CN113458412A - 一种薄壁管状构件的增材制造方法 - Google Patents

一种薄壁管状构件的增材制造方法 Download PDF

Info

Publication number
CN113458412A
CN113458412A CN202110734376.5A CN202110734376A CN113458412A CN 113458412 A CN113458412 A CN 113458412A CN 202110734376 A CN202110734376 A CN 202110734376A CN 113458412 A CN113458412 A CN 113458412A
Authority
CN
China
Prior art keywords
stainless steel
aluminum
spraying
target coating
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110734376.5A
Other languages
English (en)
Other versions
CN113458412B (zh
Inventor
崔烺
朱继宏
赵健
李韶英
冯胜强
刘光
陈杰
贾利
王晓霞
张龙
戴宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
China Weapon Science Academy Ningbo Branch
Original Assignee
Northwestern Polytechnical University
China Weapon Science Academy Ningbo Branch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University, China Weapon Science Academy Ningbo Branch filed Critical Northwestern Polytechnical University
Priority to CN202110734376.5A priority Critical patent/CN113458412B/zh
Publication of CN113458412A publication Critical patent/CN113458412A/zh
Application granted granted Critical
Publication of CN113458412B publication Critical patent/CN113458412B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • C23C24/045Impact or kinetic deposition of particles by trembling using impacting inert media
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/04Etching of light metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/06Etching of iron or steel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明公开了一种薄壁管状构件的增材制造方法,包括以下步骤1)对管状钛基体表面进行除油、干燥及喷砂处理;2)在钛基体的外壁制备铝/不锈钢复合涂层,形成钛‑铝/不锈钢复合管基体;3)钛‑铝/不锈钢复合管基体的外壁上喷涂金属粉末来增材制造目标涂层;4)将步骤3)中的钛‑铝/不锈钢‑目标涂层复合管浸泡入加热的氢氧化钠水溶液中,电腐蚀后得到目标涂层对应的管状构件;5)将目标涂层对应的管状构件进行热处理;6)对目标涂层对应的管状构件进行机械加工,最终获得所需的薄壁管状构件。可实现管状构件的薄壁化和大型化;工艺简单、粉末利用率高,极大降低了加工工期,能够实现快速制备薄壁管状构件;内部结合良好,强度较高。

