CN113458415B - 一种高稳定性粒子弥散强化钛合金的激光增材制造方法 - Google Patents

一种高稳定性粒子弥散强化钛合金的激光增材制造方法 Download PDF

Info

Publication number
CN113458415B
CN113458415B CN202111033316.7A CN202111033316A CN113458415B CN 113458415 B CN113458415 B CN 113458415B CN 202111033316 A CN202111033316 A CN 202111033316A CN 113458415 B CN113458415 B CN 113458415B
Authority
CN
China
Prior art keywords
laser
powder
titanium alloy
pipe
ball milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111033316.7A
Other languages
English (en)
Other versions
CN113458415A (zh
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Yuding Additive Manufacturing Research Institute Co ltd
Original Assignee
Beijing Yuding Zengcai Manufacture Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Yuding Zengcai Manufacture Research Institute Co ltd filed Critical Beijing Yuding Zengcai Manufacture Research Institute Co ltd
Priority to CN202111033316.7A priority Critical patent/CN113458415B/zh
Publication of CN113458415A publication Critical patent/CN113458415A/zh
Application granted granted Critical
Publication of CN113458415B publication Critical patent/CN113458415B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F10/322Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/50Treatment of workpieces or articles during build-up, e.g. treatments applied to fused layers during build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明公开了一种高稳定性粒子弥散强化钛合金的激光增材制造方法,包括以下步骤:1)制备由钛合金、Y、Ca、Al、Th混合而成的纳米晶粉末;2)将所述纳米晶粉末通过送粉管直接送入激光束形成的熔池中;3)通过侧吹管吹送氩气和氧气的混合气体对激光熔池进行搅动;4)激光束、送粉管和侧吹管同步摆动进行激光增材成形。本发明为解决钛合金作为高温合金而添加弥散强化粒子的高稳定性和均匀性,提出了以高能球磨工艺制备纳米晶粉末,并通过送粉速率和送气速率的合理控制,配合合适的激光熔化沉积工艺参数,从而实现了以激光增材技术制得优异高稳定性粒子弥散强化钛合金。

