctgc 2760
gccttatccg gtaactatcg tcttgagtcc aacccggtaa gacacgactt atcgccactg 2820
gcagcagcca ctggtaacag gattagcaga gcgaggtatg taggcggtgc tacagagttc 2880
ttgaagtggt ggcctaacta cggctacact agaaggacag tatttggtat ctgcgctctg 2940
ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt gatccggcaa acaaaccacc 3000
gctggtagcg gtggtttttt tgtttgcaag cagcagatta cgcgcagaaa aaaaggatct 3060
caagaagatc ctttgatctt ttctacgggg tctgacgctc agtggaacga aaactcacgt 3120
taagggattt tggtcatgac tagtgcttgg attctcacca ataaaaaacg cccggcggca 3180
accgagcgtt ctgaacaaat ccagatggag ttctgaggtc attactggat ctatcaacag 3240
gagtccaagc gagctctcga accccagagt cccgctcaga agaactcgtc aagaaggcga 3300
tagaaggcga tgcgctgcga atcgggagcg gcgataccgt aaagcacgag gaagcggtca 3360
gcccattcgc cgccaagctc ttcagcaata tcacgggtag ccaacgctat gtcctgatag 3420
cggtccgcca cacccagccg gccacagtcg atgaatccag aaaagcggcc attttccacc 3480
atgatattcg gcaagcaggc atcgccatgg gtcacgacga gatcctcgcc gtcgggcatg 3540
cgcgccttga gcctggcgaa cagttcggct ggcgcgagcc cctgatgctc ttcgtccaga 3600
tcatcctgat cgacaagacc ggcttccatc cgagtacgtg ctcgctcgat gcgatgtttc 3660
gcttggtggt cgaatgggca ggtagccgga tcaagcgtat gcagccgccg cattgcatca 3720
gccatgatgg atactttctc ggcaggagca aggtgagatg acaggagatc ctgccccggc 3780
acttcgccca atagcagcca gtcccttccc gcttcagtga caacgtcgag cacagctgcg 3840
caaggaacgc ccgtcgtggc cagccacgat agccgcgctg cctcgtcctg cagttcattc 3900
agggcaccgg acaggtcggt cttgacaaaa agaaccgggc gcccctgcgc tgacagccgg 3960
aacacggcgg catcagagca gccgattgtc tgttgtgccc agtcatagcc gaatagcctc 4020
tccacccaag cggccggaga acctgcgtgc aatccatctt gttcaatcat gcgaaacgat 4080
cctcatcctg tctcttgatc agatcatgat cccctgcgcc atcagatcct tggcggcaag 4140
aaagccatcc agtttacttt gcagggcttc ccaaccttac cagagggcgc cccagctggc 4200
aattcc 4206

Claims (11)

1. A method for synthesizing a high value-added compound by using a lignin monomer through expression optimization of multi-subunit enzyme is characterized in that the high value-added compound is synthesized by taking the lignin monomer compound as a starting raw material through a biocatalyst;
the catalyst is prepared by one of the following methods:
the method comprises the following steps: constructing an RBS library of a multi-subunit enzyme GcoAB containing GcoA and GcoB by a Golden gate method, converting the RBS library into E.coli, and screening to obtain a biocatalyst;
screening genes corresponding to the obtained biocatalyst and an aryl sulfotransferase mutant ASTB-OM2(Q191Y/Y218W/L225V) in the E.coli overexpression method I to obtain the biocatalyst;
coli by over-expressing laccase GoL3 in e.
2. The method for synthesizing high value-added compounds according to claim 1, wherein the catalyst obtained in the first method is E.
3. The method of claim 2, wherein the E.coli (GcoaB; RBS: G/C) is obtained by: constructing an RBS library of a multi-subunit enzyme GcoAB containing GcoA and GcoB by a Golden gate method, converting the RBS library into E.coli, and screening to obtain a biocatalyst E.coli (GcoAB; RBS: G/C); the genes GcoA and GcoB are derived from Amycolatopsis sp ATCC 39116, and the genes GcoA and GcoB are codon optimized.
4. The method of claim 2, wherein the sequence of the RBS core region of GcoA is AGGGG and the sequence of the RBS core region of GcoB is AGGCGGG.
5. The method for synthesizing high value-added compounds according to claim 1, wherein the catalyst obtained by the second method is E.
6. The method for synthesizing high value-added compounds according to claim 1, wherein the catalyst obtained by method three is E.coli (GoL 3).
7. The method for synthesizing high value-added compounds according to claim 1, wherein the monolignol compound comprises guaiacol or 3-methoxycatechol.
8. The method of synthesizing high value-added compounds according to claim 1, wherein the high value-added compounds comprise at least one of catechol, catechol-O-sulfate, and rhodophenol.
9. The method for synthesizing high value-added compounds according to claim 1, wherein the guaiacol is used as a starting material to synthesize catechol in the presence of a biocatalyst E.
10. The method for synthesizing high value-added compounds according to claim 1, wherein the catechol-O-sulfate is synthesized from guaiacol (GcoAB-ASTB-OM2) as a starting material.
11. The method for synthesizing high value-added compounds according to claim 1, wherein when the biocatalyst is e.coli (GoL3), 3-methoxy catechol is used as a starting material to synthesize rhodol.
CN202110702934.XA 2021-06-24 Expression optimization of multi-subunit enzymes for monolignol synthesis of high value-added compounds Active CN113462626B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110702934.XA CN113462626B (en) 2021-06-24 Expression optimization of multi-subunit enzymes for monolignol synthesis of high value-added compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110702934.XA CN113462626B (en) 2021-06-24 Expression optimization of multi-subunit enzymes for monolignol synthesis of high value-added compounds