Description

一种薄壁管状构件的增材制造方法
技术领域
本发明涉及增材制造领域,尤其涉及一种薄壁管状构件的增材制造方法。
背景技术
钽、铌及其合金材料(Ta-2.5W、Ta-10W、Ta-8W-2Hf、Ta-40Nb、Nb-30W-1Zr等)具有高熔点、耐腐蚀优异、抗热震性能好、蠕变强度高、膨胀系数小,且富有延展性等特点,被广泛应用于电子工业、化学工业、兵器、航空航天、原子能工业及医疗等行业中,其中电子工业和化学工业钽用量占整体钽用量总60%以上。在电子工业和化学工业中钽、铌及其合金材料被大量以管材形式制作电子发射管、高功率电子管及用于制造化学过程的反应容器和热交换器、管道、冷凝器、卡口加热器、螺旋线圈、U形管、热电偶等。
钽、铌及其合金的管状构件一般采用圆棒整体加工、粉末冶金、挤压-深冲(无缝管)以及冷轧-焊接(有缝管)等制备工艺。如专利号为ZL201410116026.2(授权公告号为CN103894442B)的中国发明专利公开了一种制备钽管的制备方法,主要步骤为线切割钽铸锭-预加热-涂覆抗氧化涂层-加热-挤压-真空热处理-轧制-真空热处理,最终获得所需钽管;申请号为201910207064.1的中国发明申请公开了一种粉末冶金制备钽管的方法,该方法为将冶金级钽粉经过筛粉、搅拌后,定量装入带有模芯的软套管中放入等静压机中进行等静压固化,将拆除软套管外套和模芯获得的钽粉管坯放入垂直烧结炉中烧结获得粉末冶金钽管坯,该方法制备工艺较简单;无缝管是使用挤压、管缩径或者用板材深冲成形制备;有缝管是先将钽块体成形成板带,然后制成管形,再把接缝用气体钨电弧(GTAW)焊接。
虽然以上方法都可以制备钽、铌及其合金的管状构件,但或多或少都存在一定的问题:
1)圆棒整体加工成管状构件的工艺复杂、加工周期长且线切割掏孔过程中材料浪费大;
2)粉末冶金工艺受限于压坯或包套尺寸及热等静压设备的限制,管状构件的尺寸及形状将受到很大的限制;
3)无缝管管壁厚均匀难控制,难生产薄壁管状构件及大直径的管状构件;
4)有缝管对带材尺寸要求高且焊缝强度不高。这些问题极大地限制了钽、铌及其合金材料管状构件的推广和应用。
发明内容
本发明所要解决的技术问题是针对现有技术的现状,提供一种薄壁管状构件的制备方法,该制备方法具有工艺简单、加工工期短、节省用料,得到的管状构件的尺寸不受限制、强度较高,可以用于生产大直径的薄壁管状构件。
本发明为解决上述技术问题采用的技术方案为:一种薄壁管状构件的增材制造方法,其特征在于:包括以下步骤
1)将管状钛基体装夹在机床上,对管状钛基体表面进行除油、干燥及喷砂处理;
2)在所述步骤1)的钛基体的外壁制备铝/不锈钢复合涂层,形成钛-铝/不锈钢复合管基体;
3)将目标涂层对应的金属粉末混匀,采用喷涂设备在所述步骤2)得到的钛-铝/不锈钢复合管基体的外壁上喷涂所述金属粉末来增材制造目标涂层,得到钛-铝/不锈钢-目标涂层复合管;所述目标涂层对应的金属粉末为钽粉末或铌粉末或钽合金粉末或铌合金粉末;
4)将所述步骤3)中的钛-铝/不锈钢-目标涂层复合管浸泡入加热的氢氧化钠水溶液中,利用不耐腐蚀的铝与耐腐蚀的不锈钢构成电偶腐蚀,加快中间位置的铝/不锈钢复合涂层的腐蚀,进而去除位于中间位置的铝/不锈钢复合涂层,从而管状钛基体脱落,得到目标涂层对应的管状构件;
5)将所述步骤4)得到的目标涂层对应的管状构件进行热处理;
6)对所述步骤5)得到的目标涂层对应的管状构件进行机械加工,最终获得所需的薄壁管状构件。
作为改进,所述步骤1)中的所述钛基体采用中空管,其直径大于或等于3mm,所述喷砂设备使用超音速空气火焰喷涂设备,喷砂时的空气压力为60~80PSI,丙烷压力为50~70PSI,喷砂距离为200~300mm,喷砂速率为80~200g/min。
进一步,所述步骤2)制备铝/不锈钢复合涂层时采用铝/不锈钢复合粉末喷涂的方式,其中不锈钢为Cr25双相不锈钢,铝/不锈钢复合粉末中双相不锈钢的质量百分数比为5%~30%,双相不锈钢粉末粒度为70~150μm,铝/不锈钢复合涂层的厚度大于或等于0.2mm。