Description

一种高稳定性粒子弥散强化钛合金的激光增材制造方法
技术领域
本发明涉及钛合金材料的技术领域,尤其是涉及一种高稳定性粒子弥散强化钛合金的激光增材制造方法。
背景技术
随着科学技术进步和航空航天事业的飞速发展,钛合金因其密度低、比强度高、抗腐蚀性能优异等一系列优点,成为航空航天领域广泛应用的轻质结构材料之一。TC11钛合金(名义成分为Ti-6.5Al-3.5Mo-1.5Zr-0.3Si),是一种α-β型钛合金耐热钛合金,该合金还具有良好的热加工工艺性(包括常规工艺性能和超塑性),可以进行焊接和各种方式的机加工,其β热处理及等温锻获得了广泛的研究和迅速的发展。通过α-β区的热变形和热处理,TC11钛合金的最高长期工作温度为500℃,生产的半成品可以为棒材、锻件和模锻件等,是目前我囯航空领域中应用较广的高温钛合金,主要应用在航空发动机压气机的零部件,如叶片、盘件、鼓筒和轴类等。
高温合金,一般是指能够在 600°C 以上的高温环境下,承受较大的复杂应力,并具有表面稳定性的高合金化的铁基、镍基或者钴基奥氏体金属材料。20 世纪 20年代以来,随着航空发动机、核反应堆等新技术的兴起,高温合金材料得以快速发展。新型高温合金的主要发展方向可以概括为,使之具有更高的强度和更高的使用温度,而其强化机理通常是向基体中加入高稳定性粒子(Y2O3),使其分布在晶界及晶粒内,起到钉扎晶界阻碍位错运动的作用。而目前以钛为基体的高温合金并不常见。
激光增材制造技术即快速成型技术,利用“离散+堆积+叠层”的原理,在零件CAD三维实体模型切片数据的基础上,通过计算机编程控制高功率激光熔化同步输送的金属粉末,并且在基材表面熔化部分材料,两者混合形成熔池,激光束扫过后熔池发生快速凝固,从而沉积在已凝固基材上,逐层堆积,最终得到三维零件。该技术能实现大型复杂结构致密金属零件的快速、无模具近净成形。
发明内容
本发明目的在于提供一种采用激光增材技术制备氧化物弥散强化(OxideDispersion-Strengthened,ODS)钛合金的方法,ODS 高温合金主要用于制备高温、低应力承载条件的零部件,因此通常制成大长径比的柱状晶组织,而激光增材技术中,激光照射在基体上会形成熔池,而钛合金极容易在熔池中外延生长,从而形成柱状晶组织,所以激光增材技术很适于用来制备具有高温拉伸、蠕变和持久性能的钛合金。
然而激光增材制备过程中,由于激光形成的熔池缺乏搅动而导致熔池内流动性不佳,从而容易造成用于稳定性强化的粒子在晶界处偏聚而部分均匀分布在整个组织内。
因此,本发明关键在于如何形成高稳定性粒子及如何增强熔池内的流动性,以至于形成的高稳定性粒子不会在晶界偏聚而是均匀分布于晶界及晶内,起到弥散强化的作用。
本发明的技术方案具体为,一种高稳定性粒子弥散强化钛合金的激光增材制造方法,包括以下步骤:
1)制备由钛合金、Y、CaAl、Th混合而成的纳米晶粉末;
2)将所述纳米晶粉末通过送粉管直接送入激光束形成的熔池中;
3)通过侧吹管吹送氩气和氧气的混合气体对激光熔池进行搅动;
所述吹送氩气和氧气的混合气体的送气速率Ф按照以下公式加以控制,
Figure 688665DEST_PATH_IMAGE002
其中,μ是送粉速度,Ф是送气速率,h是熔池底到熔池表面之间距离,R是激光光斑直径,λ是和感应热及钛合金本身性质有关的系数,n是熔池中的Y含量;
4)激光束、送粉管和侧吹管同步摆动进行激光增材成形。
进一步优选的,所述纳米晶粉末通过下述工艺制备得到,将Y、CaAl、Th合金粉末按质量比0.6wt.%-8wt.%加入到钛合金粉末或碎屑中得到混合合金粉末并将其放入球磨罐中,加入等质量的、尺寸不等的 440C 耐磨钢球,充入氩气并密封罐体,使整个球磨过程在无氧环境下进行,先使用 250 转/分钟预混30 min,确保混合合金粉末混合均匀,再使用600转/分钟进行高能球磨50h;高能球磨时,对罐体进行风冷,同时,每球磨2.5h,暂停 15min,球磨完成后,将球磨粉用 100 目筛网筛分获得所述纳米晶粉末。
进一步优选的,所述激光束为长焦激光形成,所述送粉管为变截面铜管并延长15-25mm,所述侧吹管设置在所述送粉管外侧并比述所送粉管延长更多。
进一步优选的,所述氩气和氧气的混合气体中,Ar:O2=22-20:1。
进一步优选的,所述钛合金为TC11,所述λ=0.30-0.65。
进一步优选的,所述激光增材成形的工艺参数为,激光功率1500-1800W、扫描速度7-8mm/s,送粉速度70-80g/min,送气速率20-25L/min,输入电流功率800-1000W。
进一步优选的,所述激光增材成形在沉积过程开始时,基板由夹具固定并被线圈包围,线圈放置在距离基板表面6毫米的上方,在整个沉积过程中,感应线圈随激光头移动;当一层沉积完成时,激光束和粉末流沿水平方向移动,而感应线圈沿垂直方向向上移动一个层厚的距离;在开始沉积下一层之前,关闭激光和感应加热器 15 秒;在整个沉积过程中,沉积腔室中的氧含量低于40 ppm。
与现有技术相比,本发明的有益效果是:
首先,本发明利用激光增材成形工艺制备ODS钛合金,更便于得到高温拉伸、蠕变和持久性能优异的柱状晶组织钛合金。
第二,本发明通过合理控制送气速率,从而对熔池产生有效的搅动,以使得稳定性粒子能够均匀分布而避免其在结晶的偏聚。
第三,本发明利用长焦激光和延长的送粉管和侧吹管,能够准确地将纳米晶粉末和搅动气体直接送入熔池中,从而精确控制熔池成分和搅动效果。
第四,本发明利用高能球磨工艺,使异种粉末颗粒结合形成均匀的复合材料粉末,并充分细化颗粒内部晶粒至纳米晶。
第五,本发明通过合理的激光增材成形工艺参数,并结合感应线圈加热,可以在激光沉积时同时加热,以调控形成柱状晶组织的宽度;还可以在激光沉积完成后,对形成的沉积层进行加热,以达到热处理的目的。
附图说明
图1为本发明制造工艺的整体示意图;
图2为本发明制造工艺的送粉、送气的局部放大示意图;
图3为实施例1的组织照片;