Publications (2)

Publication Number Publication Date
CN113462626A true CN113462626A (en) 2021-10-01
CN113462626B CN113462626B (en) 2024-06-07

Family

ID=

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160265006A1 (en) * 2015-03-09 2016-09-15 Alliance For Sustainable Energy, Llc Enzymes and methods for dealkylation of substrates
CN111057660A (en) * 2014-04-15 2020-04-24 Ao生物医学有限责任公司 Ammonia oxidizing nitrosomonas D23
CN112300972A (en) * 2019-08-02 2021-02-02 南京理工大学 Gene engineering bacterium for producing myxofuroic acid by taking lignin as raw material
CN112481336A (en) * 2020-11-27 2021-03-12 上海交通大学 Method for biosynthesizing high value-added compound by utilizing lignocellulose derivative

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111057660A (en) * 2014-04-15 2020-04-24 Ao生物医学有限责任公司 Ammonia oxidizing nitrosomonas D23
US20160265006A1 (en) * 2015-03-09 2016-09-15 Alliance For Sustainable Energy, Llc Enzymes and methods for dealkylation of substrates
CN112300972A (en) * 2019-08-02 2021-02-02 南京理工大学 Gene engineering bacterium for producing myxofuroic acid by taking lignin as raw material
CN112481336A (en) * 2020-11-27 2021-03-12 上海交通大学 Method for biosynthesizing high value-added compound by utilizing lignocellulose derivative

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SALONY ET.AL: "Laccase of Cyathus bulleri: structural, catalytic characterization and expression in Escherichia coli", BIOCHIMICA ET BIOPHYSICA ACTA, pages 259 - 268 *

Similar Documents

Publication Publication Date Title
DK3027733T3 (en) Preparation of 3-Hydroxypropionic Acid in Recombinant Yeast Expressing an Insect Aspartate-1 Decarboxylase
RU2763170C2 (en) Production of human milk oligosaccharides in host microorganisms with modified import/export
JP2022173457A (en) Alpha (1,2) fucosyltransferase syngenes for use in the production of fucosylated oligosaccharides
KR20190120287A (en) Genome Editing System and Method
KR20130027063A (en) Improving activity of fe-s cluster requiring proteins
KR20160043973A (en) Modified microorganism for improved production of alanine
CN113136357A (en) Gene engineering bacterium for producing lactoyl-N-neotetraose and production method
CN113462626B (en) Expression optimization of multi-subunit enzymes for monolignol synthesis of high value-added compounds
CN113584033B (en) CRISPR/Cpf1 gene editing system, construction method thereof and application thereof in gibberella
KR102304834B1 (en) Improved microorganisms for succinic acid production
CN113462626A (en) Expression optimization of multi-subunit enzyme for synthesizing high value-added compound by using lignin monomer
CN109722436B (en) CRISPR-Cas 9-based genome traceless editing vector and application
KR102304838B1 (en) Modified microorganism with improved biomass separation behaviour
CN101223280B (en) Use of dimethyl disulfide for methionine production in microorganisms
US6156544A (en) Process for the preparation of N-acetylneuraminic acid
CN113774071B (en) Polynucleotide for expressing HPV66L1, expression vector, host cell and application thereof
CN1898388A (en) Pgro expression units
CN111019966B (en) Expression plasmid with higher replication capacity of corynebacteria and construction method thereof
CN103305541A (en) Activating tag Ac/Ds transposons system and application thereof in building of plant mutant library
CN113186140B (en) Genetically engineered bacteria for preventing and/or treating hangover and liver disease
CN113122556B (en) Oscillating gene expression system, construction method and application thereof in rhamnolipid fermentation
KR101990240B1 (en) Transformed corynebacterium glutamicum having capability of producing butyrate
CN108728389B (en) Escherichia coli engineering bacterium for producing 2,3,5, 6-tetramethylpyrazine and application thereof
CN114959919A (en) Method for constructing saccharomyces cerevisiae artificial small promoter library and application
CN114717253B (en) Efficient transposition mutation system for streptococcus suis and application of efficient transposition mutation system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Xiao Yi

Inventor after: Zhang Shun

Inventor before: Xiao Yi

CB03 Change of inventor or designer information
GR01 Patent grant