进一步,在所述步骤2)中,所述铝/不锈钢复合涂层的制备方法采用等离子喷涂、氧乙炔喷焊、超音速火焰喷涂、冷喷涂中的任一种。
进一步,所述步骤3)中目标涂层对应的金属粉末的松装密度为6~14g/cm3,目标涂层的厚度大于或等于0.2mm。
进一步,所述步骤3)中的喷涂是保护气氛冷喷涂,首先将喷涂腔室抽真空至600~800Pa,然后往喷涂腔室通入纯度不低于99%的氮气或氩气至0.1~0.3MPa,并在喷涂过程中不断将氮气或氩气通入喷涂腔室,以维持喷涂腔室内的压力。
进一步,所述步骤3)采用的喷涂设置包括保护气氛冷喷涂系统、无保护气氛冷喷涂系统、氦气循环冷喷涂系统、激光辅助冷喷涂系统中的任一种。
进一步,所述步骤4)中氢氧化钠水溶液的质量百分比浓度为5~60%,温度为40~100℃,浸泡时间为10~100h。
进一步,所述步骤5)中热处理的温度为1200~1500℃,热处理的时间为0.5~4h,热处理的环境采用真空热处理或者氩气热处理或者氮气热处理。
进一步,所述步骤6)中最终获得的管状构件的内径大于或等于3mm,壁厚大于或等于0.1mm。
与现有技术相比,本发明的优点在于:
1、通过氢氧化钠水溶液腐蚀位于中间的铝/不锈钢复合涂层,从而钛基体与目标涂层分离,目标涂层对应于最后的管状构件,相比现有技术需要对圆棒掏孔来制备的方法,本制造方法无需掏孔的步骤,因此工艺简单;由于铝/不锈钢两种材料电位不同,容易形成电偶腐蚀,电偶腐蚀速度较快,进而提高生产速度,极大降低了管状构件的加工工期,能够实现快速制备管状构件;另外,钛基体、管状构件均与氢氧化钠水溶液基本不反应,对薄壁管状构件和钛基体都无损伤,钛基体可以被重复利用;采用喷涂金属粉末的方式得到管状构件对应的目标涂层,不会像现有技术那样对圆棒掏孔去除的材料有较大的浪费,因此能够节省用料;
2、通过喷涂容易控制目标涂层的厚度和目标涂层的面积,从而便于实现最后管状构件的薄壁化和大型化,管状构件的壁厚、内径和长度尺寸不容易像现有技术那样受加工设备的限制,这样可以扩展管状构件的应用;
3、采用喷涂配合电偶腐蚀,管状构件的壁厚比较均匀。
4、采用本方法得到的管状构件内部结合紧密、致密度高,与焊接相比,本发明制备的管状构件的强度较高,管状构件内部不容易有气孔、裂纹等缺陷。
附图说明
图1(a)是本发明提供的等离子喷涂过程示意图,图1(b)是冷喷涂增材制造过程的示意图;
图2是本发明实施例3等离子喷涂铝/不锈钢复合涂层横截面微观形貌;
图3是实施例3冷喷涂增材制造钽管的横截面微观形貌。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
实施例1:
参见图1,一种薄壁管状构件的增材制造方法,包括以下步骤
1)将管状钛基体装夹在机床上,对管状钛基体表面进行除油、干燥及喷砂处理;步骤1)中的钛基体采用中空管,其直径为3mm,喷砂设备使用超音速空气火焰喷涂(HVAF)设备,喷砂时的空气压力为60PSI,丙烷压力为50PSI,喷砂距离为250mm,喷砂速率为80g/min。
2)在步骤1)的钛基体的外壁制备铝/不锈钢复合涂层,形成钛-铝/不锈钢复合管基体;步骤2)制备铝/不锈钢复合涂层时采用铝/不锈钢复合粉末喷涂的方式,铝/Cr25不锈钢复合粉末装入等离子送粉罐中,不锈钢为Cr25双相不锈钢,铝/不锈钢复合粉末中双相不锈钢的质量百分数比为30%,双相不锈钢粉末粒度为70~150μm,铝/不锈钢复合涂层的厚度为1mm。在步骤2)中,铝/不锈钢复合涂层的制备方法采用等离子喷涂,等离子喷涂也可以替换为氧乙炔喷焊、超音速火焰喷涂、冷喷涂中的任一种。
3)将目标涂层对应的金属粉末混匀,采用喷涂设备在步骤2)得到的钛-铝/不锈钢复合管基体的外壁上喷涂金属粉末来增材制造目标涂层,得到钛-铝/不锈钢-目标涂层复合管;