图4为比较例1的组织照片;
图5为比较例2的组织照片。
具体实施方式
以下将结合本发明实施例中的附图对本发明实施例中的技术方案进行描述。
实施例1
(1)首先,本发明中选用TC11(其名义成分如下表1所示,wt.%)作为钛合金主体,将150~300μm的Y、CaAl、Th合金粉末加入到TC11合金粉末中,得到500g混合合金粉末并将其放入球磨罐中,其中为了使得Y、CaAl、Th各自发挥稳定、强化的作用同时避免其添加可能导致的偏聚,Y、CaAl、Th的添加量分别按TC11合金粉末质量比0.6wt.%-8wt.%加入。加入500 g直径在20-130mm的 440C 耐磨钢球,充入氩气并密封罐体,使整个球磨过程在无氧环境下进行,避免球磨时产生的新鲜表面被快速氧化;使高能球磨机,先使用 250 转/分钟预混30min,确保合金粉末混合均匀,再使用 600转/分钟进行高能球磨50h;高能球磨时,对罐体进行风冷,同时,每球磨2.5h,暂停 15 min,以防止粉体过热,影响细化晶粒;球磨完成后,将球磨粉用 100 目筛网筛分获得0-100 目的纳米晶粉末,以保证热机械固结的冶金质量。
表1
Al Mo Zr Si Fe C O N H Ti
5.8-7.0 2.8-3.8 0.8-2.0 0.2-0.35 ≤0.25 ≤0.08 ≤0.15 ≤0.05 ≤0.012 Balance
(2)如图1-2所示,利用延长的变截面送粉管2将纳米晶粉末7直接送入熔池,变截面送粉管2一方面可以更容易控制送粉量,另一方面也便于粉末下滑送粉。在送粉管2外侧旁边设计侧吹管1,用来输送氩气和氧气的混合气。O在高温下可与Y、Si、Ca反应形成细小的Y2O3、SiO2、Ca-Ti-O、ThO2氧化物第二相颗粒,同时Al固溶在Ti基体中。而通过控制送气速率可以使熔池内获得不同程度的流动性,使得到的第二相粒子弥散分布,而不聚集,具体而言,吹送氩气和氧气的混合气体的送气速率Ф按照以下公式加以控制,
Figure 693661DEST_PATH_IMAGE002
其中,μ是送粉速度,Ф是送气速率,h是熔池底8到熔池表面之间距离,R是激光光斑直径,λ是和感应热及钛合金本身性质有关的系数,n是熔池中的Y含量,对于本发明中选用的TC11钛合金,λ=0.30-0.65,具体的,λ通过预实验得到,即把公式中其他参数设定好,测量n是多少,再通过上述公式反算λ值,多次计算去平均。
为避免激光头3碰撞到送粉管和侧吹管,激光成形采用长焦激光,并且如图2所示,送粉管2为变截面铜管,其下端自长焦激光头底部延长15-25mm,如果超过25mm则很容易碰到基材,而比15mm短则容易导致粉末飞溅。侧吹管设置在送粉管外侧并比送粉管延长更多。
同时,侧吹管1开始输送氩气和氧气的混合气中,Ar:O2=22:1,如果氧含量过高,会导致钛的过度氧化,而过低则难以有效形成氧化物强化相。侧吹管1为细径铜管,管口直径为2-4mm,管口直径过小会导致熔池内液体金属喷溅,而如果管口直径过大则仅能在熔池表面形成扰动而难以有效形成漩涡流动的搅拌效果。
(3)如图 1所示,在沉积过程开始时,基板5由夹具固定并在上方设置两个线圈4,线圈放置在距离基板5表面4-6毫米的方向,线圈4距离基板5表面太近,激光扫描过程中容易损伤线圈4,但线圈4距离基板5表面太远则起不到热处理和调控晶粒尺寸的效果。在整个沉积过程中,感应线圈4随激光头移动,始终使得沉积层6被夹在两个线圈4中间,并且线圈距离沉积层表面4-6毫米。激光束和粉末流沿水平方向移动扫描,当一层完成时,而感应线圈沿垂直方向向上移动一个层厚的距离。在开始沉积下一层之前,关闭激光和感应加热器15 秒,以使得沉积好的材料充分冷却,避免沉积层坍塌。在整个沉积过程中,沉积腔室中的氧含量低于40 ppm。
激光熔化沉积的主要工艺参数为激光功率1500-1800W、扫描速度7-8mm/s和送粉速度70-80g/min,送气速率20-25L/min,输入电流功率800-1000W。激光功率过大会导致熔池过大从而造成沉积层表面凹陷,而激光功率太低则会导致熔池过小而不能使得合金粉末充分熔融;送粉太快,送粉量太多,会“盖灭”熔池,会导致部分粉末没有熔化,送粉太慢则会导致熔池过烧;扫描速度太快,容易造成沉积层不连续,太慢的话则会有凸起;输入电流过高,感应热量过大就会使沉积层无法快速冷却成型,而输入电流过低,则起不到输入一定热量调控晶粒尺寸的作用。
在本实施例中,为了使得Y、CaAl、Th各自发挥稳定、强化的作用同时避免其添加可能导致的偏聚,Y、CaAl、Th的添加量分别按TC11合金粉末质量比5.5wt.%加入。激光熔化沉积的主要工艺参数为激光功率1800W、扫描速度8mm/s和送粉速度75g/min,送气速率22L/min,输入电流功率900W,从而得到的ODS钛合金,对其组织进行金相和扫描电镜观察,结果如图3所示(其中3a为低倍电镜照片,3b为高倍电镜照片),可以看到组织致密无气孔、缺陷,而且氧化物弥散分布,且基本上弥散分布在晶界上,然后通过高温蠕变性能测试,得到表2的结果,满足预期效果。
表2
600℃/160MPa/100h高温蠕变 总伸长率% 塑性伸长率% 弹性伸长率%
ODSTC11 0.3960 0.1633 0.2327
比较例1
比较例1中,Ar:O2=10:1,其余的均与实施例1相同,得到的ODS钛合金,对其组织进行金相和扫描电镜观察,形成的组织如图4所示(其中4a为低倍电镜照片,4b为高倍电镜照片),可以明显看到组织中的气孔,凹陷和凸起,还会有明显的缺陷和裂纹。
比较例2
比较例2中,采用激光增材制造技术制备ODS高温合金时,侧吹管送气速率为10L/min,其余与实施例1相同,得到的组织图如图5所示,从中可以明显看出氧化物颗粒偏聚在晶粒内和晶界上,没有起不到弥散强化的效果,难以满足性能要求。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (5)