在步骤3)中,本实施例中,目标涂层对应的金属粉末为钽粉末,步骤3)中目标涂层对应的金属粉末的松装密度为6g/cm3,目标涂层的厚度0.2mm。步骤3)中的喷涂是保护气氛冷喷涂,首先将喷涂腔室抽真空至800Pa,然后往喷涂腔室通入纯度不低于99%的氮气或氩气至0.2MPa,并在喷涂过程中不断将氮气或氩气通入喷涂腔室,以维持喷涂腔室内的压力。也就是本实施例中步骤3)采用的喷涂设置为保护气氛冷喷涂系统,在其它实施例中,保护气氛冷喷涂系统也可以替换为无保护气氛冷喷涂系统、氦气循环冷喷涂系统、激光辅助冷喷涂系统中的任一种。
4)将步骤3)中的钛-铝/不锈钢-目标涂层复合管浸泡入加热的氢氧化钠水溶液中,利用不耐腐蚀的铝与耐腐蚀的不锈钢构成电偶腐蚀,加快中间位置的铝/不锈钢复合涂层的腐蚀,进而去除位于中间位置的铝/不锈钢复合涂层,从而管状钛基体脱落,得到目标涂层对应的管状构件;
步骤4)中氢氧化钠水溶液的质量百分比浓度为5%,温度为40℃,浸泡时间为100h,利用不耐腐蚀的铝与耐腐蚀的不锈钢构成电偶腐蚀,加快铝/不锈钢复合涂层的腐蚀,进而去除铝/不锈钢复合涂层。
5)将步骤4)得到的目标涂层对应的管状构件进行热处理;步骤5)中热处理的温度为1200℃,热处理的时间为0.5h,热处理的环境采用真空热处理或者氩气热处理或者氮气热处理,热处理结束后随加热炉冷却到室温,以提高管状构件力学性能,具体是提高抗拉强度、伸长率、导电率。
6)对步骤5)热处理后的管状构件进行线切割及磨粒流内孔抛光加工,最终获得所需的薄壁管状构件,本实施例为得到钽管。步骤6)中最终获得的管状构件的内径3mm,壁厚0.1mm。
在其它实施例中,目标涂层对应的金属粉末也可以替换为铌粉末或钽合金粉末或者铌合金粉末,相应地得到对应材质的管状构件。
本发明通过氢氧化钠水溶液腐蚀位于中间的铝/不锈钢涂层,从而钛基体与目标涂层分离,目标涂层对应于最后的管状构件,相比现有技术需要对圆棒掏孔来制造,本制造方法无需掏孔的步骤,因此工艺简单;由于铝/Cr两种材料电位不同,容易形成电偶腐蚀,电偶腐蚀速度较快,进而提高生产速度,极大降低了管状构件的加工工期,能够实现快速制备管状构件;另外,钛基体、管状构件均与氢氧化钠水溶液基本不反应,对钽管和钛基体都无损伤,钛基体可以被重复利用;采用喷涂金属粉末的方式得到管状构件对应的目标涂层,不会像现有技术那样对圆棒掏孔去除的材料有较大的浪费,因此能够节省用料。
通过喷涂容易控制目标涂层的厚度和目标涂层的面积,从而便于实现最后管状构件的薄壁化和大型化,管状构件的壁厚、内径和长度尺寸不容易像现有技术那样受加工设备的限制,这样可以扩展管状构件的应用;
采用喷涂配合电偶腐蚀,管状构件的壁厚比较均匀。
管状构件内部结合紧密、致密度高,与焊接相比,本发明制备的管状构件的强度较高,性能优异。
实施例2:
一种薄壁管状构件的增材制造方法,包括以下步骤
1)将管状钛基体装夹在机床上,对管状钛基体表面进行除油、干燥及喷砂处理;步骤1)中的钛基体采用中空管,其直径10mm,喷砂设备使用超音速空气火焰喷涂(HVAF)设备,喷砂时的空气压力为70PSI,丙烷压力为60PSI,喷砂距离为300mm,喷砂速率为100g/min。
2)在步骤1)的钛基体的外壁制备铝/不锈钢复合涂层,形成钛-铝/不锈钢复合管基体;步骤2)制备铝/不锈钢复合涂层时采用铝/不锈钢复合粉末喷涂的方式,铝/Cr25不锈钢复合粉末装入等离子送粉罐中,不锈钢为Cr25双相不锈钢,铝/不锈钢复合粉末中双相不锈钢的质量百分数比为20%,双相不锈钢粉末粒度为70~150μm,铝/不锈钢复合涂层的厚度0.5mm。在步骤2)中,铝/不锈钢复合涂层的制备方法采用等离子喷涂,也可以是氧乙炔喷焊、超音速火焰喷涂、冷喷涂中的任一种。
3)将目标涂层对应的金属粉末混匀,采用喷涂设备在步骤2)得到的钛-铝/不锈钢复合管基体的外壁上喷涂金属粉末来增材制造目标涂层,得到钛-铝/不锈钢-目标涂层复合管;
在步骤3)中,目标涂层对应的金属粉末为钽粉末;步骤3)中目标涂层对应的金属粉末的松装密度为14g/cm3,目标涂层的厚度0.3mm。步骤3)中的喷涂是保护气氛冷喷涂,首先将喷涂腔室抽真空至700Pa,然后往喷涂腔室通入纯度不低于99%的氮气或氩气至0.3MPa,并在喷涂过程中不断将氮气或氩气通入喷涂腔室,以维持喷涂腔室内的压力;对应地,步骤3)采用的喷涂设置包括保护气氛冷喷涂系统,也可以替换为无保护气氛冷喷涂系统、氦气循环冷喷涂系统、激光辅助冷喷涂系统中的任一种。
4)将步骤3)中的钛-铝/不锈钢-目标涂层复合管浸泡入加热的氢氧化钠水溶液中,利用不耐腐蚀的铝与耐腐蚀的不锈钢构成电偶腐蚀,加快中间位置的铝/不锈钢复合涂层的腐蚀,进而去除位于中间位置的铝/不锈钢复合涂层,从而管状钛基体脱落,得到目标涂层对应的管状构件;
步骤4)中氢氧化钠水溶液的质量百分比浓度为30%,温度为80℃,浸泡时间为40h。
5)将步骤4)得到的目标涂层对应的管状构件进行热处理;步骤5)中热处理的温度为1300℃,热处理的时间为0.5h,热处理的环境采用真空热处理或者氩气热处理或者氮气热处理,热处理结束后随炉冷却到室温。
6)对步骤5)热处理后的管状构件进行线切割及磨粒流内孔抛光加工,最终获得所需的薄壁管状构件,即得到钽管。步骤6)中最终获得的管状构件的内径10mm,壁厚大于0.1mm。
实施例3:
一种薄壁管状构件的增材制造方法,包括以下步骤
1)将直径为30mm的管状钛基体装夹在机床上,对管状钛基体表面进行除油、干燥及喷砂处理;步骤1)中的钛基体采用中空管,喷砂设备使用超音速空气火焰喷涂(HVAF)设备,喷砂时的空气压力为80PSI,丙烷压力为70PSI,喷砂距离为200mm,喷砂速率为200g/min。
2)在步骤1)的钛基体的外壁制备铝/不锈钢复合涂层,形成钛-铝/不锈钢复合管基体;步骤2)制备铝/不锈钢复合涂层时采用铝/不锈钢复合粉末喷涂的方式,具体是采用等离子喷涂设备,铝/Cr25不锈钢复合粉末装入等离子送粉罐中,不锈钢为Cr25双相不锈钢,铝/不锈钢复合粉末中双相不锈钢的质量百分数比为5%,双相不锈钢粉末粒度为70~150μm,铝/不锈钢复合涂层的厚度0.2mm。在步骤2)中,铝/不锈钢复合涂层的制备方法也可以采用氧乙炔喷焊、超音速火焰喷涂、冷喷涂中的任一种。
3)将目标涂层对应的金属粉末混匀,采用喷涂设备在步骤2)得到的钛-铝/不锈钢复合管基体的外壁上喷涂金属粉末来增材制造目标涂层,得到钛-铝/不锈钢-目标涂层复合管;
在步骤3)中,目标涂层对应的金属粉末为钽粉末;步骤3)中目标涂层对应的金属粉末的松装密度为10g/cm3,目标涂层的厚度大于0.2mm。步骤3)中的喷涂是保护气氛冷喷涂,首先将喷涂腔室抽真空至600Pa,然后往喷涂腔室通入纯度不低于99%的氮气或氩气至0.1MPa,并在喷涂过程中不断将氮气或氩气通入喷涂腔室,以维持喷涂腔室内的压力;对应地,步骤3)采用的喷涂设置包括保护气氛冷喷涂系统,也可以替换为无保护气氛冷喷涂系统、氦气循环冷喷涂系统、激光辅助冷喷涂系统中的任一种。
4)将步骤3)中的钛-铝/不锈钢-目标涂层复合管浸泡入加热的氢氧化钠水溶液中,利用不耐腐蚀的铝与耐腐蚀的不锈钢构成电偶腐蚀,加快中间位置的铝/不锈钢复合涂层的腐蚀,进而去除位于中间位置的铝/不锈钢复合涂层,从而管状钛基体脱落,得到目标涂层对应的管状构件,厚度大于0.2mm;
步骤4)中氢氧化钠水溶液的质量百分比浓度为60%,温度为100℃,浸泡时间为10h。
5)将步骤4)得到的目标涂层对应的管状构件进行热处理;步骤5)中热处理的温度为1500℃,热处理的时间为2h,热处理的环境采用真空热处理,热处理结束后随炉冷却到室温,真空热处理也可以替换为氩气热处理或者氮气热处理。
6)对步骤5)热处理后的管状构件进行线切割及磨粒流内孔抛光加工,最终获得所需的薄壁管状构件,即钽管。步骤6)中最终获得的管状构件的内径为30mm,壁厚大于0.2mm。