1.一种高稳定性粒子弥散强化钛合金的激光增材制造方法,包括以下步骤:
1)制备由钛合金、Y、CaAl、Th混合而成的纳米晶粉末;
2)将所述纳米晶粉末通过送粉管直接送入激光束形成的熔池中;
3)通过侧吹管吹送氩气和氧气的混合气体对激光熔池进行搅动,所述氩气和氧气的混合气体中,Ar:O2=22-20:1;
所述吹送氩气和氧气的混合气体的送气速率Ф按照以下公式加以控制,
Figure 200721DEST_PATH_IMAGE001
其中,μ是送粉速度,Ф是送气速率,h是熔池底到熔池表面之间距离,R是激光光斑直径,λ是和感应热及钛合金本身性质有关的系数,n是熔池中的Y含量,所述钛合金为TC11,所述λ=0.30-0.65;
4)激光束、送粉管和侧吹管同步摆动进行激光增材成形。
2.根据权利要求1所述的制造方法,其特征在于,所述纳米晶粉末通过下述工艺制备得到,将Y、CaAl、Th合金粉末分别按质量比0.6wt.%-8wt.%加入到钛合金粉末或碎屑中得到混合合金粉末并将其放入球磨罐中,加入等质量的、尺寸不等的 440C 耐磨钢球,充入氩气并密封罐体,使整个球磨过程在无氧环境下进行,先使用 250 转/分钟预混30 min,确保混合合金粉末混合均匀,再使用 600转/分钟进行高能球磨50h;高能球磨时,对罐体进行风冷,同时,每球磨2.5h,暂停 15 min,球磨完成后,将球磨粉用 100 目筛网筛分获得所述纳米晶粉末。
3.根据权利要求1所述的制造方法,其特征在于,所述激光束为长焦激光形成,所述送粉管为变截面铜管并延长15-25mm,所述侧吹管设置在所述送粉管外侧并比所述 送粉管延长更多。
4.根据权利要求1所述的制造方法,其特征在于,所述激光增材成形的工艺参数为,激光功率1500-1800W、扫描速度7-8mm/s,送粉速度70-80g/min,送气速率20-25L/min,输入电流功率800-1000W。
5.根据权利要求1所述的制造方法,其特征在于,所述激光增材成形在沉积过程开始时,基板由夹具固定并在上方设置两个线圈,线圈放置在距离基板表面4-6毫米的方向,在整个沉积过程中,感应线圈随激光头移动;当一层沉积完成时,激光束和粉末流沿水平方向移动,而感应线圈沿垂直方向向上移动一个层厚的距离;在开始沉积下一层之前,关闭激光和感应加热器 15 秒;在整个沉积过程中,沉积腔室中的氧含量低于40 ppm。
CN202111033316.7A 2021-09-03 2021-09-03 一种高稳定性粒子弥散强化钛合金的激光增材制造方法 Active CN113458415B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111033316.7A CN113458415B (zh) 2021-09-03 2021-09-03 一种高稳定性粒子弥散强化钛合金的激光增材制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111033316.7A CN113458415B (zh) 2021-09-03 2021-09-03 一种高稳定性粒子弥散强化钛合金的激光增材制造方法

Publications (2)

Publication Number Publication Date
CN113458415A CN113458415A (zh) 2021-10-01
CN113458415B true CN113458415B (zh) 2021-12-07

Family

ID=77867435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111033316.7A Active CN113458415B (zh) 2021-09-03 2021-09-03 一种高稳定性粒子弥散强化钛合金的激光增材制造方法

Country Status (1)

Country Link
CN (1) CN113458415B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114367675A (zh) * 2022-01-14 2022-04-19 西安空天机电智能制造有限公司 一种铜铬混合物及其增材制造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103008657A (zh) * 2013-01-13 2013-04-03 北京科技大学 一种快速成形制备氧化物弥散强化合金的方法
CN106363173B (zh) * 2016-12-12 2018-05-25 中国工程物理研究院材料研究所 一种超声波辅助激光增材制造的装置及其实现方法
CN106735223B (zh) * 2016-12-14 2018-11-02 中国科学院力学研究所 一种金属基原位自生颗粒增强构件的增材制造方法
WO2018222326A1 (en) * 2017-05-30 2018-12-06 Siemens Aktiengesellschaft Turbine blade with squealer tip and densified oxide dispersion strengthened layer
CN109175391B (zh) * 2018-10-24 2020-12-15 北京航空航天大学 一种原位合成纳米氧化物颗粒弥散强化合金的方法
CN110293296A (zh) * 2019-04-30 2019-10-01 兰州理工大学 一种氧元素原位强化的梯度钛合金等离子弧增材制造方法
CN110293285A (zh) * 2019-04-30 2019-10-01 兰州理工大学 一种氧元素原位强化的梯度钛合金tig电弧增材制造方法
KR102107239B1 (ko) * 2019-12-05 2020-05-06 한밭대학교 산학협력단 Fe계 산화물 분산 강화 합금의 제조방법
CN112045183B (zh) * 2020-08-27 2022-12-20 湘潭大学 一种采用激光熔覆成形制备ods强化耐热铝合金的方法
CN112322921B (zh) * 2020-09-17 2022-03-29 广东省科学院新材料研究所 一种原位合成氧化物弥散强化CoCrW合金及其制备方法