从图2、图3可知,得到的钽管状构件比较致密,管状构件内部结合比较紧密,因此强度较高。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种薄壁管状构件的增材制造方法,其特征在于:包括以下步骤
1)将管状钛基体装夹在机床上,对管状钛基体表面进行除油、干燥及喷砂处理;
2)在所述步骤1)的钛基体的外壁制备铝/不锈钢复合涂层,形成钛-铝/不锈钢复合管基体;
3)将目标涂层对应的金属粉末混匀,采用喷涂设备在所述步骤2)得到的钛-铝/不锈钢复合管基体的外壁上喷涂所述金属粉末来增材制造目标涂层,得到钛-铝/不锈钢-目标涂层复合管;所述目标涂层对应的金属粉末为钽粉末或铌粉末或钽合金粉末或铌合金粉末;
4)将所述步骤3)中的钛-铝/不锈钢-目标涂层复合管浸泡入加热的氢氧化钠水溶液中,利用不耐腐蚀的铝与耐腐蚀的不锈钢构成电偶腐蚀,加快中间位置的铝/不锈钢复合涂层的腐蚀,进而去除位于中间位置的铝/不锈钢复合涂层,从而管状钛基体脱落,得到目标涂层对应的管状构件;
5)将所述步骤4)得到的目标涂层对应的管状构件进行热处理;
6)对所述步骤5)热处理后的管状构件进行机械加工,最终获得所需的薄壁管状构件。
2.根据权利要求1所述的制备方法,其特征在于:所述步骤1)中的所述钛基体采用中空管,其直径大于或等于3mm,所述喷砂设备使用超音速空气火焰喷涂设备,喷砂时的空气压力为60~80PSI,丙烷压力为50~70PSI,喷砂距离为200~300mm,喷砂速率为80~200g/min。
3.根据权利要求1所述的制备方法,其特征在于:所述步骤2)制备铝/不锈钢复合涂层时采用铝/不锈钢复合粉末喷涂的方式,其中不锈钢为Cr25双相不锈钢,铝/不锈钢复合粉末中双相不锈钢的质量百分数比为5%~30%,双相不锈钢粉末粒度为70~150μm,铝/不锈钢复合涂层的厚度大于或等于0.2mm。
4.根据权利要求1所述的制备方法,其特征在于:在所述步骤2)中,所述铝/不锈钢复合涂层的制备方法采用等离子喷涂、氧乙炔喷焊、超音速火焰喷涂、冷喷涂中的任一种。
5.根据权利要求1所述的制备方法,其特征在于:所述步骤3)中目标涂层对应的金属粉末的松装密度为6~14g/cm3,目标涂层的厚度大于或等于0.2mm。
6.根据权利要求1所述的制备方法,其特征在于:所述步骤3)中的喷涂是保护气氛冷喷涂,首先将喷涂腔室抽真空至600~800Pa,然后往喷涂腔室通入纯度不低于99%的氮气或氩气至0.1~0.3MPa,并在喷涂过程中不断将氮气或氩气通入喷涂腔室,以维持喷涂腔室内的压力。
7.根据权利要求1所述的制备方法,其特征在于:所述步骤3)采用的喷涂设置包括保护气氛冷喷涂系统、无保护气氛冷喷涂系统、氦气循环冷喷涂系统、激光辅助冷喷涂系统中的任一种。
8.根据权利要求1所述的制备方法,其特征在于:所述步骤4)中氢氧化钠水溶液的质量百分比浓度为5~60%,温度为40~100℃,浸泡时间为10~100h。
9.根据权利要求1所述的制备方法,其特征在于:所述步骤5)中热处理的温度为1200~1500℃,热处理的时间为0.5~4h,热处理的环境采用真空热处理或者氩气热处理或者氮气热处理。
10.根据权利要求1所述的制备方法,其特征在于:所述步骤6)中最终获得的管状构件的内径大于或等于3mm,壁厚大于或等于0.1mm。
CN202110734376.5A 2021-06-30 2021-06-30 一种薄壁管状构件的增材制造方法 Active CN113458412B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110734376.5A CN113458412B (zh) 2021-06-30 2021-06-30 一种薄壁管状构件的增材制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110734376.5A CN113458412B (zh) 2021-06-30 2021-06-30 一种薄壁管状构件的增材制造方法