Also Published As

Publication number Publication date
CN113458415A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
Tomar et al. A review on wire arc additive manufacturing: Processing parameters, defects, quality improvement and recent advances
Gu et al. Laser additive manufacturing (AM): classification, processing philosophy, and metallurgical mechanisms
Li et al. High deposition rate powder-and wire-based laser directed energy deposition of metallic materials: A review
EP3172000B1 (en) Method for manufacturing machine components by additive manufacturing
Dzogbewu Additive manufacturing of TiAl-based alloys
Moradi et al. Additive manufacturing of stellite 6 superalloy by direct laser metal deposition–Part 1: Effects of laser power and focal plane position
EP2857125B1 (en) Methods for forming oxide dispersion-strengthened alloys
US9346125B2 (en) Method for oxide dispersion strengthening of metallic material using laser
Wang et al. 3D printing of aluminum alloys using laser powder deposition: a review
Kannan et al. A review on status of research in metal additive manufacturing
Katsarelis et al. Additive manufacturing of NASA HR-1 material for liquid rocket engine component applications
CN113814413B (zh) 激光增材制造无裂纹、强度和韧性可控的高温合金的方法
Chakraborty et al. The state of the art for wire arc additive manufacturing process of titanium alloys for aerospace applications
Gong et al. Laser energy density dependence of performance in additive/subtractive hybrid manufacturing of 316L stainless steel
CN113458415B (zh) 一种高稳定性粒子弥散强化钛合金的激光增材制造方法
Marques et al. Inconel 718 produced by laser powder bed fusion: an overview of the influence of processing parameters on microstructural and mechanical properties
Spierings et al. Processing ods modified in-625 using selective laser melting
Lu et al. Comparison of wire-arc and powder-laser additive manufacturing for IN718 superalloy: unified consideration for selecting process parameters based on volumetric energy density
Klocke et al. Wire-based laser metal deposition for additive manufacturing of Ti6Al4V: Basic investigations of microstructure and mechanical properties from build up parts
Manoj et al. State of art on wire feed additive manufacturing of Ti-6Al-4V alloy
Xu et al. Research on high efficiency deposition method of titanium alloy based on double-hot-wire arc additive manufacturing and heat treatment
Zhan et al. Regionalization of microstructure and mechanical properties of Ti6Al4V transition area fabricated by WAAM-LMD hybrid additive manufacturing
Kulkarni Additive manufacturing of nickel based superalloy
Wu et al. Investigative on the remanufacturing process of TC4 blade based on selective laser melting and CNC machining
Ma Fabrication of gamma titanium aluminide alloys by gas tungsten arc welding-based additive layer manufacturing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: No. 1205, 1f, building 12, neijian Middle Road, Xisanqi building materials City, Haidian District, Beijing 100096

Patentee after: Beijing Yuding Additive Manufacturing Research Institute Co.,Ltd.

Address before: No. 1205, 1f, building 12, neijian Middle Road, Xisanqi building materials City, Haidian District, Beijing 100096

Patentee before: BEIJING YUDING ZENGCAI MANUFACTURE RESEARCH INSTITUTE Co.,Ltd.

CP01 Change in the name or title of a patent holder