Publications (2)

Publication Number Publication Date
CN113458412A true CN113458412A (zh) 2021-10-01
CN113458412B CN113458412B (zh) 2023-04-28

Family

ID=77874352

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110734376.5A Active CN113458412B (zh) 2021-06-30 2021-06-30 一种薄壁管状构件的增材制造方法

Country Status (1)

Country Link
CN (1) CN113458412B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183570B1 (en) * 1998-04-16 2001-02-06 Nihon Parkerizing Co., Ltd. Surface treatment process of metallic material and metallic material obtained thereby
KR20040066060A (ko) * 2004-06-09 2004-07-23 한영철 초 합금 868 및 신 아크 코팅 공법을 적용한 내 부식 코팅
CN103895160A (zh) * 2012-12-28 2014-07-02 比亚迪股份有限公司 一种不锈钢树脂复合体的制备方法及其制备的不锈钢树脂复合体
CN108950534A (zh) * 2018-08-16 2018-12-07 张家港市山牧新材料技术开发有限公司 一种耐蚀型合金涂层的制备方法
US20190330742A1 (en) * 2018-04-27 2019-10-31 Applied Materials, Inc. Cold spray coating with sacrificial filler powder
CN110396659A (zh) * 2019-08-30 2019-11-01 西安交通大学 一种多孔材料与涂层制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183570B1 (en) * 1998-04-16 2001-02-06 Nihon Parkerizing Co., Ltd. Surface treatment process of metallic material and metallic material obtained thereby
KR20040066060A (ko) * 2004-06-09 2004-07-23 한영철 초 합금 868 및 신 아크 코팅 공법을 적용한 내 부식 코팅
CN103895160A (zh) * 2012-12-28 2014-07-02 比亚迪股份有限公司 一种不锈钢树脂复合体的制备方法及其制备的不锈钢树脂复合体
US20190330742A1 (en) * 2018-04-27 2019-10-31 Applied Materials, Inc. Cold spray coating with sacrificial filler powder
CN108950534A (zh) * 2018-08-16 2018-12-07 张家港市山牧新材料技术开发有限公司 一种耐蚀型合金涂层的制备方法
CN110396659A (zh) * 2019-08-30 2019-11-01 西安交通大学 一种多孔材料与涂层制备方法

Also Published As

Publication number Publication date
CN113458412B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
US5263349A (en) Extrusion of seamless molybdenum rhenium alloy pipes
US5056209A (en) Process for manufacturing clad metal tubing
CN104831120A (zh) 钛合金无缝管及其制造方法
US4966748A (en) Methods of producing clad metals
US5988484A (en) Clad tubular product and method of manufacturing same
CN101733641A (zh) 一种大口径无缝钛合金筒体的制造方法
CN113510216B (zh) 一种铌钨合金环形件锻造成形方法
CN113020423B (zh) 一种异种金属叠层薄壁筒形件成形方法
CN103231218B (zh) 一种钛合金管材的快速制备方法
CN105499920A (zh) 一种大口径厚壁无缝铌管材的制造方法
CN107971710A (zh) 一种ta1材料环锻件的制造方法
CN103982711A (zh) 耐腐蚀铝合金复合管及其加工方法
Lambert et al. Refractory metals and alloys
CN103111482B (zh) 一种镁合金无缝管材的制备方法及其挤压模具
CN104227338A (zh) 一种空间飞行器热控用铝-不锈钢复合管的制备方法
EP2840155B1 (en) Magnesium alloy member and method for manufacturing same
CN105171339A (zh) 一种液压涨制内壁复合管的方法
CN113458412B (zh) 一种薄壁管状构件的增材制造方法
Lee et al. Effect of intermetallic compound thickness on anisotropy of Al/Cu honeycomb rods fabricated by hydrostatic extrusion process
CN117259755A (zh) 一种大尺寸tc18钛合金薄壁零部件的制备方法
CN115958078A (zh) 一种高熵合金薄壁管非等温快速挤压成形方法及装置
RU2438842C1 (ru) Способ изготовления биметаллической трубы
CN110998171B (zh) 液态氢传输系统
WO2019232514A1 (en) Composite tube assemblies, thin-walled tubing, and methods of forming the same
CN113210831A (zh) 一种钼铼合金复合管材及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant